예제 #1
0
/**
 * Set the sign of float vector 'a' according to 'sign'.
 * If sign==0, return abs(a).
 * If sign==1, return -abs(a);
 * Other values for sign produce undefined results.
 */
LLVMValueRef
lp_build_set_sign(struct lp_build_context *bld,
                  LLVMValueRef a, LLVMValueRef sign)
{
   const struct lp_type type = bld->type;
   LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
   LLVMTypeRef vec_type = lp_build_vec_type(type);
   LLVMValueRef shift = lp_build_int_const_scalar(type, type.width - 1);
   LLVMValueRef mask = lp_build_int_const_scalar(type,
                             ~((unsigned long long) 1 << (type.width - 1)));
   LLVMValueRef val, res;

   assert(type.floating);

   /* val = reinterpret_cast<int>(a) */
   val = LLVMBuildBitCast(bld->builder, a, int_vec_type, "");
   /* val = val & mask */
   val = LLVMBuildAnd(bld->builder, val, mask, "");
   /* sign = sign << shift */
   sign = LLVMBuildShl(bld->builder, sign, shift, "");
   /* res = val | sign */
   res = LLVMBuildOr(bld->builder, val, sign, "");
   /* res = reinterpret_cast<float>(res) */
   res = LLVMBuildBitCast(bld->builder, res, vec_type, "");

   return res;
}
예제 #2
0
/**
 * Generate abs(a)
 */
LLVMValueRef
lp_build_abs(struct lp_build_context *bld,
             LLVMValueRef a)
{
   const struct lp_type type = bld->type;
   LLVMTypeRef vec_type = lp_build_vec_type(type);

   if(!type.sign)
      return a;

   if(type.floating) {
      /* Mask out the sign bit */
      LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
      unsigned long long absMask = ~(1ULL << (type.width - 1));
      LLVMValueRef mask = lp_build_int_const_scalar(type, ((unsigned long long) absMask));
      a = LLVMBuildBitCast(bld->builder, a, int_vec_type, "");
      a = LLVMBuildAnd(bld->builder, a, mask, "");
      a = LLVMBuildBitCast(bld->builder, a, vec_type, "");
      return a;
   }

   if(type.width*type.length == 128 && util_cpu_caps.has_ssse3) {
      switch(type.width) {
      case 8:
         return lp_build_intrinsic_unary(bld->builder, "llvm.x86.ssse3.pabs.b.128", vec_type, a);
      case 16:
         return lp_build_intrinsic_unary(bld->builder, "llvm.x86.ssse3.pabs.w.128", vec_type, a);
      case 32:
         return lp_build_intrinsic_unary(bld->builder, "llvm.x86.ssse3.pabs.d.128", vec_type, a);
      }
   }

   return lp_build_max(bld, a, LLVMBuildNeg(bld->builder, a, ""));
}
예제 #3
0
/**
 * Convert a vector of rgba8 values into 32bit wide SoA vectors.
 *
 * \param dst_type  The desired return type. For pure integer formats
 *                  this should be a 32bit wide int or uint vector type,
 *                  otherwise a float vector type.
 *
 * \param packed    The rgba8 values to pack.
 *
 * \param rgba      The 4 SoA return vectors.
 */
void
lp_build_rgba8_to_fi32_soa(struct gallivm_state *gallivm,
                           struct lp_type dst_type,
                           LLVMValueRef packed,
                           LLVMValueRef *rgba)
{
   LLVMBuilderRef builder = gallivm->builder;
   LLVMValueRef mask = lp_build_const_int_vec(gallivm, dst_type, 0xff);
   unsigned chan;

   /* XXX technically shouldn't use that for uint dst_type */
   packed = LLVMBuildBitCast(builder, packed,
                             lp_build_int_vec_type(gallivm, dst_type), "");

   /* Decode the input vector components */
   for (chan = 0; chan < 4; ++chan) {
      unsigned start = chan*8;
      unsigned stop = start + 8;
      LLVMValueRef input;

      input = packed;

      if (start)
         input = LLVMBuildLShr(builder, input,
                               lp_build_const_int_vec(gallivm, dst_type, start), "");

      if (stop < 32)
         input = LLVMBuildAnd(builder, input, mask, "");

      if (dst_type.floating)
         input = lp_build_unsigned_norm_to_float(gallivm, 8, dst_type, input);

      rgba[chan] = input;
   }
}
예제 #4
0
/**
 * Special case for converting clamped IEEE-754 floats to unsigned norms.
 *
 * The mathematical voodoo below may seem excessive but it is actually
 * paramount we do it this way for several reasons. First, there is no single
 * precision FP to unsigned integer conversion Intel SSE instruction. Second,
 * secondly, even if there was, since the FP's mantissa takes only a fraction
 * of register bits the typically scale and cast approach would require double
 * precision for accurate results, and therefore half the throughput
 *
 * Although the result values can be scaled to an arbitrary bit width specified
 * by dst_width, the actual result type will have the same width.
 */
LLVMValueRef
lp_build_clamped_float_to_unsigned_norm(LLVMBuilderRef builder,
                                        struct lp_type src_type,
                                        unsigned dst_width,
                                        LLVMValueRef src)
{
   LLVMTypeRef int_vec_type = lp_build_int_vec_type(src_type);
   LLVMValueRef res;
   unsigned mantissa;
   unsigned n;
   unsigned long long ubound;
   unsigned long long mask;
   double scale;
   double bias;

   assert(src_type.floating);

   mantissa = lp_mantissa(src_type);

   /* We cannot carry more bits than the mantissa */
   n = MIN2(mantissa, dst_width);

   /* This magic coefficients will make the desired result to appear in the
    * lowest significant bits of the mantissa.
    */
   ubound = ((unsigned long long)1 << n);
   mask = ubound - 1;
   scale = (double)mask/ubound;
   bias = (double)((unsigned long long)1 << (mantissa - n));

   res = LLVMBuildMul(builder, src, lp_build_const_scalar(src_type, scale), "");
   res = LLVMBuildAdd(builder, res, lp_build_const_scalar(src_type, bias), "");
   res = LLVMBuildBitCast(builder, res, int_vec_type, "");

   if(dst_width > n) {
      int shift = dst_width - n;
      res = LLVMBuildShl(builder, res, lp_build_int_const_scalar(src_type, shift), "");

      /* TODO: Fill in the empty lower bits for additional precision? */
#if 0
      {
         LLVMValueRef msb;
         msb = LLVMBuildLShr(builder, res, lp_build_int_const_scalar(src_type, dst_width - 1), "");
         msb = LLVMBuildShl(builder, msb, lp_build_int_const_scalar(src_type, shift), "");
         msb = LLVMBuildSub(builder, msb, lp_build_int_const_scalar(src_type, 1), "");
         res = LLVMBuildOr(builder, res, msb, "");
      }
#elif 0
      while(shift > 0) {
         res = LLVMBuildOr(builder, res, LLVMBuildLShr(builder, res, lp_build_int_const_scalar(src_type, n), ""), "");
         shift -= n;
         n *= 2;
      }
#endif
   }
   else
      res = LLVMBuildAnd(builder, res, lp_build_int_const_scalar(src_type, mask), "");

   return res;
}
예제 #5
0
void
lp_build_exp2_approx(struct lp_build_context *bld,
                     LLVMValueRef x,
                     LLVMValueRef *p_exp2_int_part,
                     LLVMValueRef *p_frac_part,
                     LLVMValueRef *p_exp2)
{
   const struct lp_type type = bld->type;
   LLVMTypeRef vec_type = lp_build_vec_type(type);
   LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
   LLVMValueRef ipart = NULL;
   LLVMValueRef fpart = NULL;
   LLVMValueRef expipart = NULL;
   LLVMValueRef expfpart = NULL;
   LLVMValueRef res = NULL;

   if(p_exp2_int_part || p_frac_part || p_exp2) {
      /* TODO: optimize the constant case */
      if(LLVMIsConstant(x))
         debug_printf("%s: inefficient/imprecise constant arithmetic\n",
                      __FUNCTION__);

      assert(type.floating && type.width == 32);

      x = lp_build_min(bld, x, lp_build_const_scalar(type,  129.0));
      x = lp_build_max(bld, x, lp_build_const_scalar(type, -126.99999));

      /* ipart = int(x - 0.5) */
      ipart = LLVMBuildSub(bld->builder, x, lp_build_const_scalar(type, 0.5f), "");
      ipart = LLVMBuildFPToSI(bld->builder, ipart, int_vec_type, "");

      /* fpart = x - ipart */
      fpart = LLVMBuildSIToFP(bld->builder, ipart, vec_type, "");
      fpart = LLVMBuildSub(bld->builder, x, fpart, "");
   }

   if(p_exp2_int_part || p_exp2) {
      /* expipart = (float) (1 << ipart) */
      expipart = LLVMBuildAdd(bld->builder, ipart, lp_build_int_const_scalar(type, 127), "");
      expipart = LLVMBuildShl(bld->builder, expipart, lp_build_int_const_scalar(type, 23), "");
      expipart = LLVMBuildBitCast(bld->builder, expipart, vec_type, "");
   }

   if(p_exp2) {
      expfpart = lp_build_polynomial(bld, fpart, lp_build_exp2_polynomial,
                                     Elements(lp_build_exp2_polynomial));

      res = LLVMBuildMul(bld->builder, expipart, expfpart, "");
   }

   if(p_exp2_int_part)
      *p_exp2_int_part = expipart;

   if(p_frac_part)
      *p_frac_part = fpart;

   if(p_exp2)
      *p_exp2 = res;
}
예제 #6
0
/**
 * Generate color blending and color output.
 */
static void
generate_blend(const struct pipe_blend_state *blend,
               LLVMBuilderRef builder,
               struct lp_type type,
               LLVMValueRef context_ptr,
               LLVMValueRef mask,
               LLVMValueRef *src,
               LLVMValueRef dst_ptr)
{
   struct lp_build_context bld;
   struct lp_build_flow_context *flow;
   struct lp_build_mask_context mask_ctx;
   LLVMTypeRef vec_type;
   LLVMTypeRef int_vec_type;
   LLVMValueRef const_ptr;
   LLVMValueRef con[4];
   LLVMValueRef dst[4];
   LLVMValueRef res[4];
   unsigned chan;

   lp_build_context_init(&bld, builder, type);

   flow = lp_build_flow_create(builder);

   /* we'll use this mask context to skip blending if all pixels are dead */
   lp_build_mask_begin(&mask_ctx, flow, type, mask);

   vec_type = lp_build_vec_type(type);
   int_vec_type = lp_build_int_vec_type(type);

   const_ptr = lp_jit_context_blend_color(builder, context_ptr);
   const_ptr = LLVMBuildBitCast(builder, const_ptr,
                                LLVMPointerType(vec_type, 0), "");

   for(chan = 0; chan < 4; ++chan) {
      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
      con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");

      dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");

      lp_build_name(con[chan], "con.%c", "rgba"[chan]);
      lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
   }

   lp_build_blend_soa(builder, blend, type, src, dst, con, res);

   for(chan = 0; chan < 4; ++chan) {
      if(blend->rt[0].colormask & (1 << chan)) {
         LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
         lp_build_name(res[chan], "res.%c", "rgba"[chan]);
         res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
         LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
      }
   }

   lp_build_mask_end(&mask_ctx);
   lp_build_flow_destroy(flow);
}
예제 #7
0
/**
 * Convert to integer, through whichever rounding method that's fastest,
 * typically truncating toward zero.
 */
LLVMValueRef
lp_build_itrunc(struct lp_build_context *bld,
                LLVMValueRef a)
{
   const struct lp_type type = bld->type;
   LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);

   assert(type.floating);
   assert(lp_check_value(type, a));

   return LLVMBuildFPToSI(bld->builder, a, int_vec_type, "");
}
예제 #8
0
/**
 * Inverse of lp_build_clamped_float_to_unsigned_norm above.
 * Ex: src = { i32, i32, i32, i32 } with values in range [0, 2^src_width-1]
 * return {float, float, float, float} with values in range [0, 1].
 */
LLVMValueRef
lp_build_unsigned_norm_to_float(LLVMBuilderRef builder,
                                unsigned src_width,
                                struct lp_type dst_type,
                                LLVMValueRef src)
{
   LLVMTypeRef vec_type = lp_build_vec_type(dst_type);
   LLVMTypeRef int_vec_type = lp_build_int_vec_type(dst_type);
   LLVMValueRef bias_;
   LLVMValueRef res;
   unsigned mantissa;
   unsigned n;
   unsigned long long ubound;
   unsigned long long mask;
   double scale;
   double bias;

   assert(dst_type.floating);

   mantissa = lp_mantissa(dst_type);

   n = MIN2(mantissa, src_width);

   ubound = ((unsigned long long)1 << n);
   mask = ubound - 1;
   scale = (double)ubound/mask;
   bias = (double)((unsigned long long)1 << (mantissa - n));

   res = src;

   if(src_width > mantissa) {
      int shift = src_width - mantissa;
      res = LLVMBuildLShr(builder, res, lp_build_const_int_vec(dst_type, shift), "");
   }

   bias_ = lp_build_const_vec(dst_type, bias);

   res = LLVMBuildOr(builder,
                     res,
                     LLVMBuildBitCast(builder, bias_, int_vec_type, ""), "");

   res = LLVMBuildBitCast(builder, res, vec_type, "");

   res = LLVMBuildFSub(builder, res, bias_, "");
   res = LLVMBuildFMul(builder, res, lp_build_const_vec(dst_type, scale), "");

   return res;
}
예제 #9
0
/**
 * Small vector x scale multiplication optimization.
 */
LLVMValueRef
lp_build_mul_imm(struct lp_build_context *bld,
                 LLVMValueRef a,
                 int b)
{
   LLVMValueRef factor;

   if(b == 0)
      return bld->zero;

   if(b == 1)
      return a;

   if(b == -1)
      return LLVMBuildNeg(bld->builder, a, "");

   if(b == 2 && bld->type.floating)
      return lp_build_add(bld, a, a);

   if(util_is_pot(b)) {
      unsigned shift = ffs(b) - 1;

      if(bld->type.floating) {
#if 0
         /*
          * Power of two multiplication by directly manipulating the mantissa.
          *
          * XXX: This might not be always faster, it will introduce a small error
          * for multiplication by zero, and it will produce wrong results
          * for Inf and NaN.
          */
         unsigned mantissa = lp_mantissa(bld->type);
         factor = lp_build_int_const_scalar(bld->type, (unsigned long long)shift << mantissa);
         a = LLVMBuildBitCast(bld->builder, a, lp_build_int_vec_type(bld->type), "");
         a = LLVMBuildAdd(bld->builder, a, factor, "");
         a = LLVMBuildBitCast(bld->builder, a, lp_build_vec_type(bld->type), "");
         return a;
#endif
      }
      else {
         factor = lp_build_const_scalar(bld->type, shift);
         return LLVMBuildShl(bld->builder, a, factor, "");
      }
   }

   factor = lp_build_const_scalar(bld->type, (double)b);
   return lp_build_mul(bld, a, factor);
}
예제 #10
0
/**
 * Convert float[] to int[] with floor().
 */
LLVMValueRef
lp_build_ifloor(struct lp_build_context *bld,
                LLVMValueRef a)
{
   const struct lp_type type = bld->type;
   LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
   LLVMValueRef res;

   assert(type.floating);
   assert(lp_check_value(type, a));

   if(util_cpu_caps.has_sse4_1) {
      res = lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_FLOOR);
   }
   else {
      /* Take the sign bit and add it to 1 constant */
      LLVMTypeRef vec_type = lp_build_vec_type(type);
      unsigned mantissa = lp_mantissa(type);
      LLVMValueRef mask = lp_build_int_const_scalar(type, (unsigned long long)1 << (type.width - 1));
      LLVMValueRef sign;
      LLVMValueRef offset;

      /* sign = a < 0 ? ~0 : 0 */
      sign = LLVMBuildBitCast(bld->builder, a, int_vec_type, "");
      sign = LLVMBuildAnd(bld->builder, sign, mask, "");
      sign = LLVMBuildAShr(bld->builder, sign, lp_build_int_const_scalar(type, type.width - 1), "");
      lp_build_name(sign, "floor.sign");

      /* offset = -0.99999(9)f */
      offset = lp_build_const_scalar(type, -(double)(((unsigned long long)1 << mantissa) - 1)/((unsigned long long)1 << mantissa));
      offset = LLVMConstBitCast(offset, int_vec_type);

      /* offset = a < 0 ? -0.99999(9)f : 0.0f */
      offset = LLVMBuildAnd(bld->builder, offset, sign, "");
      offset = LLVMBuildBitCast(bld->builder, offset, vec_type, "");
      lp_build_name(offset, "floor.offset");

      res = LLVMBuildAdd(bld->builder, a, offset, "");
      lp_build_name(res, "floor.res");
   }

   res = LLVMBuildFPToSI(bld->builder, res, int_vec_type, "");
   lp_build_name(res, "floor");

   return res;
}
예제 #11
0
/**
 * Begin a section of code which is predicated on a mask.
 * \param mask  the mask context, initialized here
 * \param flow  the flow context
 * \param type  the type of the mask
 * \param value  storage for the mask
 */
void
lp_build_mask_begin(struct lp_build_mask_context *mask,
                    struct gallivm_state *gallivm,
                    struct lp_type type,
                    LLVMValueRef value)
{
   memset(mask, 0, sizeof *mask);

   mask->reg_type = LLVMIntTypeInContext(gallivm->context, type.width * type.length);
   mask->var = lp_build_alloca(gallivm,
                               lp_build_int_vec_type(gallivm, type),
                               "execution_mask");

   LLVMBuildStore(gallivm->builder, value, mask->var);

   lp_build_flow_skip_begin(&mask->skip, gallivm);
}
예제 #12
0
LLVMValueRef
lp_build_trunc(struct lp_build_context *bld,
               LLVMValueRef a)
{
   const struct lp_type type = bld->type;

   assert(type.floating);
   assert(lp_check_value(type, a));

   if(util_cpu_caps.has_sse4_1)
      return lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_TRUNCATE);
   else {
      LLVMTypeRef vec_type = lp_build_vec_type(type);
      LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
      LLVMValueRef res;
      res = LLVMBuildFPToSI(bld->builder, a, int_vec_type, "");
      res = LLVMBuildSIToFP(bld->builder, res, vec_type, "");
      return res;
   }
}
/**
 * Return (mask & a) | (~mask & b);
 */
LLVMValueRef
lp_build_select_bitwise(struct lp_build_context *bld,
                        LLVMValueRef mask,
                        LLVMValueRef a,
                        LLVMValueRef b)
{
   LLVMBuilderRef builder = bld->gallivm->builder;
   struct lp_type type = bld->type;
   LLVMValueRef res;

   assert(lp_check_value(type, a));
   assert(lp_check_value(type, b));

   if (a == b) {
      return a;
   }

   if(type.floating) {
      LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, type);
      a = LLVMBuildBitCast(builder, a, int_vec_type, "");
      b = LLVMBuildBitCast(builder, b, int_vec_type, "");
   }

   a = LLVMBuildAnd(builder, a, mask, "");

   /* This often gets translated to PANDN, but sometimes the NOT is
    * pre-computed and stored in another constant. The best strategy depends
    * on available registers, so it is not a big deal -- hopefully LLVM does
    * the right decision attending the rest of the program.
    */
   b = LLVMBuildAnd(builder, b, LLVMBuildNot(builder, mask, ""), "");

   res = LLVMBuildOr(builder, a, b, "");

   if(type.floating) {
      LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
      res = LLVMBuildBitCast(builder, res, vec_type, "");
   }

   return res;
}
예제 #14
0
LLVMValueRef
lp_build_sgn(struct lp_build_context *bld,
             LLVMValueRef a)
{
   const struct lp_type type = bld->type;
   LLVMTypeRef vec_type = lp_build_vec_type(type);
   LLVMValueRef cond;
   LLVMValueRef res;

   /* Handle non-zero case */
   if(!type.sign) {
      /* if not zero then sign must be positive */
      res = bld->one;
   }
   else if(type.floating) {
      /* Take the sign bit and add it to 1 constant */
      LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
      LLVMValueRef mask = lp_build_int_const_scalar(type, (unsigned long long)1 << (type.width - 1));
      LLVMValueRef sign;
      LLVMValueRef one;
      sign = LLVMBuildBitCast(bld->builder, a, int_vec_type, "");
      sign = LLVMBuildAnd(bld->builder, sign, mask, "");
      one = LLVMConstBitCast(bld->one, int_vec_type);
      res = LLVMBuildOr(bld->builder, sign, one, "");
      res = LLVMBuildBitCast(bld->builder, res, vec_type, "");
   }
   else
   {
      LLVMValueRef minus_one = lp_build_const_scalar(type, -1.0);
      cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, bld->zero);
      res = lp_build_select(bld, cond, bld->one, minus_one);
   }

   /* Handle zero */
   cond = lp_build_cmp(bld, PIPE_FUNC_EQUAL, a, bld->zero);
   res = lp_build_select(bld, cond, bld->zero, bld->one);

   return res;
}
예제 #15
0
LLVMValueRef
lp_build_iceil(struct lp_build_context *bld,
               LLVMValueRef a)
{
   const struct lp_type type = bld->type;
   LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
   LLVMValueRef res;

   assert(type.floating);
   assert(lp_check_value(type, a));

   if(util_cpu_caps.has_sse4_1) {
      res = lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_CEIL);
   }
   else {
      assert(0);
      res = bld->undef;
   }

   res = LLVMBuildFPToSI(bld->builder, res, int_vec_type, "");

   return res;
}
예제 #16
0
LLVMValueRef
lp_build_iround(struct lp_build_context *bld,
                LLVMValueRef a)
{
   const struct lp_type type = bld->type;
   LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
   LLVMValueRef res;

   assert(type.floating);
   assert(lp_check_value(type, a));

   if(util_cpu_caps.has_sse4_1) {
      res = lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_NEAREST);
   }
   else {
      LLVMTypeRef vec_type = lp_build_vec_type(type);
      LLVMValueRef mask = lp_build_int_const_scalar(type, (unsigned long long)1 << (type.width - 1));
      LLVMValueRef sign;
      LLVMValueRef half;

      /* get sign bit */
      sign = LLVMBuildBitCast(bld->builder, a, int_vec_type, "");
      sign = LLVMBuildAnd(bld->builder, sign, mask, "");

      /* sign * 0.5 */
      half = lp_build_const_scalar(type, 0.5);
      half = LLVMBuildBitCast(bld->builder, half, int_vec_type, "");
      half = LLVMBuildOr(bld->builder, sign, half, "");
      half = LLVMBuildBitCast(bld->builder, half, vec_type, "");

      res = LLVMBuildAdd(bld->builder, a, half, "");
   }

   res = LLVMBuildFPToSI(bld->builder, res, int_vec_type, "");

   return res;
}
예제 #17
0
/**
 * Store depth/stencil values.
 * Incoming values are swizzled (typically n 2x2 quads), stored linear.
 * If there's a mask it will do select/store otherwise just store.
 *
 * \param type  the data type of the fragment depth/stencil values
 * \param format_desc  description of the depth/stencil surface
 * \param mask  the alive/dead pixel mask for the quad (vector)
 * \param z_fb  z values read from fb (with padding)
 * \param s_fb  s values read from fb (with padding)
 * \param loop_counter  the current loop iteration
 * \param depth_ptr  pointer to the depth/stencil values of this 4x4 block
 * \param depth_stride  stride of the depth/stencil buffer
 * \param z_value the depth values to store (with padding)
 * \param s_value the stencil values to store (with padding)
 */
void
lp_build_depth_stencil_write_swizzled(struct gallivm_state *gallivm,
                                      struct lp_type z_src_type,
                                      const struct util_format_description *format_desc,
                                      struct lp_build_mask_context *mask,
                                      LLVMValueRef z_fb,
                                      LLVMValueRef s_fb,
                                      LLVMValueRef loop_counter,
                                      LLVMValueRef depth_ptr,
                                      LLVMValueRef depth_stride,
                                      LLVMValueRef z_value,
                                      LLVMValueRef s_value)
{
   struct lp_build_context z_bld;
   LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH / 4];
   LLVMBuilderRef builder = gallivm->builder;
   LLVMValueRef mask_value = NULL;
   LLVMValueRef zs_dst1, zs_dst2;
   LLVMValueRef zs_dst_ptr1, zs_dst_ptr2;
   LLVMValueRef depth_offset1, depth_offset2;
   LLVMTypeRef load_ptr_type;
   unsigned depth_bytes = format_desc->block.bits / 8;
   struct lp_type zs_type = lp_depth_type(format_desc, z_src_type.length);
   struct lp_type z_type = zs_type;
   struct lp_type zs_load_type = zs_type;

   zs_load_type.length = zs_load_type.length / 2;
   load_ptr_type = LLVMPointerType(lp_build_vec_type(gallivm, zs_load_type), 0);

   z_type.width = z_src_type.width;

   lp_build_context_init(&z_bld, gallivm, z_type);

   /*
    * This is far from ideal, at least for late depth write we should do this
    * outside the fs loop to avoid all the swizzle stuff.
    */
   if (z_src_type.length == 4) {
      LLVMValueRef looplsb = LLVMBuildAnd(builder, loop_counter,
                                          lp_build_const_int32(gallivm, 1), "");
      LLVMValueRef loopmsb = LLVMBuildAnd(builder, loop_counter,
                                          lp_build_const_int32(gallivm, 2), "");
      LLVMValueRef offset2 = LLVMBuildMul(builder, loopmsb,
                                          depth_stride, "");
      depth_offset1 = LLVMBuildMul(builder, looplsb,
                                   lp_build_const_int32(gallivm, depth_bytes * 2), "");
      depth_offset1 = LLVMBuildAdd(builder, depth_offset1, offset2, "");
   }
   else {
      unsigned i;
      LLVMValueRef loopx2 = LLVMBuildShl(builder, loop_counter,
                                         lp_build_const_int32(gallivm, 1), "");
      assert(z_src_type.length == 8);
      depth_offset1 = LLVMBuildMul(builder, loopx2, depth_stride, "");
      /*
       * We load 2x4 values, and need to swizzle them (order
       * 0,1,4,5,2,3,6,7) - not so hot with avx unfortunately.
       */
      for (i = 0; i < 8; i++) {
         shuffles[i] = lp_build_const_int32(gallivm, (i&1) + (i&2) * 2 + (i&4) / 2);
      }
   }

   depth_offset2 = LLVMBuildAdd(builder, depth_offset1, depth_stride, "");

   zs_dst_ptr1 = LLVMBuildGEP(builder, depth_ptr, &depth_offset1, 1, "");
   zs_dst_ptr1 = LLVMBuildBitCast(builder, zs_dst_ptr1, load_ptr_type, "");
   zs_dst_ptr2 = LLVMBuildGEP(builder, depth_ptr, &depth_offset2, 1, "");
   zs_dst_ptr2 = LLVMBuildBitCast(builder, zs_dst_ptr2, load_ptr_type, "");

   if (format_desc->block.bits > 32) {
      s_value = LLVMBuildBitCast(builder, s_value, z_bld.vec_type, "");
   }

   if (mask) {
      mask_value = lp_build_mask_value(mask);
      z_value = lp_build_select(&z_bld, mask_value, z_value, z_fb);
      if (format_desc->block.bits > 32) {
         s_fb = LLVMBuildBitCast(builder, s_fb, z_bld.vec_type, "");
         s_value = lp_build_select(&z_bld, mask_value, s_value, s_fb);
      }
   }

   if (zs_type.width < z_src_type.width) {
      /* Truncate ZS values (e.g., when writing to Z16_UNORM) */
      z_value = LLVMBuildTrunc(builder, z_value,
                               lp_build_int_vec_type(gallivm, zs_type), "");
   }

   if (format_desc->block.bits <= 32) {
      if (z_src_type.length == 4) {
         zs_dst1 = lp_build_extract_range(gallivm, z_value, 0, 2);
         zs_dst2 = lp_build_extract_range(gallivm, z_value, 2, 2);
      }
      else {
         assert(z_src_type.length == 8);
         zs_dst1 = LLVMBuildShuffleVector(builder, z_value, z_value,
                                          LLVMConstVector(&shuffles[0],
                                                          zs_load_type.length), "");
         zs_dst2 = LLVMBuildShuffleVector(builder, z_value, z_value,
                                          LLVMConstVector(&shuffles[4],
                                                          zs_load_type.length), "");
      }
   }
   else {
      if (z_src_type.length == 4) {
         zs_dst1 = lp_build_interleave2(gallivm, z_type,
                                        z_value, s_value, 0);
         zs_dst2 = lp_build_interleave2(gallivm, z_type,
                                        z_value, s_value, 1);
      }
      else {
         unsigned i;
         LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH / 2];
         assert(z_src_type.length == 8);
         for (i = 0; i < 8; i++) {
            shuffles[i*2] = lp_build_const_int32(gallivm, (i&1) + (i&2) * 2 + (i&4) / 2);
            shuffles[i*2+1] = lp_build_const_int32(gallivm, (i&1) + (i&2) * 2 + (i&4) / 2 +
                                                   z_src_type.length);
         }
         zs_dst1 = LLVMBuildShuffleVector(builder, z_value, s_value,
                                          LLVMConstVector(&shuffles[0],
                                                          z_src_type.length), "");
         zs_dst2 = LLVMBuildShuffleVector(builder, z_value, s_value,
                                          LLVMConstVector(&shuffles[8],
                                                          z_src_type.length), "");
      }
      zs_dst1 = LLVMBuildBitCast(builder, zs_dst1,
                                 lp_build_vec_type(gallivm, zs_load_type), "");
      zs_dst2 = LLVMBuildBitCast(builder, zs_dst2,
                                 lp_build_vec_type(gallivm, zs_load_type), "");
   }

   LLVMBuildStore(builder, zs_dst1, zs_dst_ptr1);
   LLVMBuildStore(builder, zs_dst2, zs_dst_ptr2);
}
예제 #18
0
/**
 * Load depth/stencil values.
 * The stored values are linear, swizzle them.
 *
 * \param type  the data type of the fragment depth/stencil values
 * \param format_desc  description of the depth/stencil surface
 * \param loop_counter  the current loop iteration
 * \param depth_ptr  pointer to the depth/stencil values of this 4x4 block
 * \param depth_stride  stride of the depth/stencil buffer
 * \param z_fb  contains z values loaded from fb (may include padding)
 * \param s_fb  contains s values loaded from fb (may include padding)
 */
void
lp_build_depth_stencil_load_swizzled(struct gallivm_state *gallivm,
                                     struct lp_type z_src_type,
                                     const struct util_format_description *format_desc,
                                     LLVMValueRef depth_ptr,
                                     LLVMValueRef depth_stride,
                                     LLVMValueRef *z_fb,
                                     LLVMValueRef *s_fb,
                                     LLVMValueRef loop_counter)
{
   LLVMBuilderRef builder = gallivm->builder;
   LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH / 4];
   LLVMValueRef zs_dst1, zs_dst2;
   LLVMValueRef zs_dst_ptr;
   LLVMValueRef depth_offset1, depth_offset2;
   LLVMTypeRef load_ptr_type;
   unsigned depth_bytes = format_desc->block.bits / 8;
   struct lp_type zs_type = lp_depth_type(format_desc, z_src_type.length);
   struct lp_type zs_load_type = zs_type;

   zs_load_type.length = zs_load_type.length / 2;
   load_ptr_type = LLVMPointerType(lp_build_vec_type(gallivm, zs_load_type), 0);

   if (z_src_type.length == 4) {
      unsigned i;
      LLVMValueRef looplsb = LLVMBuildAnd(builder, loop_counter,
                                          lp_build_const_int32(gallivm, 1), "");
      LLVMValueRef loopmsb = LLVMBuildAnd(builder, loop_counter,
                                          lp_build_const_int32(gallivm, 2), "");
      LLVMValueRef offset2 = LLVMBuildMul(builder, loopmsb,
                                          depth_stride, "");
      depth_offset1 = LLVMBuildMul(builder, looplsb,
                                   lp_build_const_int32(gallivm, depth_bytes * 2), "");
      depth_offset1 = LLVMBuildAdd(builder, depth_offset1, offset2, "");

      /* just concatenate the loaded 2x2 values into 4-wide vector */
      for (i = 0; i < 4; i++) {
         shuffles[i] = lp_build_const_int32(gallivm, i);
      }
   }
   else {
      unsigned i;
      LLVMValueRef loopx2 = LLVMBuildShl(builder, loop_counter,
                                         lp_build_const_int32(gallivm, 1), "");
      assert(z_src_type.length == 8);
      depth_offset1 = LLVMBuildMul(builder, loopx2, depth_stride, "");
      /*
       * We load 2x4 values, and need to swizzle them (order
       * 0,1,4,5,2,3,6,7) - not so hot with avx unfortunately.
       */
      for (i = 0; i < 8; i++) {
         shuffles[i] = lp_build_const_int32(gallivm, (i&1) + (i&2) * 2 + (i&4) / 2);
      }
   }

   depth_offset2 = LLVMBuildAdd(builder, depth_offset1, depth_stride, "");

   /* Load current z/stencil values from z/stencil buffer */
   zs_dst_ptr = LLVMBuildGEP(builder, depth_ptr, &depth_offset1, 1, "");
   zs_dst_ptr = LLVMBuildBitCast(builder, zs_dst_ptr, load_ptr_type, "");
   zs_dst1 = LLVMBuildLoad(builder, zs_dst_ptr, "");
   zs_dst_ptr = LLVMBuildGEP(builder, depth_ptr, &depth_offset2, 1, "");
   zs_dst_ptr = LLVMBuildBitCast(builder, zs_dst_ptr, load_ptr_type, "");
   zs_dst2 = LLVMBuildLoad(builder, zs_dst_ptr, "");

   *z_fb = LLVMBuildShuffleVector(builder, zs_dst1, zs_dst2,
                                  LLVMConstVector(shuffles, zs_type.length), "");
   *s_fb = *z_fb;

   if (format_desc->block.bits < z_src_type.width) {
      /* Extend destination ZS values (e.g., when reading from Z16_UNORM) */
      *z_fb = LLVMBuildZExt(builder, *z_fb,
                            lp_build_int_vec_type(gallivm, z_src_type), "");
   }

   else if (format_desc->block.bits > 32) {
      /* rely on llvm to handle too wide vector we have here nicely */
      unsigned i;
      struct lp_type typex2 = zs_type;
      struct lp_type s_type = zs_type;
      LLVMValueRef shuffles1[LP_MAX_VECTOR_LENGTH / 4];
      LLVMValueRef shuffles2[LP_MAX_VECTOR_LENGTH / 4];
      LLVMValueRef tmp;

      typex2.width = typex2.width / 2;
      typex2.length = typex2.length * 2;
      s_type.width = s_type.width / 2;
      s_type.floating = 0;

      tmp = LLVMBuildBitCast(builder, *z_fb,
                             lp_build_vec_type(gallivm, typex2), "");

      for (i = 0; i < zs_type.length; i++) {
         shuffles1[i] = lp_build_const_int32(gallivm, i * 2);
         shuffles2[i] = lp_build_const_int32(gallivm, i * 2 + 1);
      }
      *z_fb = LLVMBuildShuffleVector(builder, tmp, tmp,
                                     LLVMConstVector(shuffles1, zs_type.length), "");
      *s_fb = LLVMBuildShuffleVector(builder, tmp, tmp,
                                     LLVMConstVector(shuffles2, zs_type.length), "");
      *s_fb = LLVMBuildBitCast(builder, *s_fb,
                               lp_build_vec_type(gallivm, s_type), "");
      lp_build_name(*s_fb, "s_dst");
   }

   lp_build_name(*z_fb, "z_dst");
   lp_build_name(*s_fb, "s_dst");
   lp_build_name(*z_fb, "z_dst");
}
예제 #19
0
/**
 * See http://www.devmaster.net/forums/showthread.php?p=43580
 */
void
lp_build_log2_approx(struct lp_build_context *bld,
                     LLVMValueRef x,
                     LLVMValueRef *p_exp,
                     LLVMValueRef *p_floor_log2,
                     LLVMValueRef *p_log2)
{
   const struct lp_type type = bld->type;
   LLVMTypeRef vec_type = lp_build_vec_type(type);
   LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);

   LLVMValueRef expmask = lp_build_int_const_scalar(type, 0x7f800000);
   LLVMValueRef mantmask = lp_build_int_const_scalar(type, 0x007fffff);
   LLVMValueRef one = LLVMConstBitCast(bld->one, int_vec_type);

   LLVMValueRef i = NULL;
   LLVMValueRef exp = NULL;
   LLVMValueRef mant = NULL;
   LLVMValueRef logexp = NULL;
   LLVMValueRef logmant = NULL;
   LLVMValueRef res = NULL;

   if(p_exp || p_floor_log2 || p_log2) {
      /* TODO: optimize the constant case */
      if(LLVMIsConstant(x))
         debug_printf("%s: inefficient/imprecise constant arithmetic\n",
                      __FUNCTION__);

      assert(type.floating && type.width == 32);

      i = LLVMBuildBitCast(bld->builder, x, int_vec_type, "");

      /* exp = (float) exponent(x) */
      exp = LLVMBuildAnd(bld->builder, i, expmask, "");
   }

   if(p_floor_log2 || p_log2) {
      logexp = LLVMBuildLShr(bld->builder, exp, lp_build_int_const_scalar(type, 23), "");
      logexp = LLVMBuildSub(bld->builder, logexp, lp_build_int_const_scalar(type, 127), "");
      logexp = LLVMBuildSIToFP(bld->builder, logexp, vec_type, "");
   }

   if(p_log2) {
      /* mant = (float) mantissa(x) */
      mant = LLVMBuildAnd(bld->builder, i, mantmask, "");
      mant = LLVMBuildOr(bld->builder, mant, one, "");
      mant = LLVMBuildBitCast(bld->builder, mant, vec_type, "");

      logmant = lp_build_polynomial(bld, mant, lp_build_log2_polynomial,
                                    Elements(lp_build_log2_polynomial));

      /* This effectively increases the polynomial degree by one, but ensures that log2(1) == 0*/
      logmant = LLVMBuildMul(bld->builder, logmant, LLVMBuildSub(bld->builder, mant, bld->one, ""), "");

      res = LLVMBuildAdd(bld->builder, logmant, logexp, "");
   }

   if(p_exp)
      *p_exp = exp;

   if(p_floor_log2)
      *p_floor_log2 = logexp;

   if(p_log2)
      *p_log2 = res;
}
예제 #20
0
/**
 * Generate the runtime callable function for the whole fragment pipeline.
 * Note that the function which we generate operates on a block of 16
 * pixels at at time.  The block contains 2x2 quads.  Each quad contains
 * 2x2 pixels.
 */
static void
generate_fragment(struct llvmpipe_context *lp,
                  struct lp_fragment_shader *shader,
                  struct lp_fragment_shader_variant *variant,
                  unsigned do_tri_test)
{
   struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
   const struct lp_fragment_shader_variant_key *key = &variant->key;
   struct lp_type fs_type;
   struct lp_type blend_type;
   LLVMTypeRef fs_elem_type;
   LLVMTypeRef fs_vec_type;
   LLVMTypeRef fs_int_vec_type;
   LLVMTypeRef blend_vec_type;
   LLVMTypeRef blend_int_vec_type;
   LLVMTypeRef arg_types[14];
   LLVMTypeRef func_type;
   LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type();
   LLVMValueRef context_ptr;
   LLVMValueRef x;
   LLVMValueRef y;
   LLVMValueRef a0_ptr;
   LLVMValueRef dadx_ptr;
   LLVMValueRef dady_ptr;
   LLVMValueRef color_ptr_ptr;
   LLVMValueRef depth_ptr;
   LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr;
   LLVMBasicBlockRef block;
   LLVMBuilderRef builder;
   LLVMValueRef x0;
   LLVMValueRef y0;
   struct lp_build_sampler_soa *sampler;
   struct lp_build_interp_soa_context interp;
   LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
   LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
   LLVMValueRef blend_mask;
   LLVMValueRef blend_in_color[NUM_CHANNELS];
   LLVMValueRef function;
   unsigned num_fs;
   unsigned i;
   unsigned chan;
   unsigned cbuf;


   /* TODO: actually pick these based on the fs and color buffer
    * characteristics. */

   memset(&fs_type, 0, sizeof fs_type);
   fs_type.floating = TRUE; /* floating point values */
   fs_type.sign = TRUE;     /* values are signed */
   fs_type.norm = FALSE;    /* values are not limited to [0,1] or [-1,1] */
   fs_type.width = 32;      /* 32-bit float */
   fs_type.length = 4;      /* 4 elements per vector */
   num_fs = 4;              /* number of quads per block */

   memset(&blend_type, 0, sizeof blend_type);
   blend_type.floating = FALSE; /* values are integers */
   blend_type.sign = FALSE;     /* values are unsigned */
   blend_type.norm = TRUE;      /* values are in [0,1] or [-1,1] */
   blend_type.width = 8;        /* 8-bit ubyte values */
   blend_type.length = 16;      /* 16 elements per vector */

   /* 
    * Generate the function prototype. Any change here must be reflected in
    * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
    */

   fs_elem_type = lp_build_elem_type(fs_type);
   fs_vec_type = lp_build_vec_type(fs_type);
   fs_int_vec_type = lp_build_int_vec_type(fs_type);

   blend_vec_type = lp_build_vec_type(blend_type);
   blend_int_vec_type = lp_build_int_vec_type(blend_type);

   arg_types[0] = screen->context_ptr_type;            /* context */
   arg_types[1] = LLVMInt32Type();                     /* x */
   arg_types[2] = LLVMInt32Type();                     /* y */
   arg_types[3] = LLVMPointerType(fs_elem_type, 0);    /* a0 */
   arg_types[4] = LLVMPointerType(fs_elem_type, 0);    /* dadx */
   arg_types[5] = LLVMPointerType(fs_elem_type, 0);    /* dady */
   arg_types[6] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0);  /* color */
   arg_types[7] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
   arg_types[8] = LLVMInt32Type();                     /* c0 */
   arg_types[9] = LLVMInt32Type();                     /* c1 */
   arg_types[10] = LLVMInt32Type();                    /* c2 */
   /* Note: the step arrays are built as int32[16] but we interpret
    * them here as int32_vec4[4].
    */
   arg_types[11] = LLVMPointerType(int32_vec4_type, 0);/* step0 */
   arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step1 */
   arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step2 */

   func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);

   function = LLVMAddFunction(screen->module, "shader", func_type);
   LLVMSetFunctionCallConv(function, LLVMCCallConv);

   variant->function[do_tri_test] = function;


   /* XXX: need to propagate noalias down into color param now we are
    * passing a pointer-to-pointer?
    */
   for(i = 0; i < Elements(arg_types); ++i)
      if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
         LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);

   context_ptr  = LLVMGetParam(function, 0);
   x            = LLVMGetParam(function, 1);
   y            = LLVMGetParam(function, 2);
   a0_ptr       = LLVMGetParam(function, 3);
   dadx_ptr     = LLVMGetParam(function, 4);
   dady_ptr     = LLVMGetParam(function, 5);
   color_ptr_ptr = LLVMGetParam(function, 6);
   depth_ptr    = LLVMGetParam(function, 7);
   c0           = LLVMGetParam(function, 8);
   c1           = LLVMGetParam(function, 9);
   c2           = LLVMGetParam(function, 10);
   step0_ptr    = LLVMGetParam(function, 11);
   step1_ptr    = LLVMGetParam(function, 12);
   step2_ptr    = LLVMGetParam(function, 13);

   lp_build_name(context_ptr, "context");
   lp_build_name(x, "x");
   lp_build_name(y, "y");
   lp_build_name(a0_ptr, "a0");
   lp_build_name(dadx_ptr, "dadx");
   lp_build_name(dady_ptr, "dady");
   lp_build_name(color_ptr_ptr, "color_ptr");
   lp_build_name(depth_ptr, "depth");
   lp_build_name(c0, "c0");
   lp_build_name(c1, "c1");
   lp_build_name(c2, "c2");
   lp_build_name(step0_ptr, "step0");
   lp_build_name(step1_ptr, "step1");
   lp_build_name(step2_ptr, "step2");

   /*
    * Function body
    */

   block = LLVMAppendBasicBlock(function, "entry");
   builder = LLVMCreateBuilder();
   LLVMPositionBuilderAtEnd(builder, block);

   generate_pos0(builder, x, y, &x0, &y0);

   lp_build_interp_soa_init(&interp, 
                            shader->base.tokens,
                            key->flatshade,
                            builder, fs_type,
                            a0_ptr, dadx_ptr, dady_ptr,
                            x0, y0);

   /* code generated texture sampling */
   sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);

   /* loop over quads in the block */
   for(i = 0; i < num_fs; ++i) {
      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
      LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
      LLVMValueRef depth_ptr_i;
      int cbuf;

      if(i != 0)
         lp_build_interp_soa_update(&interp, i);

      depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");

      generate_fs(lp, shader, key,
                  builder,
                  fs_type,
                  context_ptr,
                  i,
                  &interp,
                  sampler,
                  &fs_mask[i], /* output */
                  out_color,
                  depth_ptr_i,
                  do_tri_test,
                  c0, c1, c2,
                  step0_ptr, step1_ptr, step2_ptr);

      for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
	 for(chan = 0; chan < NUM_CHANNELS; ++chan)
	    fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
   }

   sampler->destroy(sampler);

   /* Loop over color outputs / color buffers to do blending.
    */
   for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
      LLVMValueRef color_ptr;
      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);

      /* 
       * Convert the fs's output color and mask to fit to the blending type. 
       */
      for(chan = 0; chan < NUM_CHANNELS; ++chan) {
	 lp_build_conv(builder, fs_type, blend_type,
		       fs_out_color[cbuf][chan], num_fs,
		       &blend_in_color[chan], 1);
	 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
      }

      lp_build_conv_mask(builder, fs_type, blend_type,
			 fs_mask, num_fs,
			 &blend_mask, 1);

      color_ptr = LLVMBuildLoad(builder, 
				LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
				"");
      lp_build_name(color_ptr, "color_ptr%d", cbuf);

      /*
       * Blending.
       */
      generate_blend(&key->blend,
		     builder,
		     blend_type,
		     context_ptr,
		     blend_mask,
		     blend_in_color,
		     color_ptr);
   }

   LLVMBuildRetVoid(builder);

   LLVMDisposeBuilder(builder);


   /* Verify the LLVM IR.  If invalid, dump and abort */
#ifdef DEBUG
   if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
      if (1)
         LLVMDumpValue(function);
      abort();
   }
#endif

   /* Apply optimizations to LLVM IR */
   if (1)
      LLVMRunFunctionPassManager(screen->pass, function);

   if (LP_DEBUG & DEBUG_JIT) {
      /* Print the LLVM IR to stderr */
      LLVMDumpValue(function);
      debug_printf("\n");
   }

   /*
    * Translate the LLVM IR into machine code.
    */
   variant->jit_function[do_tri_test] = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, function);

   if (LP_DEBUG & DEBUG_ASM)
      lp_disassemble(variant->jit_function[do_tri_test]);
}
예제 #21
0
/**
 * Generate the fragment shader, depth/stencil test, and alpha tests.
 * \param i  which quad in the tile, in range [0,3]
 * \param do_tri_test  if 1, do triangle edge in/out testing
 */
static void
generate_fs(struct llvmpipe_context *lp,
            struct lp_fragment_shader *shader,
            const struct lp_fragment_shader_variant_key *key,
            LLVMBuilderRef builder,
            struct lp_type type,
            LLVMValueRef context_ptr,
            unsigned i,
            const struct lp_build_interp_soa_context *interp,
            struct lp_build_sampler_soa *sampler,
            LLVMValueRef *pmask,
            LLVMValueRef (*color)[4],
            LLVMValueRef depth_ptr,
            unsigned do_tri_test,
            LLVMValueRef c0,
            LLVMValueRef c1,
            LLVMValueRef c2,
            LLVMValueRef step0_ptr,
            LLVMValueRef step1_ptr,
            LLVMValueRef step2_ptr)
{
   const struct tgsi_token *tokens = shader->base.tokens;
   LLVMTypeRef elem_type;
   LLVMTypeRef vec_type;
   LLVMTypeRef int_vec_type;
   LLVMValueRef consts_ptr;
   LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
   LLVMValueRef z = interp->pos[2];
   struct lp_build_flow_context *flow;
   struct lp_build_mask_context mask;
   boolean early_depth_test;
   unsigned attrib;
   unsigned chan;
   unsigned cbuf;

   assert(i < 4);

   elem_type = lp_build_elem_type(type);
   vec_type = lp_build_vec_type(type);
   int_vec_type = lp_build_int_vec_type(type);

   consts_ptr = lp_jit_context_constants(builder, context_ptr);

   flow = lp_build_flow_create(builder);

   memset(outputs, 0, sizeof outputs);

   lp_build_flow_scope_begin(flow);

   /* Declare the color and z variables */
   for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
      for(chan = 0; chan < NUM_CHANNELS; ++chan) {
	 color[cbuf][chan] = LLVMGetUndef(vec_type);
	 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
      }
   }
   lp_build_flow_scope_declare(flow, &z);

   /* do triangle edge testing */
   if (do_tri_test) {
      generate_tri_edge_mask(builder, i, pmask,
                             c0, c1, c2, step0_ptr, step1_ptr, step2_ptr);
   }
   else {
      *pmask = build_int32_vec_const(~0);
   }

   /* 'mask' will control execution based on quad's pixel alive/killed state */
   lp_build_mask_begin(&mask, flow, type, *pmask);

   if (key->scissor) {
      LLVMValueRef smask =
         generate_scissor_test(builder, context_ptr, interp, type);
      lp_build_mask_update(&mask, smask);
   }

   early_depth_test =
      key->depth.enabled &&
      !key->alpha.enabled &&
      !shader->info.uses_kill &&
      !shader->info.writes_z;

   if(early_depth_test)
      generate_depth(builder, key,
                     type, &mask,
                     z, depth_ptr);

   lp_build_tgsi_soa(builder, tokens, type, &mask,
                     consts_ptr, interp->pos, interp->inputs,
                     outputs, sampler);

   for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
      for(chan = 0; chan < NUM_CHANNELS; ++chan) {
         if(outputs[attrib][chan]) {
            LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
            lp_build_name(out, "output%u.%u.%c", i, attrib, "xyzw"[chan]);

            switch (shader->info.output_semantic_name[attrib]) {
            case TGSI_SEMANTIC_COLOR:
               {
                  unsigned cbuf = shader->info.output_semantic_index[attrib];

                  lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);

                  /* Alpha test */
                  /* XXX: should the alpha reference value be passed separately? */
		  /* XXX: should only test the final assignment to alpha */
                  if(cbuf == 0 && chan == 3) {
                     LLVMValueRef alpha = out;
                     LLVMValueRef alpha_ref_value;
                     alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
                     alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
                     lp_build_alpha_test(builder, &key->alpha, type,
                                         &mask, alpha, alpha_ref_value);
                  }

		  color[cbuf][chan] = out;
                  break;
               }

            case TGSI_SEMANTIC_POSITION:
               if(chan == 2)
                  z = out;
               break;
            }
         }
      }
   }

   if(!early_depth_test)
      generate_depth(builder, key,
                     type, &mask,
                     z, depth_ptr);

   lp_build_mask_end(&mask);

   lp_build_flow_scope_end(flow);

   lp_build_flow_destroy(flow);

   *pmask = mask.value;

}
예제 #22
0
/**
 * Generate the runtime callable function for the whole fragment pipeline.
 */
static struct lp_fragment_shader_variant *
generate_fragment(struct llvmpipe_context *lp,
                  struct lp_fragment_shader *shader,
                  const struct lp_fragment_shader_variant_key *key)
{
   struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
   struct lp_fragment_shader_variant *variant;
   struct lp_type fs_type;
   struct lp_type blend_type;
   LLVMTypeRef fs_elem_type;
   LLVMTypeRef fs_vec_type;
   LLVMTypeRef fs_int_vec_type;
   LLVMTypeRef blend_vec_type;
   LLVMTypeRef blend_int_vec_type;
   LLVMTypeRef arg_types[9];
   LLVMTypeRef func_type;
   LLVMValueRef context_ptr;
   LLVMValueRef x;
   LLVMValueRef y;
   LLVMValueRef a0_ptr;
   LLVMValueRef dadx_ptr;
   LLVMValueRef dady_ptr;
   LLVMValueRef mask_ptr;
   LLVMValueRef color_ptr;
   LLVMValueRef depth_ptr;
   LLVMBasicBlockRef block;
   LLVMBuilderRef builder;
   LLVMValueRef x0;
   LLVMValueRef y0;
   struct lp_build_sampler_soa *sampler;
   struct lp_build_interp_soa_context interp;
   LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
   LLVMValueRef fs_out_color[NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
   LLVMValueRef blend_mask;
   LLVMValueRef blend_in_color[NUM_CHANNELS];
   unsigned num_fs;
   unsigned i;
   unsigned chan;

#ifdef DEBUG
   tgsi_dump(shader->base.tokens, 0);
   if(key->depth.enabled) {
      debug_printf("depth.format = %s\n", pf_name(key->zsbuf_format));
      debug_printf("depth.func = %s\n", debug_dump_func(key->depth.func, TRUE));
      debug_printf("depth.writemask = %u\n", key->depth.writemask);
   }
   if(key->alpha.enabled) {
      debug_printf("alpha.func = %s\n", debug_dump_func(key->alpha.func, TRUE));
      debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
   }
   if(key->blend.logicop_enable) {
      debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
   }
   else if(key->blend.blend_enable) {
      debug_printf("blend.rgb_func = %s\n",   debug_dump_blend_func  (key->blend.rgb_func, TRUE));
      debug_printf("rgb_src_factor = %s\n",   debug_dump_blend_factor(key->blend.rgb_src_factor, TRUE));
      debug_printf("rgb_dst_factor = %s\n",   debug_dump_blend_factor(key->blend.rgb_dst_factor, TRUE));
      debug_printf("alpha_func = %s\n",       debug_dump_blend_func  (key->blend.alpha_func, TRUE));
      debug_printf("alpha_src_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_src_factor, TRUE));
      debug_printf("alpha_dst_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_dst_factor, TRUE));
   }
   debug_printf("blend.colormask = 0x%x\n", key->blend.colormask);
   for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
      if(key->sampler[i].format) {
         debug_printf("sampler[%u] = \n", i);
         debug_printf("  .format = %s\n",
                      pf_name(key->sampler[i].format));
         debug_printf("  .target = %s\n",
                      debug_dump_tex_target(key->sampler[i].target, TRUE));
         debug_printf("  .pot = %u %u %u\n",
                      key->sampler[i].pot_width,
                      key->sampler[i].pot_height,
                      key->sampler[i].pot_depth);
         debug_printf("  .wrap = %s %s %s\n",
                      debug_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
                      debug_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
                      debug_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
         debug_printf("  .min_img_filter = %s\n",
                      debug_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
         debug_printf("  .min_mip_filter = %s\n",
                      debug_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
         debug_printf("  .mag_img_filter = %s\n",
                      debug_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
         if(key->sampler[i].compare_mode)
            debug_printf("  .compare_mode = %s\n", debug_dump_func(key->sampler[i].compare_func, TRUE));
         debug_printf("  .normalized_coords = %u\n", key->sampler[i].normalized_coords);
         debug_printf("  .prefilter = %u\n", key->sampler[i].prefilter);
      }
   }

#endif

   variant = CALLOC_STRUCT(lp_fragment_shader_variant);
   if(!variant)
      return NULL;

   variant->shader = shader;
   memcpy(&variant->key, key, sizeof *key);

   /* TODO: actually pick these based on the fs and color buffer
    * characteristics. */

   memset(&fs_type, 0, sizeof fs_type);
   fs_type.floating = TRUE; /* floating point values */
   fs_type.sign = TRUE;     /* values are signed */
   fs_type.norm = FALSE;    /* values are not limited to [0,1] or [-1,1] */
   fs_type.width = 32;      /* 32-bit float */
   fs_type.length = 4;      /* 4 element per vector */
   num_fs = 4;

   memset(&blend_type, 0, sizeof blend_type);
   blend_type.floating = FALSE; /* values are integers */
   blend_type.sign = FALSE;     /* values are unsigned */
   blend_type.norm = TRUE;      /* values are in [0,1] or [-1,1] */
   blend_type.width = 8;        /* 8-bit ubyte values */
   blend_type.length = 16;      /* 16 elements per vector */

   /* 
    * Generate the function prototype. Any change here must be reflected in
    * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
    */

   fs_elem_type = lp_build_elem_type(fs_type);
   fs_vec_type = lp_build_vec_type(fs_type);
   fs_int_vec_type = lp_build_int_vec_type(fs_type);

   blend_vec_type = lp_build_vec_type(blend_type);
   blend_int_vec_type = lp_build_int_vec_type(blend_type);

   arg_types[0] = screen->context_ptr_type;            /* context */
   arg_types[1] = LLVMInt32Type();                     /* x */
   arg_types[2] = LLVMInt32Type();                     /* y */
   arg_types[3] = LLVMPointerType(fs_elem_type, 0);    /* a0 */
   arg_types[4] = LLVMPointerType(fs_elem_type, 0);    /* dadx */
   arg_types[5] = LLVMPointerType(fs_elem_type, 0);    /* dady */
   arg_types[6] = LLVMPointerType(fs_int_vec_type, 0); /* mask */
   arg_types[7] = LLVMPointerType(blend_vec_type, 0);  /* color */
   arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */

   func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);

   variant->function = LLVMAddFunction(screen->module, "shader", func_type);
   LLVMSetFunctionCallConv(variant->function, LLVMCCallConv);
   for(i = 0; i < Elements(arg_types); ++i)
      if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
         LLVMAddAttribute(LLVMGetParam(variant->function, i), LLVMNoAliasAttribute);

   context_ptr  = LLVMGetParam(variant->function, 0);
   x            = LLVMGetParam(variant->function, 1);
   y            = LLVMGetParam(variant->function, 2);
   a0_ptr       = LLVMGetParam(variant->function, 3);
   dadx_ptr     = LLVMGetParam(variant->function, 4);
   dady_ptr     = LLVMGetParam(variant->function, 5);
   mask_ptr     = LLVMGetParam(variant->function, 6);
   color_ptr    = LLVMGetParam(variant->function, 7);
   depth_ptr    = LLVMGetParam(variant->function, 8);

   lp_build_name(context_ptr, "context");
   lp_build_name(x, "x");
   lp_build_name(y, "y");
   lp_build_name(a0_ptr, "a0");
   lp_build_name(dadx_ptr, "dadx");
   lp_build_name(dady_ptr, "dady");
   lp_build_name(mask_ptr, "mask");
   lp_build_name(color_ptr, "color");
   lp_build_name(depth_ptr, "depth");

   /*
    * Function body
    */

   block = LLVMAppendBasicBlock(variant->function, "entry");
   builder = LLVMCreateBuilder();
   LLVMPositionBuilderAtEnd(builder, block);

   generate_pos0(builder, x, y, &x0, &y0);

   lp_build_interp_soa_init(&interp, shader->base.tokens, builder, fs_type,
                            a0_ptr, dadx_ptr, dady_ptr,
                            x0, y0, 2, 0);

#if 0
   /* C texture sampling */
   sampler = lp_c_sampler_soa_create(context_ptr);
#else
   /* code generated texture sampling */
   sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
#endif

   for(i = 0; i < num_fs; ++i) {
      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
      LLVMValueRef out_color[NUM_CHANNELS];
      LLVMValueRef depth_ptr_i;

      if(i != 0)
         lp_build_interp_soa_update(&interp);

      fs_mask[i] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, mask_ptr, &index, 1, ""), "");
      depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");

      generate_fs(lp, shader, key,
                  builder,
                  fs_type,
                  context_ptr,
                  i,
                  &interp,
                  sampler,
                  &fs_mask[i],
                  out_color,
                  depth_ptr_i);

      for(chan = 0; chan < NUM_CHANNELS; ++chan)
         fs_out_color[chan][i] = out_color[chan];
   }

   sampler->destroy(sampler);

   /* 
    * Convert the fs's output color and mask to fit to the blending type. 
    */

   for(chan = 0; chan < NUM_CHANNELS; ++chan) {
      lp_build_conv(builder, fs_type, blend_type,
                    fs_out_color[chan], num_fs,
                    &blend_in_color[chan], 1);
      lp_build_name(blend_in_color[chan], "color.%c", "rgba"[chan]);

   }

   lp_build_conv_mask(builder, fs_type, blend_type,
                               fs_mask, num_fs,
                               &blend_mask, 1);

   /*
    * Blending.
    */

   generate_blend(&key->blend,
                  builder,
                  blend_type,
                  context_ptr,
                  blend_mask,
                  blend_in_color,
                  color_ptr);

   LLVMBuildRetVoid(builder);

   LLVMDisposeBuilder(builder);

   /*
    * Translate the LLVM IR into machine code.
    */

   if(LLVMVerifyFunction(variant->function, LLVMPrintMessageAction)) {
      LLVMDumpValue(variant->function);
      abort();
   }

   LLVMRunFunctionPassManager(screen->pass, variant->function);

#ifdef DEBUG
   LLVMDumpValue(variant->function);
   debug_printf("\n");
#endif

   variant->jit_function = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, variant->function);

#ifdef DEBUG
   lp_disassemble(variant->jit_function);
#endif

   variant->next = shader->variants;
   shader->variants = variant;

   return variant;
}
예제 #23
0
파일: lp_bld_conv.c 프로젝트: RobinWuDev/Qt
/**
 * Special case for converting clamped IEEE-754 floats to unsigned norms.
 *
 * The mathematical voodoo below may seem excessive but it is actually
 * paramount we do it this way for several reasons. First, there is no single
 * precision FP to unsigned integer conversion Intel SSE instruction. Second,
 * secondly, even if there was, since the FP's mantissa takes only a fraction
 * of register bits the typically scale and cast approach would require double
 * precision for accurate results, and therefore half the throughput
 *
 * Although the result values can be scaled to an arbitrary bit width specified
 * by dst_width, the actual result type will have the same width.
 *
 * Ex: src = { float, float, float, float }
 * return { i32, i32, i32, i32 } where each value is in [0, 2^dst_width-1].
 */
LLVMValueRef
lp_build_clamped_float_to_unsigned_norm(struct gallivm_state *gallivm,
                                        struct lp_type src_type,
                                        unsigned dst_width,
                                        LLVMValueRef src)
{
    LLVMBuilderRef builder = gallivm->builder;
    LLVMTypeRef int_vec_type = lp_build_int_vec_type(gallivm, src_type);
    LLVMValueRef res;
    unsigned mantissa;

    assert(src_type.floating);
    assert(dst_width <= src_type.width);
    src_type.sign = FALSE;

    mantissa = lp_mantissa(src_type);

    if (dst_width <= mantissa) {
        /*
         * Apply magic coefficients that will make the desired result to appear
         * in the lowest significant bits of the mantissa, with correct rounding.
         *
         * This only works if the destination width fits in the mantissa.
         */

        unsigned long long ubound;
        unsigned long long mask;
        double scale;
        double bias;

        ubound = (1ULL << dst_width);
        mask = ubound - 1;
        scale = (double)mask/ubound;
        bias = (double)(1ULL << (mantissa - dst_width));

        res = LLVMBuildFMul(builder, src, lp_build_const_vec(gallivm, src_type, scale), "");
        res = LLVMBuildFAdd(builder, res, lp_build_const_vec(gallivm, src_type, bias), "");
        res = LLVMBuildBitCast(builder, res, int_vec_type, "");
        res = LLVMBuildAnd(builder, res,
                           lp_build_const_int_vec(gallivm, src_type, mask), "");
    }
    else if (dst_width == (mantissa + 1)) {
        /*
         * The destination width matches exactly what can be represented in
         * floating point (i.e., mantissa + 1 bits). So do a straight
         * multiplication followed by casting. No further rounding is necessary.
         */

        double scale;

        scale = (double)((1ULL << dst_width) - 1);

        res = LLVMBuildFMul(builder, src,
                            lp_build_const_vec(gallivm, src_type, scale), "");
        res = LLVMBuildFPToSI(builder, res, int_vec_type, "");
    }
    else {
        /*
         * The destination exceeds what can be represented in the floating point.
         * So multiply by the largest power two we get away with, and when
         * subtract the most significant bit to rescale to normalized values.
         *
         * The largest power of two factor we can get away is
         * (1 << (src_type.width - 1)), because we need to use signed . In theory it
         * should be (1 << (src_type.width - 2)), but IEEE 754 rules states
         * INT_MIN should be returned in FPToSI, which is the correct result for
         * values near 1.0!
         *
         * This means we get (src_type.width - 1) correct bits for values near 0.0,
         * and (mantissa + 1) correct bits for values near 1.0. Equally or more
         * important, we also get exact results for 0.0 and 1.0.
         */

        unsigned n = MIN2(src_type.width - 1, dst_width);

        double scale = (double)(1ULL << n);
        unsigned lshift = dst_width - n;
        unsigned rshift = n;
        LLVMValueRef lshifted;
        LLVMValueRef rshifted;

        res = LLVMBuildFMul(builder, src,
                            lp_build_const_vec(gallivm, src_type, scale), "");
        res = LLVMBuildFPToSI(builder, res, int_vec_type, "");

        /*
         * Align the most significant bit to its final place.
         *
         * This will cause 1.0 to overflow to 0, but the later adjustment will
         * get it right.
         */
        if (lshift) {
            lshifted = LLVMBuildShl(builder, res,
                                    lp_build_const_int_vec(gallivm, src_type,
                                            lshift), "");
        } else {
            lshifted = res;
        }

        /*
         * Align the most significant bit to the right.
         */
        rshifted =  LLVMBuildLShr(builder, res,
                                  lp_build_const_int_vec(gallivm, src_type, rshift),
                                  "");

        /*
         * Subtract the MSB to the LSB, therefore re-scaling from
         * (1 << dst_width) to ((1 << dst_width) - 1).
         */

        res = LLVMBuildSub(builder, lshifted, rshifted, "");
    }

    return res;
}
/**
 * Build code to compare two values 'a' and 'b' of 'type' using the given func.
 * \param func  one of PIPE_FUNC_x
 * The result values will be 0 for false or ~0 for true.
 */
LLVMValueRef
lp_build_compare(struct gallivm_state *gallivm,
                 const struct lp_type type,
                 unsigned func,
                 LLVMValueRef a,
                 LLVMValueRef b)
{
   LLVMBuilderRef builder = gallivm->builder;
   LLVMTypeRef int_vec_type = lp_build_int_vec_type(gallivm, type);
   LLVMValueRef zeros = LLVMConstNull(int_vec_type);
   LLVMValueRef ones = LLVMConstAllOnes(int_vec_type);
   LLVMValueRef cond;
   LLVMValueRef res;

   assert(func >= PIPE_FUNC_NEVER);
   assert(func <= PIPE_FUNC_ALWAYS);
   assert(lp_check_value(type, a));
   assert(lp_check_value(type, b));

   if(func == PIPE_FUNC_NEVER)
      return zeros;
   if(func == PIPE_FUNC_ALWAYS)
      return ones;

#if defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64)
   /*
    * There are no unsigned integer comparison instructions in SSE.
    */

   if (!type.floating && !type.sign &&
       type.width * type.length == 128 &&
       util_cpu_caps.has_sse2 &&
       (func == PIPE_FUNC_LESS ||
        func == PIPE_FUNC_LEQUAL ||
        func == PIPE_FUNC_GREATER ||
        func == PIPE_FUNC_GEQUAL) &&
       (gallivm_debug & GALLIVM_DEBUG_PERF)) {
         debug_printf("%s: inefficient <%u x i%u> unsigned comparison\n",
                      __FUNCTION__, type.length, type.width);
   }
#endif

#if HAVE_LLVM < 0x0207
#if defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64)
   if(type.width * type.length == 128) {
      if(type.floating && util_cpu_caps.has_sse) {
         /* float[4] comparison */
         LLVMTypeRef vec_type = lp_build_vec_type(gallivm, type);
         LLVMValueRef args[3];
         unsigned cc;
         boolean swap;

         swap = FALSE;
         switch(func) {
         case PIPE_FUNC_EQUAL:
            cc = 0;
            break;
         case PIPE_FUNC_NOTEQUAL:
            cc = 4;
            break;
         case PIPE_FUNC_LESS:
            cc = 1;
            break;
         case PIPE_FUNC_LEQUAL:
            cc = 2;
            break;
         case PIPE_FUNC_GREATER:
            cc = 1;
            swap = TRUE;
            break;
         case PIPE_FUNC_GEQUAL:
            cc = 2;
            swap = TRUE;
            break;
         default:
            assert(0);
            return lp_build_undef(gallivm, type);
         }

         if(swap) {
            args[0] = b;
            args[1] = a;
         }
         else {
            args[0] = a;
            args[1] = b;
         }

         args[2] = LLVMConstInt(LLVMInt8TypeInContext(gallivm->context), cc, 0);
         res = lp_build_intrinsic(builder,
                                  "llvm.x86.sse.cmp.ps",
                                  vec_type,
                                  args, 3);
         res = LLVMBuildBitCast(builder, res, int_vec_type, "");
         return res;
      }
      else if(util_cpu_caps.has_sse2) {
         /* int[4] comparison */
         static const struct {
            unsigned swap:1;
            unsigned eq:1;
            unsigned gt:1;
            unsigned not:1;
         } table[] = {
            {0, 0, 0, 1}, /* PIPE_FUNC_NEVER */
            {1, 0, 1, 0}, /* PIPE_FUNC_LESS */
            {0, 1, 0, 0}, /* PIPE_FUNC_EQUAL */
            {0, 0, 1, 1}, /* PIPE_FUNC_LEQUAL */
            {0, 0, 1, 0}, /* PIPE_FUNC_GREATER */
            {0, 1, 0, 1}, /* PIPE_FUNC_NOTEQUAL */
            {1, 0, 1, 1}, /* PIPE_FUNC_GEQUAL */
            {0, 0, 0, 0}  /* PIPE_FUNC_ALWAYS */
         };
         const char *pcmpeq;
         const char *pcmpgt;
         LLVMValueRef args[2];
         LLVMValueRef res;
         LLVMTypeRef vec_type = lp_build_vec_type(gallivm, type);

         switch (type.width) {
         case 8:
            pcmpeq = "llvm.x86.sse2.pcmpeq.b";
            pcmpgt = "llvm.x86.sse2.pcmpgt.b";
            break;
         case 16:
            pcmpeq = "llvm.x86.sse2.pcmpeq.w";
            pcmpgt = "llvm.x86.sse2.pcmpgt.w";
            break;
         case 32:
            pcmpeq = "llvm.x86.sse2.pcmpeq.d";
            pcmpgt = "llvm.x86.sse2.pcmpgt.d";
            break;
         default:
            assert(0);
            return lp_build_undef(gallivm, type);
         }

         /* There are no unsigned comparison instructions. So flip the sign bit
          * so that the results match.
          */
         if (table[func].gt && !type.sign) {
            LLVMValueRef msb = lp_build_const_int_vec(gallivm, type, (unsigned long long)1 << (type.width - 1));
            a = LLVMBuildXor(builder, a, msb, "");
            b = LLVMBuildXor(builder, b, msb, "");
         }

         if(table[func].swap) {
            args[0] = b;
            args[1] = a;
         }
         else {
            args[0] = a;
            args[1] = b;
         }

         if(table[func].eq)
            res = lp_build_intrinsic(builder, pcmpeq, vec_type, args, 2);
         else if (table[func].gt)
            res = lp_build_intrinsic(builder, pcmpgt, vec_type, args, 2);
         else
            res = LLVMConstNull(vec_type);

         if(table[func].not)
            res = LLVMBuildNot(builder, res, "");

         return res;
      }
   } /* if (type.width * type.length == 128) */
#endif
#endif /* HAVE_LLVM < 0x0207 */

   /* XXX: It is not clear if we should use the ordered or unordered operators */

   if(type.floating) {
      LLVMRealPredicate op;
      switch(func) {
      case PIPE_FUNC_NEVER:
         op = LLVMRealPredicateFalse;
         break;
      case PIPE_FUNC_ALWAYS:
         op = LLVMRealPredicateTrue;
         break;
      case PIPE_FUNC_EQUAL:
         op = LLVMRealUEQ;
         break;
      case PIPE_FUNC_NOTEQUAL:
         op = LLVMRealUNE;
         break;
      case PIPE_FUNC_LESS:
         op = LLVMRealULT;
         break;
      case PIPE_FUNC_LEQUAL:
         op = LLVMRealULE;
         break;
      case PIPE_FUNC_GREATER:
         op = LLVMRealUGT;
         break;
      case PIPE_FUNC_GEQUAL:
         op = LLVMRealUGE;
         break;
      default:
         assert(0);
         return lp_build_undef(gallivm, type);
      }

#if HAVE_LLVM >= 0x0207
      cond = LLVMBuildFCmp(builder, op, a, b, "");
      res = LLVMBuildSExt(builder, cond, int_vec_type, "");
#else
      if (type.length == 1) {
         cond = LLVMBuildFCmp(builder, op, a, b, "");
         res = LLVMBuildSExt(builder, cond, int_vec_type, "");
      }
      else {
         unsigned i;

         res = LLVMGetUndef(int_vec_type);

         debug_printf("%s: warning: using slow element-wise float"
                      " vector comparison\n", __FUNCTION__);
         for (i = 0; i < type.length; ++i) {
            LLVMValueRef index = lp_build_const_int32(gallivm, i);
            cond = LLVMBuildFCmp(builder, op,
                                 LLVMBuildExtractElement(builder, a, index, ""),
                                 LLVMBuildExtractElement(builder, b, index, ""),
                                 "");
            cond = LLVMBuildSelect(builder, cond,
                                   LLVMConstExtractElement(ones, index),
                                   LLVMConstExtractElement(zeros, index),
                                   "");
            res = LLVMBuildInsertElement(builder, res, cond, index, "");
         }
      }
#endif
   }
   else {
      LLVMIntPredicate op;
      switch(func) {
      case PIPE_FUNC_EQUAL:
         op = LLVMIntEQ;
         break;
      case PIPE_FUNC_NOTEQUAL:
         op = LLVMIntNE;
         break;
      case PIPE_FUNC_LESS:
         op = type.sign ? LLVMIntSLT : LLVMIntULT;
         break;
      case PIPE_FUNC_LEQUAL:
         op = type.sign ? LLVMIntSLE : LLVMIntULE;
         break;
      case PIPE_FUNC_GREATER:
         op = type.sign ? LLVMIntSGT : LLVMIntUGT;
         break;
      case PIPE_FUNC_GEQUAL:
         op = type.sign ? LLVMIntSGE : LLVMIntUGE;
         break;
      default:
         assert(0);
         return lp_build_undef(gallivm, type);
      }

#if HAVE_LLVM >= 0x0207
      cond = LLVMBuildICmp(builder, op, a, b, "");
      res = LLVMBuildSExt(builder, cond, int_vec_type, "");
#else
      if (type.length == 1) {
         cond = LLVMBuildICmp(builder, op, a, b, "");
         res = LLVMBuildSExt(builder, cond, int_vec_type, "");
      }
      else {
         unsigned i;

         res = LLVMGetUndef(int_vec_type);

         if (gallivm_debug & GALLIVM_DEBUG_PERF) {
            debug_printf("%s: using slow element-wise int"
                         " vector comparison\n", __FUNCTION__);
         }

         for(i = 0; i < type.length; ++i) {
            LLVMValueRef index = lp_build_const_int32(gallivm, i);
            cond = LLVMBuildICmp(builder, op,
                                 LLVMBuildExtractElement(builder, a, index, ""),
                                 LLVMBuildExtractElement(builder, b, index, ""),
                                 "");
            cond = LLVMBuildSelect(builder, cond,
                                   LLVMConstExtractElement(ones, index),
                                   LLVMConstExtractElement(zeros, index),
                                   "");
            res = LLVMBuildInsertElement(builder, res, cond, index, "");
         }
      }
#endif
   }

   return res;
}
예제 #25
0
/**
 * Generate the runtime callable function for the whole fragment pipeline.
 * Note that the function which we generate operates on a block of 16
 * pixels at at time.  The block contains 2x2 quads.  Each quad contains
 * 2x2 pixels.
 */
static void
generate_fragment(struct llvmpipe_context *lp,
                  struct lp_fragment_shader *shader,
                  struct lp_fragment_shader_variant *variant,
                  unsigned partial_mask)
{
   struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
   const struct lp_fragment_shader_variant_key *key = &variant->key;
   char func_name[256];
   struct lp_type fs_type;
   struct lp_type blend_type;
   LLVMTypeRef fs_elem_type;
   LLVMTypeRef fs_int_vec_type;
   LLVMTypeRef blend_vec_type;
   LLVMTypeRef arg_types[11];
   LLVMTypeRef func_type;
   LLVMValueRef context_ptr;
   LLVMValueRef x;
   LLVMValueRef y;
   LLVMValueRef a0_ptr;
   LLVMValueRef dadx_ptr;
   LLVMValueRef dady_ptr;
   LLVMValueRef color_ptr_ptr;
   LLVMValueRef depth_ptr;
   LLVMValueRef mask_input;
   LLVMValueRef counter = NULL;
   LLVMBasicBlockRef block;
   LLVMBuilderRef builder;
   struct lp_build_sampler_soa *sampler;
   struct lp_build_interp_soa_context interp;
   LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
   LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
   LLVMValueRef blend_mask;
   LLVMValueRef function;
   LLVMValueRef facing;
   unsigned num_fs;
   unsigned i;
   unsigned chan;
   unsigned cbuf;


   /* TODO: actually pick these based on the fs and color buffer
    * characteristics. */

   memset(&fs_type, 0, sizeof fs_type);
   fs_type.floating = TRUE; /* floating point values */
   fs_type.sign = TRUE;     /* values are signed */
   fs_type.norm = FALSE;    /* values are not limited to [0,1] or [-1,1] */
   fs_type.width = 32;      /* 32-bit float */
   fs_type.length = 4;      /* 4 elements per vector */
   num_fs = 4;              /* number of quads per block */

   memset(&blend_type, 0, sizeof blend_type);
   blend_type.floating = FALSE; /* values are integers */
   blend_type.sign = FALSE;     /* values are unsigned */
   blend_type.norm = TRUE;      /* values are in [0,1] or [-1,1] */
   blend_type.width = 8;        /* 8-bit ubyte values */
   blend_type.length = 16;      /* 16 elements per vector */

   /* 
    * Generate the function prototype. Any change here must be reflected in
    * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
    */

   fs_elem_type = lp_build_elem_type(fs_type);
   fs_int_vec_type = lp_build_int_vec_type(fs_type);

   blend_vec_type = lp_build_vec_type(blend_type);

   util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s", 
		 shader->no, variant->no, partial_mask ? "partial" : "whole");

   arg_types[0] = screen->context_ptr_type;            /* context */
   arg_types[1] = LLVMInt32Type();                     /* x */
   arg_types[2] = LLVMInt32Type();                     /* y */
   arg_types[3] = LLVMFloatType();                     /* facing */
   arg_types[4] = LLVMPointerType(fs_elem_type, 0);    /* a0 */
   arg_types[5] = LLVMPointerType(fs_elem_type, 0);    /* dadx */
   arg_types[6] = LLVMPointerType(fs_elem_type, 0);    /* dady */
   arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0);  /* color */
   arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
   arg_types[9] = LLVMInt32Type();                     /* mask_input */
   arg_types[10] = LLVMPointerType(LLVMInt32Type(), 0);/* counter */

   func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);

   function = LLVMAddFunction(screen->module, func_name, func_type);
   LLVMSetFunctionCallConv(function, LLVMCCallConv);

   variant->function[partial_mask] = function;


   /* XXX: need to propagate noalias down into color param now we are
    * passing a pointer-to-pointer?
    */
   for(i = 0; i < Elements(arg_types); ++i)
      if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
         LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);

   context_ptr  = LLVMGetParam(function, 0);
   x            = LLVMGetParam(function, 1);
   y            = LLVMGetParam(function, 2);
   facing       = LLVMGetParam(function, 3);
   a0_ptr       = LLVMGetParam(function, 4);
   dadx_ptr     = LLVMGetParam(function, 5);
   dady_ptr     = LLVMGetParam(function, 6);
   color_ptr_ptr = LLVMGetParam(function, 7);
   depth_ptr    = LLVMGetParam(function, 8);
   mask_input   = LLVMGetParam(function, 9);

   lp_build_name(context_ptr, "context");
   lp_build_name(x, "x");
   lp_build_name(y, "y");
   lp_build_name(a0_ptr, "a0");
   lp_build_name(dadx_ptr, "dadx");
   lp_build_name(dady_ptr, "dady");
   lp_build_name(color_ptr_ptr, "color_ptr_ptr");
   lp_build_name(depth_ptr, "depth");
   lp_build_name(mask_input, "mask_input");

   if (key->occlusion_count) {
      counter = LLVMGetParam(function, 10);
      lp_build_name(counter, "counter");
   }

   /*
    * Function body
    */

   block = LLVMAppendBasicBlock(function, "entry");
   builder = LLVMCreateBuilder();
   LLVMPositionBuilderAtEnd(builder, block);

   /*
    * The shader input interpolation info is not explicitely baked in the
    * shader key, but everything it derives from (TGSI, and flatshade) is
    * already included in the shader key.
    */
   lp_build_interp_soa_init(&interp, 
                            lp->num_inputs,
                            lp->inputs,
                            builder, fs_type,
                            a0_ptr, dadx_ptr, dady_ptr,
                            x, y);

   /* code generated texture sampling */
   sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);

   /* loop over quads in the block */
   for(i = 0; i < num_fs; ++i) {
      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
      LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
      LLVMValueRef depth_ptr_i;

      if(i != 0)
         lp_build_interp_soa_update(&interp, i);

      depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");

      generate_fs(lp, shader, key,
                  builder,
                  fs_type,
                  context_ptr,
                  i,
                  &interp,
                  sampler,
                  &fs_mask[i], /* output */
                  out_color,
                  depth_ptr_i,
                  facing,
                  partial_mask,
                  mask_input,
                  counter);

      for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
	 for(chan = 0; chan < NUM_CHANNELS; ++chan)
	    fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
   }

   sampler->destroy(sampler);

   /* Loop over color outputs / color buffers to do blending.
    */
   for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
      LLVMValueRef color_ptr;
      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
      LLVMValueRef blend_in_color[NUM_CHANNELS];
      unsigned rt;

      /* 
       * Convert the fs's output color and mask to fit to the blending type. 
       */
      for(chan = 0; chan < NUM_CHANNELS; ++chan) {
	 lp_build_conv(builder, fs_type, blend_type,
		       fs_out_color[cbuf][chan], num_fs,
		       &blend_in_color[chan], 1);
	 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
      }

      if (partial_mask || !variant->opaque) {
         lp_build_conv_mask(builder, fs_type, blend_type,
                            fs_mask, num_fs,
                            &blend_mask, 1);
      } else {
         blend_mask = lp_build_const_int_vec(blend_type, ~0);
      }

      color_ptr = LLVMBuildLoad(builder, 
				LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
				"");
      lp_build_name(color_ptr, "color_ptr%d", cbuf);

      /* which blend/colormask state to use */
      rt = key->blend.independent_blend_enable ? cbuf : 0;

      /*
       * Blending.
       */
      generate_blend(&key->blend,
                     rt,
		     builder,
		     blend_type,
		     context_ptr,
		     blend_mask,
		     blend_in_color,
		     color_ptr);
   }

#ifdef PIPE_ARCH_X86
   /* Avoid corrupting the FPU stack on 32bit OSes. */
   lp_build_intrinsic(builder, "llvm.x86.mmx.emms", LLVMVoidType(), NULL, 0);
#endif

   LLVMBuildRetVoid(builder);

   LLVMDisposeBuilder(builder);


   /* Verify the LLVM IR.  If invalid, dump and abort */
#ifdef DEBUG
   if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
      if (1)
         lp_debug_dump_value(function);
      abort();
   }
#endif

   /* Apply optimizations to LLVM IR */
   LLVMRunFunctionPassManager(screen->pass, function);

   if (gallivm_debug & GALLIVM_DEBUG_IR) {
      /* Print the LLVM IR to stderr */
      lp_debug_dump_value(function);
      debug_printf("\n");
   }

   /*
    * Translate the LLVM IR into machine code.
    */
   {
      void *f = LLVMGetPointerToGlobal(screen->engine, function);

      variant->jit_function[partial_mask] = (lp_jit_frag_func)pointer_to_func(f);

      if (gallivm_debug & GALLIVM_DEBUG_ASM) {
         lp_disassemble(f);
      }
      lp_func_delete_body(function);
   }
}
예제 #26
0
파일: lp_bld_conv.c 프로젝트: RobinWuDev/Qt
/**
 * Inverse of lp_build_clamped_float_to_unsigned_norm above.
 * Ex: src = { i32, i32, i32, i32 } with values in range [0, 2^src_width-1]
 * return {float, float, float, float} with values in range [0, 1].
 */
LLVMValueRef
lp_build_unsigned_norm_to_float(struct gallivm_state *gallivm,
                                unsigned src_width,
                                struct lp_type dst_type,
                                LLVMValueRef src)
{
    LLVMBuilderRef builder = gallivm->builder;
    LLVMTypeRef vec_type = lp_build_vec_type(gallivm, dst_type);
    LLVMTypeRef int_vec_type = lp_build_int_vec_type(gallivm, dst_type);
    LLVMValueRef bias_;
    LLVMValueRef res;
    unsigned mantissa;
    unsigned n;
    unsigned long long ubound;
    unsigned long long mask;
    double scale;
    double bias;

    assert(dst_type.floating);

    mantissa = lp_mantissa(dst_type);

    if (src_width <= (mantissa + 1)) {
        /*
         * The source width matches fits what can be represented in floating
         * point (i.e., mantissa + 1 bits). So do a straight multiplication
         * followed by casting. No further rounding is necessary.
         */

        scale = 1.0/(double)((1ULL << src_width) - 1);
        res = LLVMBuildSIToFP(builder, src, vec_type, "");
        res = LLVMBuildFMul(builder, res,
                            lp_build_const_vec(gallivm, dst_type, scale), "");
        return res;
    }
    else {
        /*
         * The source width exceeds what can be represented in floating
         * point. So truncate the incoming values.
         */

        n = MIN2(mantissa, src_width);

        ubound = ((unsigned long long)1 << n);
        mask = ubound - 1;
        scale = (double)ubound/mask;
        bias = (double)((unsigned long long)1 << (mantissa - n));

        res = src;

        if (src_width > mantissa) {
            int shift = src_width - mantissa;
            res = LLVMBuildLShr(builder, res,
                                lp_build_const_int_vec(gallivm, dst_type, shift), "");
        }

        bias_ = lp_build_const_vec(gallivm, dst_type, bias);

        res = LLVMBuildOr(builder,
                          res,
                          LLVMBuildBitCast(builder, bias_, int_vec_type, ""), "");

        res = LLVMBuildBitCast(builder, res, vec_type, "");

        res = LLVMBuildFSub(builder, res, bias_, "");
        res = LLVMBuildFMul(builder, res, lp_build_const_vec(gallivm, dst_type, scale), "");
    }

    return res;
}
예제 #27
0
/**
 * Generate the fragment shader, depth/stencil test, and alpha tests.
 */
static void
generate_fs(struct llvmpipe_context *lp,
            struct lp_fragment_shader *shader,
            const struct lp_fragment_shader_variant_key *key,
            LLVMBuilderRef builder,
            struct lp_type type,
            LLVMValueRef context_ptr,
            unsigned i,
            const struct lp_build_interp_soa_context *interp,
            struct lp_build_sampler_soa *sampler,
            LLVMValueRef *pmask,
            LLVMValueRef *color,
            LLVMValueRef depth_ptr)
{
   const struct tgsi_token *tokens = shader->base.tokens;
   LLVMTypeRef elem_type;
   LLVMTypeRef vec_type;
   LLVMTypeRef int_vec_type;
   LLVMValueRef consts_ptr;
   LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
   LLVMValueRef z = interp->pos[2];
   struct lp_build_flow_context *flow;
   struct lp_build_mask_context mask;
   boolean early_depth_test;
   unsigned attrib;
   unsigned chan;

   elem_type = lp_build_elem_type(type);
   vec_type = lp_build_vec_type(type);
   int_vec_type = lp_build_int_vec_type(type);

   consts_ptr = lp_jit_context_constants(builder, context_ptr);

   flow = lp_build_flow_create(builder);

   memset(outputs, 0, sizeof outputs);

   lp_build_flow_scope_begin(flow);

   /* Declare the color and z variables */
   for(chan = 0; chan < NUM_CHANNELS; ++chan) {
      color[chan] = LLVMGetUndef(vec_type);
      lp_build_flow_scope_declare(flow, &color[chan]);
   }
   lp_build_flow_scope_declare(flow, &z);

   lp_build_mask_begin(&mask, flow, type, *pmask);

   early_depth_test =
      key->depth.enabled &&
      !key->alpha.enabled &&
      !shader->info.uses_kill &&
      !shader->info.writes_z;

   if(early_depth_test)
      generate_depth(builder, key,
                     type, &mask,
                     z, depth_ptr);

   lp_build_tgsi_soa(builder, tokens, type, &mask,
                     consts_ptr, interp->pos, interp->inputs,
                     outputs, sampler);

   for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
      for(chan = 0; chan < NUM_CHANNELS; ++chan) {
         if(outputs[attrib][chan]) {
            lp_build_name(outputs[attrib][chan], "output%u.%u.%c", i, attrib, "xyzw"[chan]);

            switch (shader->info.output_semantic_name[attrib]) {
            case TGSI_SEMANTIC_COLOR:
               {
                  unsigned cbuf = shader->info.output_semantic_index[attrib];

                  lp_build_name(outputs[attrib][chan], "color%u.%u.%c", i, attrib, "rgba"[chan]);

                  /* Alpha test */
                  /* XXX: should the alpha reference value be passed separately? */
                  if(cbuf == 0 && chan == 3) {
                     LLVMValueRef alpha = outputs[attrib][chan];
                     LLVMValueRef alpha_ref_value;
                     alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
                     alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
                     lp_build_alpha_test(builder, &key->alpha, type,
                                         &mask, alpha, alpha_ref_value);
                  }

                  if(cbuf == 0)
                     color[chan] = outputs[attrib][chan];

                  break;
               }

            case TGSI_SEMANTIC_POSITION:
               if(chan == 2)
                  z = outputs[attrib][chan];
               break;
            }
         }
      }
   }

   if(!early_depth_test)
      generate_depth(builder, key,
                     type, &mask,
                     z, depth_ptr);

   lp_build_mask_end(&mask);

   lp_build_flow_scope_end(flow);

   lp_build_flow_destroy(flow);

   *pmask = mask.value;

}