static void parse_objective(struct dsa *dsa) { /* parse objective sense */ int k, len; /* parse the keyword 'minimize' or 'maximize' */ if (dsa->token == T_MINIMIZE) lpx_set_obj_dir(dsa->lp, LPX_MIN); else if (dsa->token == T_MAXIMIZE) lpx_set_obj_dir(dsa->lp, LPX_MAX); else xassert(dsa != dsa); scan_token(dsa); /* parse objective name */ if (dsa->token == T_NAME && dsa->c == ':') { /* objective name is followed by a colon */ lpx_set_obj_name(dsa->lp, dsa->image); scan_token(dsa); xassert(dsa->token == T_COLON); scan_token(dsa); } else { /* objective name is not specified; use default */ lpx_set_obj_name(dsa->lp, "obj"); } /* parse linear form */ len = parse_linear_form(dsa); for (k = 1; k <= len; k++) lpx_set_obj_coef(dsa->lp, dsa->ind[k], dsa->val[k]); return; }
int main(void) { LPX *lp; int ia[1+1000], ja[1+1000]; double ar[1+1000], Z, x1, x2, x3; s1: lp = lpx_create_prob(); s2: lpx_set_prob_name(lp, "sample"); s3: lpx_set_obj_dir(lp, LPX_MAX); s4: lpx_add_rows(lp, 3); s5: lpx_set_row_name(lp, 1, "p"); s6: lpx_set_row_bnds(lp, 1, LPX_UP, 0.0, 100.0); s7: lpx_set_row_name(lp, 2, "q"); s8: lpx_set_row_bnds(lp, 2, LPX_UP, 0.0, 600.0); s9: lpx_set_row_name(lp, 3, "r"); s10: lpx_set_row_bnds(lp, 3, LPX_UP, 0.0, 300.0); s11: lpx_add_cols(lp, 3); s12: lpx_set_col_name(lp, 1, "x1"); s13: lpx_set_col_bnds(lp, 1, LPX_LO, 0.0, 0.0); s14: lpx_set_obj_coef(lp, 1, 10.0); s15: lpx_set_col_name(lp, 2, "x2"); s16: lpx_set_col_bnds(lp, 2, LPX_LO, 0.0, 0.0); s17: lpx_set_obj_coef(lp, 2, 6.0); s18: lpx_set_col_name(lp, 3, "x3"); s19: lpx_set_col_bnds(lp, 3, LPX_LO, 0.0, 0.0); s20: lpx_set_obj_coef(lp, 3, 4.0); s21: ia[1] = 1, ja[1] = 1, ar[1] = 1.0; /* a[1,1] = 1 */ s22: ia[2] = 1, ja[2] = 2, ar[2] = 1.0; /* a[1,2] = 1 */ s23: ia[3] = 1, ja[3] = 3, ar[3] = 1.0; /* a[1,3] = 1 */ s24: ia[4] = 2, ja[4] = 1, ar[4] = 10.0; /* a[2,1] = 10 */ s25: ia[5] = 3, ja[5] = 1, ar[5] = 2.0; /* a[3,1] = 2 */ s26: ia[6] = 2, ja[6] = 2, ar[6] = 4.0; /* a[2,2] = 4 */ s27: ia[7] = 3, ja[7] = 2, ar[7] = 2.0; /* a[3,2] = 2 */ s28: ia[8] = 2, ja[8] = 3, ar[8] = 5.0; /* a[2,3] = 5 */ s29: ia[9] = 3, ja[9] = 3, ar[9] = 6.0; /* a[3,3] = 6 */ s30: lpx_load_matrix(lp, 9, ia, ja, ar); s31: lpx_simplex(lp); s32: Z = lpx_get_obj_val(lp); s33: x1 = lpx_get_col_prim(lp, 1); s34: x2 = lpx_get_col_prim(lp, 2); s35: x3 = lpx_get_col_prim(lp, 3); s36: printf("\nZ = %g; x1 = %g; x2 = %g; x3 = %g\n", Z, x1, x2, x3); s37: lpx_delete_prob(lp); return 0; }
int GLPKLoadObjective(LinEquation* InEquation, bool Max) { if (InEquation->QuadCoeff.size() > 0) { FErrorFile() << "GLPK solver cannot accept quadratic objectives." << endl; FlushErrorFile(); return FAIL; } if (GLPKModel == NULL) { FErrorFile() << "Could not add objective because GLPK object does not exist." << endl; FlushErrorFile(); return FAIL; } if (!Max) { lpx_set_obj_dir(GLPKModel, LPX_MIN); } else { lpx_set_obj_dir(GLPKModel, LPX_MAX); } int NumColumns = lpx_get_num_cols(GLPKModel); for (int i=0; i < NumColumns; i++) { lpx_set_obj_coef(GLPKModel, i+1, 0); } for (int i=0; i < int(InEquation->Variables.size()); i++) { if (NumColumns > InEquation->Variables[i]->Index) { lpx_set_obj_coef(GLPKModel, InEquation->Variables[i]->Index+1, InEquation->Coefficient[i]); } else { FErrorFile() << "Variable index specified in objective was out of the range of variables added to the GLPK problem object." << endl; FlushErrorFile(); return FAIL; } } return SUCCESS; }
int lpx_integer(LPX *mip) { int m = lpx_get_num_rows(mip); int n = lpx_get_num_cols(mip); MIPTREE *tree; LPX *lp; int ret, i, j, stat, type, len, *ind; double lb, ub, coef, *val; #if 0 /* the problem must be of MIP class */ if (lpx_get_class(mip) != LPX_MIP) { print("lpx_integer: problem is not of MIP class"); ret = LPX_E_FAULT; goto done; } #endif /* an optimal solution of LP relaxation must be known */ if (lpx_get_status(mip) != LPX_OPT) { print("lpx_integer: optimal solution of LP relaxation required" ); ret = LPX_E_FAULT; goto done; } /* bounds of all integer variables must be integral */ for (j = 1; j <= n; j++) { if (lpx_get_col_kind(mip, j) != LPX_IV) continue; type = lpx_get_col_type(mip, j); if (type == LPX_LO || type == LPX_DB || type == LPX_FX) { lb = lpx_get_col_lb(mip, j); if (lb != floor(lb)) { print("lpx_integer: integer column %d has non-integer lo" "wer bound or fixed value %g", j, lb); ret = LPX_E_FAULT; goto done; } } if (type == LPX_UP || type == LPX_DB) { ub = lpx_get_col_ub(mip, j); if (ub != floor(ub)) { print("lpx_integer: integer column %d has non-integer up" "per bound %g", j, ub); ret = LPX_E_FAULT; goto done; } } } /* it seems all is ok */ if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 2) print("Integer optimization begins..."); /* create the branch-and-bound tree */ tree = mip_create_tree(m, n, lpx_get_obj_dir(mip)); /* set up column kinds */ for (j = 1; j <= n; j++) tree->int_col[j] = (lpx_get_col_kind(mip, j) == LPX_IV); /* access the LP relaxation template */ lp = tree->lp; /* set up the objective function */ tree->int_obj = 1; for (j = 0; j <= tree->n; j++) { coef = lpx_get_obj_coef(mip, j); lpx_set_obj_coef(lp, j, coef); if (coef != 0.0 && !(tree->int_col[j] && coef == floor(coef))) tree->int_obj = 0; } if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 2 && tree->int_obj) print("Objective function is integral"); /* set up the constraint matrix */ ind = xcalloc(1+n, sizeof(int)); val = xcalloc(1+n, sizeof(double)); for (i = 1; i <= m; i++) { len = lpx_get_mat_row(mip, i, ind, val); lpx_set_mat_row(lp, i, len, ind, val); } xfree(ind); xfree(val); /* set up scaling matrices */ for (i = 1; i <= m; i++) lpx_set_rii(lp, i, lpx_get_rii(mip, i)); for (j = 1; j <= n; j++) lpx_set_sjj(lp, j, lpx_get_sjj(mip, j)); /* revive the root subproblem */ mip_revive_node(tree, 1); /* set up row attributes for the root subproblem */ for (i = 1; i <= m; i++) { type = lpx_get_row_type(mip, i); lb = lpx_get_row_lb(mip, i); ub = lpx_get_row_ub(mip, i); stat = lpx_get_row_stat(mip, i); lpx_set_row_bnds(lp, i, type, lb, ub); lpx_set_row_stat(lp, i, stat); } /* set up column attributes for the root subproblem */ for (j = 1; j <= n; j++) { type = lpx_get_col_type(mip, j); lb = lpx_get_col_lb(mip, j); ub = lpx_get_col_ub(mip, j); stat = lpx_get_col_stat(mip, j); lpx_set_col_bnds(lp, j, type, lb, ub); lpx_set_col_stat(lp, j, stat); } /* freeze the root subproblem */ mip_freeze_node(tree); /* inherit some control parameters and statistics */ tree->msg_lev = lpx_get_int_parm(mip, LPX_K_MSGLEV); if (tree->msg_lev > 2) tree->msg_lev = 2; tree->branch = lpx_get_int_parm(mip, LPX_K_BRANCH); tree->btrack = lpx_get_int_parm(mip, LPX_K_BTRACK); tree->tol_int = lpx_get_real_parm(mip, LPX_K_TOLINT); tree->tol_obj = lpx_get_real_parm(mip, LPX_K_TOLOBJ); tree->tm_lim = lpx_get_real_parm(mip, LPX_K_TMLIM); lpx_set_int_parm(lp, LPX_K_BFTYPE, lpx_get_int_parm(mip, LPX_K_BFTYPE)); lpx_set_int_parm(lp, LPX_K_PRICE, lpx_get_int_parm(mip, LPX_K_PRICE)); lpx_set_real_parm(lp, LPX_K_RELAX, lpx_get_real_parm(mip, LPX_K_RELAX)); lpx_set_real_parm(lp, LPX_K_TOLBND, lpx_get_real_parm(mip, LPX_K_TOLBND)); lpx_set_real_parm(lp, LPX_K_TOLDJ, lpx_get_real_parm(mip, LPX_K_TOLDJ)); lpx_set_real_parm(lp, LPX_K_TOLPIV, lpx_get_real_parm(mip, LPX_K_TOLPIV)); lpx_set_int_parm(lp, LPX_K_ITLIM, lpx_get_int_parm(mip, LPX_K_ITLIM)); lpx_set_int_parm(lp, LPX_K_ITCNT, lpx_get_int_parm(mip, LPX_K_ITCNT)); /* reset the status of MIP solution */ lpx_put_mip_soln(mip, LPX_I_UNDEF, NULL, NULL); /* try solving the problem */ ret = mip_driver(tree); /* if an integer feasible solution has been found, copy it to the MIP problem object */ if (tree->found) lpx_put_mip_soln(mip, LPX_I_FEAS, &tree->mipx[0], &tree->mipx[m]); /* copy back statistics about spent resources */ lpx_set_real_parm(mip, LPX_K_TMLIM, tree->tm_lim); lpx_set_int_parm(mip, LPX_K_ITLIM, lpx_get_int_parm(lp, LPX_K_ITLIM)); lpx_set_int_parm(mip, LPX_K_ITCNT, lpx_get_int_parm(lp, LPX_K_ITCNT)); /* analyze exit code reported by the mip driver */ switch (ret) { case MIP_E_OK: if (tree->found) { if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 3) print("INTEGER OPTIMAL SOLUTION FOUND"); lpx_put_mip_soln(mip, LPX_I_OPT, NULL, NULL); } else { if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 3) print("PROBLEM HAS NO INTEGER FEASIBLE SOLUTION"); lpx_put_mip_soln(mip, LPX_I_NOFEAS, NULL, NULL); } ret = LPX_E_OK; break; case MIP_E_ITLIM: if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 3) print("ITERATIONS LIMIT EXCEEDED; SEARCH TERMINATED"); ret = LPX_E_ITLIM; break; case MIP_E_TMLIM: if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 3) print("TIME LIMIT EXCEEDED; SEARCH TERMINATED"); ret = LPX_E_TMLIM; break; case MIP_E_ERROR: if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 1) print("lpx_integer: cannot solve current LP relaxation"); ret = LPX_E_SING; break; default: xassert(ret != ret); } /* delete the branch-and-bound tree */ mip_delete_tree(tree); done: /* return to the application program */ return ret; }
LPX *lpx_extract_prob(void *_mpl) { MPL *mpl = _mpl; LPX *lp; int m, n, i, j, t, kind, type, len, *ind; double lb, ub, *val; /* create problem instance */ lp = lpx_create_prob(); /* set problem name */ lpx_set_prob_name(lp, mpl_get_prob_name(mpl)); /* build rows (constraints) */ m = mpl_get_num_rows(mpl); if (m > 0) lpx_add_rows(lp, m); for (i = 1; i <= m; i++) { /* set row name */ lpx_set_row_name(lp, i, mpl_get_row_name(mpl, i)); /* set row bounds */ type = mpl_get_row_bnds(mpl, i, &lb, &ub); switch (type) { case MPL_FR: type = LPX_FR; break; case MPL_LO: type = LPX_LO; break; case MPL_UP: type = LPX_UP; break; case MPL_DB: type = LPX_DB; break; case MPL_FX: type = LPX_FX; break; default: insist(type != type); } if (type == LPX_DB && fabs(lb - ub) < 1e-9 * (1.0 + fabs(lb))) { type = LPX_FX; if (fabs(lb) <= fabs(ub)) ub = lb; else lb = ub; } lpx_set_row_bnds(lp, i, type, lb, ub); /* warn about non-zero constant term */ if (mpl_get_row_c0(mpl, i) != 0.0) print("lpx_read_model: row %s; constant term %.12g ignored", mpl_get_row_name(mpl, i), mpl_get_row_c0(mpl, i)); } /* build columns (variables) */ n = mpl_get_num_cols(mpl); if (n > 0) lpx_add_cols(lp, n); for (j = 1; j <= n; j++) { /* set column name */ lpx_set_col_name(lp, j, mpl_get_col_name(mpl, j)); /* set column kind */ kind = mpl_get_col_kind(mpl, j); switch (kind) { case MPL_NUM: break; case MPL_INT: case MPL_BIN: lpx_set_class(lp, LPX_MIP); lpx_set_col_kind(lp, j, LPX_IV); break; default: insist(kind != kind); } /* set column bounds */ type = mpl_get_col_bnds(mpl, j, &lb, &ub); switch (type) { case MPL_FR: type = LPX_FR; break; case MPL_LO: type = LPX_LO; break; case MPL_UP: type = LPX_UP; break; case MPL_DB: type = LPX_DB; break; case MPL_FX: type = LPX_FX; break; default: insist(type != type); } if (kind == MPL_BIN) { if (type == LPX_FR || type == LPX_UP || lb < 0.0) lb = 0.0; if (type == LPX_FR || type == LPX_LO || ub > 1.0) ub = 1.0; type = LPX_DB; } if (type == LPX_DB && fabs(lb - ub) < 1e-9 * (1.0 + fabs(lb))) { type = LPX_FX; if (fabs(lb) <= fabs(ub)) ub = lb; else lb = ub; } lpx_set_col_bnds(lp, j, type, lb, ub); } /* load the constraint matrix */ ind = ucalloc(1+n, sizeof(int)); val = ucalloc(1+n, sizeof(double)); for (i = 1; i <= m; i++) { len = mpl_get_mat_row(mpl, i, ind, val); lpx_set_mat_row(lp, i, len, ind, val); } /* build objective function (the first objective is used) */ for (i = 1; i <= m; i++) { kind = mpl_get_row_kind(mpl, i); if (kind == MPL_MIN || kind == MPL_MAX) { /* set objective name */ lpx_set_obj_name(lp, mpl_get_row_name(mpl, i)); /* set optimization direction */ lpx_set_obj_dir(lp, kind == MPL_MIN ? LPX_MIN : LPX_MAX); /* set constant term */ lpx_set_obj_coef(lp, 0, mpl_get_row_c0(mpl, i)); /* set objective coefficients */ len = mpl_get_mat_row(mpl, i, ind, val); for (t = 1; t <= len; t++) lpx_set_obj_coef(lp, ind[t], val[t]); break; } } /* free working arrays */ ufree(ind); ufree(val); /* bring the problem object to the calling program */ return lp; }
LPX *ipp_build_prob(IPP *ipp) { LPX *prob; IPPROW *row; IPPCOL *col; IPPAIJ *aij; int i, j, type, len, *ind; double *val; /* create problem object */ prob = lpx_create_prob(); #if 0 lpx_set_class(prob, LPX_MIP); #endif /* the resultant problem should have the same optimization sense as the original problem */ lpx_set_obj_dir(prob, ipp->orig_dir); /* set the constant term of the objective function */ lpx_set_obj_coef(prob, 0, ipp->orig_dir == LPX_MIN ? + ipp->c0 : - ipp->c0); /* copy rows of the resultant problem */ for (row = ipp->row_ptr; row != NULL; row = row->next) { i = lpx_add_rows(prob, 1); if (row->lb == -DBL_MAX && row->ub == +DBL_MAX) type = LPX_FR; else if (row->ub == +DBL_MAX) type = LPX_LO; else if (row->lb == -DBL_MAX) type = LPX_UP; else if (row->lb != row->ub) type = LPX_DB; else type = LPX_FX; lpx_set_row_bnds(prob, i, type, row->lb, row->ub); row->temp = i; } /* copy columns of the resultant problem */ ind = xcalloc(1+lpx_get_num_rows(prob), sizeof(int)); val = xcalloc(1+lpx_get_num_rows(prob), sizeof(double)); for (col = ipp->col_ptr; col != NULL; col = col->next) { j = lpx_add_cols(prob, 1); if (col->i_flag) lpx_set_col_kind(prob, j, LPX_IV); if (col->lb == -DBL_MAX && col->ub == +DBL_MAX) type = LPX_FR; else if (col->ub == +DBL_MAX) type = LPX_LO; else if (col->lb == -DBL_MAX) type = LPX_UP; else if (col->lb != col->ub) type = LPX_DB; else type = LPX_FX; lpx_set_col_bnds(prob, j, type, col->lb, col->ub); lpx_set_obj_coef(prob, j, ipp->orig_dir == LPX_MIN ? + col->c : - col->c); /* copy constraint coefficients */ len = 0; for (aij = col->ptr; aij != NULL; aij = aij->c_next) { len++; ind[len] = aij->row->temp; val[len] = aij->val; } lpx_set_mat_col(prob, j, len, ind, val); } xfree(ind); xfree(val); return prob; }
int TankBlendOptimiser::go() { lp = lpx_create_prob(); lpx_set_int_parm(lp, LPX_K_MSGLEV, 0); // 0 = no output lpx_set_int_parm(lp, LPX_K_SCALE, 3); // 3 = geometric mean scaling, then equilibration scaling lpx_set_int_parm(lp, LPX_K_DUAL, 1); // 1 = if initial basic solution is dual feasible, use the dual simplex lpx_set_int_parm(lp, LPX_K_ROUND, 1); // 1 = replace tiny primal and dual values by exact zero lpx_set_int_parm(lp, LPX_K_PRESOL, 1); // 1 = use the built-in presolver. lpx_set_prob_name(lp, "Blend Optimiser"); lpx_set_obj_dir(lp, LPX_MIN); // Columns... lpx_add_cols(lp, cols); for (int i=0; i<tanks; i++) // 0.0 < x < tankMax { if (tankMax[i]>0.0) lpx_set_col_bnds(lp, col, LPX_DB, 0.0, tankMax[i]); else lpx_set_col_bnds(lp, col, LPX_FX, 0.0, 0.0); col++; } for (int i=0; i<tanks; i++) // 0.0 < slackTankLow { lpx_set_col_bnds(lp, col, LPX_LO, 0.0, 0.0); lpx_set_obj_coef(lp, col, tankLowPenalty[i]); // penalty weight. col++; } for (int i=0; i<tanks; i++) // 0.0 < slackTankHigh { lpx_set_col_bnds(lp, col, LPX_LO, 0.0, 0.0); lpx_set_obj_coef(lp, col, tankHighPenalty[i]); // penalty weight. col++; } for (int i=0; i<assays; i++) // 0.0 < slackAssayLow { lpx_set_col_bnds(lp, col, LPX_LO, 0.0, 0.0); lpx_set_obj_coef(lp, col, assayLowPenalty[i]); // penalty weight. col++; } for (int i=0; i<assays; i++) // 0.0 < slackAssayHigh { lpx_set_col_bnds(lp, col, LPX_LO, 0.0, 0.0); lpx_set_obj_coef(lp, col, assayHighPenalty[i]); // penalty weight. col++; } for (int i=0; i<assays; i++) // 0.0 < slackAssayRatioLow for (int j=0; j<assays; j++) { lpx_set_col_bnds(lp, col, LPX_LO, 0.0, 0.0); lpx_set_obj_coef(lp, col, assayRatioLowPenalty[i][j]); // penalty weight. col++; } for (int i=0; i<assays; i++) // 0.0 < slackAssayRatioHigh for (int j=0; j<assays; j++) { lpx_set_col_bnds(lp, col, LPX_LO, 0.0, 0.0); lpx_set_obj_coef(lp, col, assayRatioHighPenalty[i][j]); // penalty weight. col++; } // Rows... lpx_add_rows(lp, rows); { // x1 + ... + xn = 1.0 lpx_set_row_bnds(lp, row, LPX_FX, 1.0, 1.0); for (int i=0; i<tanks; i++) ia[constraint] = row, ja[constraint] = 1+i, ar[constraint++] = 1.0; row++; } for (int i=0; i<tanks; i++) // tankLow < tank + slackTankLow { lpx_set_row_bnds(lp, row, LPX_LO, tankLow[i], 0.0); ia[constraint] = row, ja[constraint] = 1+i, ar[constraint++] = 1.0; ia[constraint] = row, ja[constraint] = 1+i+tanks, ar[constraint++] = 1.0; row++; } for (int i=0; i<tanks; i++) // tank - slackTankHigh < tankHigh { lpx_set_row_bnds(lp, row, LPX_UP, 0.0, tankHigh[i]); ia[constraint] = row, ja[constraint] = 1+i, ar[constraint++] = 1.0; ia[constraint] = row, ja[constraint] = 1+i+2*tanks, ar[constraint++] = -1.0; row++; } for (int i=0; i<assays; i++) // assayLow < assay + slackAssayLow { lpx_set_row_bnds(lp, row, LPX_LO, assayLow[i], 0.0); for (int j=0; j<tanks; j++) { if (assayConc[i][j]>0.0) ia[constraint] = row, ja[constraint] = 1+j, ar[constraint++] = assayConc[i][j]; } ia[constraint] = row, ja[constraint] = 1+i+3*tanks, ar[constraint++] = 1.0; row++; } for (int i=0; i<assays; i++) // assay - slackAssayHigh < assayHigh { lpx_set_row_bnds(lp, row, LPX_UP, 0.0, assayHigh[i]); for (int j=0; j<tanks; j++) { if (assayConc[i][j]>0.0) ia[constraint] = row, ja[constraint] = 1+j, ar[constraint++] = assayConc[i][j]; } ia[constraint] = row, ja[constraint] = 1+i+3*tanks+assays, ar[constraint++] = -1.0; row++; } for (int i=0; i<assays; i++) // 0 < assayNum - assayRatioLow*assayDen + slackAssayLow for (int j=0; j<assays; j++) { if (assayRatioLowEnabled[i][j]) lpx_set_row_bnds(lp, row, LPX_LO, 0.0, 0.0); else lpx_set_row_bnds(lp, row, LPX_FR, 0.0, 0.0); for (int k=0; k<tanks; k++) { if (assayConc[i][k] - assayRatioLow[i][j]*assayConc[j][k]!=0.0) ia[constraint] = row, ja[constraint] = 1+k, ar[constraint++] = assayConc[i][k] - assayRatioLow[i][j]*assayConc[j][k]; } ia[constraint] = row, ja[constraint] = 1+i*assays+j+3*tanks+2*assays, ar[constraint++] = 1.0; row++; } for (int i=0; i<assays; i++) // assayNum - assayRatioHigh*assayDen - slackAssayHigh < 0 for (int j=0; j<assays; j++) { if (assayRatioHighEnabled[i][j]) lpx_set_row_bnds(lp, row, LPX_UP, 0.0, 0.0); else lpx_set_row_bnds(lp, row, LPX_FR, 0.0, 0.0); for (int k=0; k<tanks; k++) { if (assayConc[i][k] - assayRatioHigh[i][j]*assayConc[j][k]!=0.0) ia[constraint] = row, ja[constraint] = 1+k, ar[constraint++] = assayConc[i][k] - assayRatioHigh[i][j]*assayConc[j][k]; } ia[constraint] = row, ja[constraint] = 1+i*assays+j+3*tanks+2*assays+assays*assays, ar[constraint++] = -1.0; row++; } lpx_load_matrix(lp, constraint-1, ia, ja, ar); int exitCode = lpx_simplex(lp); for (int i=0; i<tanks; i++) tank[i] = lpx_get_col_prim(lp, 1+i); for (int i=0; i<assays; i++) { assay[i] = 0.0; for (int j=0; j<tanks; j++) assay[i] += lpx_get_col_prim(lp, 1+j)*assayConc[i][j]; } return exitCode; // LPX_E_OK 200 /* success */ // LPX_E_FAULT 204 /* unable to start the search */ // LPX_E_ITLIM 207 /* iterations limit exhausted */ // LPX_E_TMLIM 208 /* time limit exhausted */ // LPX_E_SING 211 /* problems with basis matrix */ // LPX_E_NOPFS 213 /* no primal feas. sol. (LP presolver) */ // LPX_E_NODFS 214 /* no dual feas. sol. (LP presolver) */ // Usually: // LPX_E_OK = Solution found. // LPX_E_NOPFS = Sum-to-1.0 or tank-max constraints not met. // Others = Some major fault has occurred. }
void Gspan::lpboost(){ std::cout << "in lpboost" << std::endl; const char *out = "model"; //initialize unsigned int gnum = gdata.size(); weight.resize(gnum); std::fill(weight.begin(),weight.end(),1.0); corlab.resize(gnum); for(unsigned int gid=0;gid<gnum;++gid){ corlab[gid]=gdata[gid].class_label; } wbias=0.0; Hypothesis model; first_flag=true; need_to_cooc = false; cooc_is_opt = false; std::cout.setf(std::ios::fixed,std::ios::floatfield); std::cout.precision(8); //Initialize GLPK int* index = new int[gnum+2]; double* value = new double[gnum+2]; LPX* lp = lpx_create_prob(); lpx_add_cols(lp, gnum+1); // set u_1,...u_l, beta for (unsigned int i = 0; i < gnum; ++i){ lpx_set_col_bnds(lp, COL(i), LPX_DB, 0.0, 1/(nu*gnum)); lpx_set_obj_coef(lp, COL(i), 0); // u } lpx_set_col_bnds(lp, COL(gnum), LPX_FR, 0.0, 0.0); lpx_set_obj_coef(lp, COL(gnum), 1); // beta lpx_set_obj_dir(lp, LPX_MIN); //optimization direction: min objective lpx_add_rows(lp,1); // Add one row constraint s.t. sum_u == 1 for (unsigned int i = 0; i < gnum; ++i){ index[i+1] = COL(i); value[i+1] = 1; } lpx_set_mat_row(lp, ROW(0), gnum, index, value); lpx_set_row_bnds(lp, ROW(0), LPX_FX, 1, 1); double beta = 0.0; double margin = 0.0; //main loop for(unsigned int itr=0;itr < max_itr;++itr){ std::cout <<"itrator : "<<itr+1<<std::endl; if(itr==coocitr) need_to_cooc=true; opt_pat.gain=0.0;//gain init opt_pat.size=0; opt_pat.locsup.resize(0); pattern.resize(0); opt_pat.dfscode=""; Crun(); //std::cout<<opt_pat.gain<<" :"<<opt_pat.dfscode<<std::endl; std::vector <int> result (gnum); int _y; vector<int> locvec; std::string dfscode; if(cooc_is_opt == false){ _y = opt_pat.gain > 0 ? +1 :-1; locvec =opt_pat.locsup; dfscode=opt_pat.dfscode; }else{ _y = opt_pat_cooc.gain > 0 ? +1 :-1; locvec =opt_pat_cooc.locsup; dfscode=opt_pat_cooc.dfscode[0]+"\t"+opt_pat_cooc.dfscode[1];//=opt_pat_cooc.dfscode; } model.flag.resize(itr+1); model.flag[itr]=_y; std::fill (result.begin (), result.end(), -_y); for (unsigned int i = 0; i < locvec.size(); ++i) result[locvec[i]] = _y; double uyh = 0; for (unsigned int i = 0; i < gnum; ++i) { // summarizing hypotheses uyh += weight[i]*corlab[i]*result[i]; } std::cout << "Stopping criterion: " << uyh << "<=?" << beta << " + " << conv_epsilon << std::endl; if( (uyh <= beta + conv_epsilon ) ){ std::cout << "*********************************" << std::endl; std::cout << "Convergence ! at iteration: " << itr+1 << std::endl; std::cout << "*********************************" << std::endl; if(!end_of_cooc || need_to_cooc == true) break; need_to_cooc = true; } lpx_add_rows(lp,1); // Add one row constraint s.t. sum( uyh - beta ) <= 0 for (unsigned int i = 0; i < gnum; ++i){ index[i+1] = COL(i); value[i+1] = result[i] * corlab[i]; } index[gnum+1] = COL(gnum); value[gnum+1] = -1; lpx_set_mat_row(lp, ROW(itr+1), gnum+1, index, value); lpx_set_row_bnds(lp, ROW(itr+1), LPX_UP, 0.0, 0.0); model.weight.push_back(0); model.dfs_vector.push_back(dfscode); lpx_simplex(lp); beta = lpx_get_obj_val(lp); for (unsigned int i = 0; i < gnum; ++i){ double new_weight; new_weight = lpx_get_col_prim(lp, COL(i)); if(new_weight < 0) new_weight = 0; // weight > 0 weight[i] = new_weight; } margin = lpx_get_row_dual(lp, ROW(0)); double margin_error = 0.0; for (unsigned int i = 0; i < gnum; ++i) { // summarizing hypotheses if (corlab[i]*result[i] < margin){ ++margin_error; } } margin_error /= gnum; //next rule is estimated wbias = 0.0; for (unsigned int i = 0; i < gnum; ++i){ wbias += corlab[i] * weight[i]; } std::ofstream os (out); if (! os) { std::cerr << "FATAL: Cannot open output file: " << out << std::endl; return; } os.setf(std::ios::fixed,std::ios::floatfield); os.precision(12); for (unsigned int r = 0; r < itr; ++r){ model.weight[r] = - lpx_get_row_dual(lp, ROW(r+1)); if(model.weight[r] < 0) model.weight[r] = 0; // alpha > 0 os << model.flag[r] * model.weight[r] << "\t" << model.dfs_vector[r] << std::endl; std::cout << model.flag[r] * model.weight[r] << "\t" << model.dfs_vector[r] << std::endl; } std::cout << "After iteration " << itr+1 << std::endl; std::cout << "Margin: " << margin << std::endl; std::cout << "Margin Error: " << margin_error << std::endl; } std::cout << "end lpboost" << std::endl; }
LPX *lpp_build_prob(LPP *lpp) { LPX *prob; LPPROW *row; LPPCOL *col; int i, j, typx; /* count number of rows and columns in the resultant problem */ lpp->m = lpp->n = 0; for (row = lpp->row_ptr; row != NULL; row = row->next) lpp->m++; for (col = lpp->col_ptr; col != NULL; col = col->next) lpp->n++; /* allocate two arrays to save reference numbers assigned to rows and columns of the resultant problem */ lpp->row_ref = xcalloc(1+lpp->m, sizeof(int)); lpp->col_ref = xcalloc(1+lpp->n, sizeof(int)); /* create LP problem object */ prob = lpx_create_prob(); /* the resultant problem should have the same optimization sense as the original problem */ lpx_set_obj_dir(prob, lpp->orig_dir); /* set the constant term of the objective function */ lpx_set_obj_coef(prob, 0, lpp->orig_dir == LPX_MIN ? + lpp->c0 : - lpp->c0); /* create rows of the resultant problem */ #if 0 /* 03/VII-2008 */ xassert(lpp->m > 0); #endif if (lpp->m > 0) lpx_add_rows(prob, lpp->m); for (i = 1, row = lpp->row_ptr; i <= lpp->m; i++, row = row->next) { xassert(row != NULL); lpp->row_ref[i] = row->i; row->i = i; if (row->lb == -DBL_MAX && row->ub == +DBL_MAX) typx = LPX_FR; else if (row->ub == +DBL_MAX) typx = LPX_LO; else if (row->lb == -DBL_MAX) typx = LPX_UP; else if (row->lb != row->ub) typx = LPX_DB; else typx = LPX_FX; lpx_set_row_bnds(prob, i, typx, row->lb, row->ub); } xassert(row == NULL); /* create columns of the resultant problem */ #if 0 /* 03/VII-2008 */ xassert(lpp->n > 0); #endif if (lpp->n > 0) lpx_add_cols(prob, lpp->n); for (j = 1, col = lpp->col_ptr; j <= lpp->n; j++, col = col->next) { xassert(col != NULL); lpp->col_ref[j] = col->j; col->j = j; if (col->lb == -DBL_MAX && col->ub == +DBL_MAX) typx = LPX_FR; else if (col->ub == +DBL_MAX) typx = LPX_LO; else if (col->lb == -DBL_MAX) typx = LPX_UP; else if (col->lb != col->ub) typx = LPX_DB; else typx = LPX_FX; lpx_set_col_bnds(prob, j, typx, col->lb, col->ub); lpx_set_obj_coef(prob, j, lpp->orig_dir == LPX_MIN ? + col->c : - col->c); } xassert(col == NULL); /* create the constraint matrix of the resultant problem */ #if 0 info.lpp = lpp; info.row = NULL; info.aij = NULL; lpx_load_mat(prob, &info, next_aij); #else { LPPAIJ *aij; int len, *ind; double *val; ind = xcalloc(1+lpp->n, sizeof(int)); val = xcalloc(1+lpp->n, sizeof(double)); for (row = lpp->row_ptr; row != NULL; row = row->next) { len = 0; for (aij = row->ptr; aij != NULL; aij = aij->r_next) len++, ind[len] = aij->col->j, val[len] = aij->val; lpx_set_mat_row(prob, row->i, len, ind, val); } xfree(ind); xfree(val); } #endif /* count number of non-zeros in the resultant problem */ lpp->nnz = lpx_get_num_nz(prob); /* internal data structures that represnts the resultant problem are no longer needed, so free them */ dmp_delete_pool(lpp->row_pool), lpp->row_pool = NULL; dmp_delete_pool(lpp->col_pool), lpp->col_pool = NULL; dmp_delete_pool(lpp->aij_pool), lpp->aij_pool = NULL; lpp->row_ptr = NULL, lpp->col_ptr = NULL; lpp->row_que = NULL, lpp->col_que = NULL; /* return a pointer to the built LP problem object */ return prob; }