예제 #1
0
static void parse_objective(struct dsa *dsa)
{     /* parse objective sense */
      int k, len;
      /* parse the keyword 'minimize' or 'maximize' */
      if (dsa->token == T_MINIMIZE)
         lpx_set_obj_dir(dsa->lp, LPX_MIN);
      else if (dsa->token == T_MAXIMIZE)
         lpx_set_obj_dir(dsa->lp, LPX_MAX);
      else
         xassert(dsa != dsa);
      scan_token(dsa);
      /* parse objective name */
      if (dsa->token == T_NAME && dsa->c == ':')
      {  /* objective name is followed by a colon */
         lpx_set_obj_name(dsa->lp, dsa->image);
         scan_token(dsa);
         xassert(dsa->token == T_COLON);
         scan_token(dsa);
      }
      else
      {  /* objective name is not specified; use default */
         lpx_set_obj_name(dsa->lp, "obj");
      }
      /* parse linear form */
      len = parse_linear_form(dsa);
      for (k = 1; k <= len; k++)
         lpx_set_obj_coef(dsa->lp, dsa->ind[k], dsa->val[k]);
      return;
}
예제 #2
0
int main(void)
{     LPX *lp;
      int ia[1+1000], ja[1+1000];
      double ar[1+1000], Z, x1, x2, x3;
s1:   lp = lpx_create_prob();
s2:   lpx_set_prob_name(lp, "sample");
s3:   lpx_set_obj_dir(lp, LPX_MAX);
s4:   lpx_add_rows(lp, 3);
s5:   lpx_set_row_name(lp, 1, "p");
s6:   lpx_set_row_bnds(lp, 1, LPX_UP, 0.0, 100.0);
s7:   lpx_set_row_name(lp, 2, "q");
s8:   lpx_set_row_bnds(lp, 2, LPX_UP, 0.0, 600.0);
s9:   lpx_set_row_name(lp, 3, "r");
s10:  lpx_set_row_bnds(lp, 3, LPX_UP, 0.0, 300.0);
s11:  lpx_add_cols(lp, 3);
s12:  lpx_set_col_name(lp, 1, "x1");
s13:  lpx_set_col_bnds(lp, 1, LPX_LO, 0.0, 0.0);
s14:  lpx_set_obj_coef(lp, 1, 10.0);
s15:  lpx_set_col_name(lp, 2, "x2");
s16:  lpx_set_col_bnds(lp, 2, LPX_LO, 0.0, 0.0);
s17:  lpx_set_obj_coef(lp, 2, 6.0);
s18:  lpx_set_col_name(lp, 3, "x3");
s19:  lpx_set_col_bnds(lp, 3, LPX_LO, 0.0, 0.0);
s20:  lpx_set_obj_coef(lp, 3, 4.0);
s21:  ia[1] = 1, ja[1] = 1, ar[1] =  1.0; /* a[1,1] =  1 */
s22:  ia[2] = 1, ja[2] = 2, ar[2] =  1.0; /* a[1,2] =  1 */
s23:  ia[3] = 1, ja[3] = 3, ar[3] =  1.0; /* a[1,3] =  1 */
s24:  ia[4] = 2, ja[4] = 1, ar[4] = 10.0; /* a[2,1] = 10 */
s25:  ia[5] = 3, ja[5] = 1, ar[5] =  2.0; /* a[3,1] =  2 */
s26:  ia[6] = 2, ja[6] = 2, ar[6] =  4.0; /* a[2,2] =  4 */
s27:  ia[7] = 3, ja[7] = 2, ar[7] =  2.0; /* a[3,2] =  2 */
s28:  ia[8] = 2, ja[8] = 3, ar[8] =  5.0; /* a[2,3] =  5 */
s29:  ia[9] = 3, ja[9] = 3, ar[9] =  6.0; /* a[3,3] =  6 */
s30:  lpx_load_matrix(lp, 9, ia, ja, ar);
s31:  lpx_simplex(lp);
s32:  Z = lpx_get_obj_val(lp);
s33:  x1 = lpx_get_col_prim(lp, 1);
s34:  x2 = lpx_get_col_prim(lp, 2);
s35:  x3 = lpx_get_col_prim(lp, 3);
s36:  printf("\nZ = %g; x1 = %g; x2 = %g; x3 = %g\n", Z, x1, x2, x3);
s37:  lpx_delete_prob(lp);
      return 0;
}
예제 #3
0
int GLPKLoadObjective(LinEquation* InEquation, bool Max) {
	if (InEquation->QuadCoeff.size() > 0) {
		FErrorFile() << "GLPK solver cannot accept quadratic objectives." << endl;
		FlushErrorFile();
		return FAIL;
	}

	if (GLPKModel == NULL) {
		FErrorFile() << "Could not add objective because GLPK object does not exist." << endl;
		FlushErrorFile();
		return FAIL;
	}

	if (!Max) {
		lpx_set_obj_dir(GLPKModel, LPX_MIN);
	} else {
		lpx_set_obj_dir(GLPKModel, LPX_MAX);
	}
	
	int NumColumns = lpx_get_num_cols(GLPKModel);

	for (int i=0; i < NumColumns; i++) {
		lpx_set_obj_coef(GLPKModel, i+1, 0);
	}
	for (int i=0; i < int(InEquation->Variables.size()); i++) {
		if (NumColumns > InEquation->Variables[i]->Index) {
			lpx_set_obj_coef(GLPKModel, InEquation->Variables[i]->Index+1, InEquation->Coefficient[i]);
		} else {
			FErrorFile() << "Variable index specified in objective was out of the range of variables added to the GLPK problem object." << endl;
			FlushErrorFile();
			return FAIL;
		}
	}

	return SUCCESS;
}
예제 #4
0
int lpx_integer(LPX *mip)
{     int m = lpx_get_num_rows(mip);
      int n = lpx_get_num_cols(mip);
      MIPTREE *tree;
      LPX *lp;
      int ret, i, j, stat, type, len, *ind;
      double lb, ub, coef, *val;
#if 0
      /* the problem must be of MIP class */
      if (lpx_get_class(mip) != LPX_MIP)
      {  print("lpx_integer: problem is not of MIP class");
         ret = LPX_E_FAULT;
         goto done;
      }
#endif
      /* an optimal solution of LP relaxation must be known */
      if (lpx_get_status(mip) != LPX_OPT)
      {  print("lpx_integer: optimal solution of LP relaxation required"
            );
         ret = LPX_E_FAULT;
         goto done;
      }
      /* bounds of all integer variables must be integral */
      for (j = 1; j <= n; j++)
      {  if (lpx_get_col_kind(mip, j) != LPX_IV) continue;
         type = lpx_get_col_type(mip, j);
         if (type == LPX_LO || type == LPX_DB || type == LPX_FX)
         {  lb = lpx_get_col_lb(mip, j);
            if (lb != floor(lb))
            {  print("lpx_integer: integer column %d has non-integer lo"
                  "wer bound or fixed value %g", j, lb);
               ret = LPX_E_FAULT;
               goto done;
            }
         }
         if (type == LPX_UP || type == LPX_DB)
         {  ub = lpx_get_col_ub(mip, j);
            if (ub != floor(ub))
            {  print("lpx_integer: integer column %d has non-integer up"
                  "per bound %g", j, ub);
               ret = LPX_E_FAULT;
               goto done;
            }
         }
      }
      /* it seems all is ok */
      if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 2)
         print("Integer optimization begins...");
      /* create the branch-and-bound tree */
      tree = mip_create_tree(m, n, lpx_get_obj_dir(mip));
      /* set up column kinds */
      for (j = 1; j <= n; j++)
         tree->int_col[j] = (lpx_get_col_kind(mip, j) == LPX_IV);
      /* access the LP relaxation template */
      lp = tree->lp;
      /* set up the objective function */
      tree->int_obj = 1;
      for (j = 0; j <= tree->n; j++)
      {  coef = lpx_get_obj_coef(mip, j);
         lpx_set_obj_coef(lp, j, coef);
         if (coef != 0.0 && !(tree->int_col[j] && coef == floor(coef)))
            tree->int_obj = 0;
      }
      if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 2 && tree->int_obj)
         print("Objective function is integral");
      /* set up the constraint matrix */
      ind = xcalloc(1+n, sizeof(int));
      val = xcalloc(1+n, sizeof(double));
      for (i = 1; i <= m; i++)
      {  len = lpx_get_mat_row(mip, i, ind, val);
         lpx_set_mat_row(lp, i, len, ind, val);
      }
      xfree(ind);
      xfree(val);
      /* set up scaling matrices */
      for (i = 1; i <= m; i++)
         lpx_set_rii(lp, i, lpx_get_rii(mip, i));
      for (j = 1; j <= n; j++)
         lpx_set_sjj(lp, j, lpx_get_sjj(mip, j));
      /* revive the root subproblem */
      mip_revive_node(tree, 1);
      /* set up row attributes for the root subproblem */
      for (i = 1; i <= m; i++)
      {  type = lpx_get_row_type(mip, i);
         lb = lpx_get_row_lb(mip, i);
         ub = lpx_get_row_ub(mip, i);
         stat = lpx_get_row_stat(mip, i);
         lpx_set_row_bnds(lp, i, type, lb, ub);
         lpx_set_row_stat(lp, i, stat);
      }
      /* set up column attributes for the root subproblem */
      for (j = 1; j <= n; j++)
      {  type = lpx_get_col_type(mip, j);
         lb = lpx_get_col_lb(mip, j);
         ub = lpx_get_col_ub(mip, j);
         stat = lpx_get_col_stat(mip, j);
         lpx_set_col_bnds(lp, j, type, lb, ub);
         lpx_set_col_stat(lp, j, stat);
      }
      /* freeze the root subproblem */
      mip_freeze_node(tree);
      /* inherit some control parameters and statistics */
      tree->msg_lev = lpx_get_int_parm(mip, LPX_K_MSGLEV);
      if (tree->msg_lev > 2) tree->msg_lev = 2;
      tree->branch = lpx_get_int_parm(mip, LPX_K_BRANCH);
      tree->btrack = lpx_get_int_parm(mip, LPX_K_BTRACK);
      tree->tol_int = lpx_get_real_parm(mip, LPX_K_TOLINT);
      tree->tol_obj = lpx_get_real_parm(mip, LPX_K_TOLOBJ);
      tree->tm_lim = lpx_get_real_parm(mip, LPX_K_TMLIM);
      lpx_set_int_parm(lp, LPX_K_BFTYPE, lpx_get_int_parm(mip,
         LPX_K_BFTYPE));
      lpx_set_int_parm(lp, LPX_K_PRICE, lpx_get_int_parm(mip,
         LPX_K_PRICE));
      lpx_set_real_parm(lp, LPX_K_RELAX, lpx_get_real_parm(mip,
         LPX_K_RELAX));
      lpx_set_real_parm(lp, LPX_K_TOLBND, lpx_get_real_parm(mip,
         LPX_K_TOLBND));
      lpx_set_real_parm(lp, LPX_K_TOLDJ, lpx_get_real_parm(mip,
         LPX_K_TOLDJ));
      lpx_set_real_parm(lp, LPX_K_TOLPIV, lpx_get_real_parm(mip,
         LPX_K_TOLPIV));
      lpx_set_int_parm(lp, LPX_K_ITLIM, lpx_get_int_parm(mip,
         LPX_K_ITLIM));
      lpx_set_int_parm(lp, LPX_K_ITCNT, lpx_get_int_parm(mip,
         LPX_K_ITCNT));
      /* reset the status of MIP solution */
      lpx_put_mip_soln(mip, LPX_I_UNDEF, NULL, NULL);
      /* try solving the problem */
      ret = mip_driver(tree);
      /* if an integer feasible solution has been found, copy it to the
         MIP problem object */
      if (tree->found)
         lpx_put_mip_soln(mip, LPX_I_FEAS, &tree->mipx[0],
            &tree->mipx[m]);
      /* copy back statistics about spent resources */
      lpx_set_real_parm(mip, LPX_K_TMLIM, tree->tm_lim);
      lpx_set_int_parm(mip, LPX_K_ITLIM, lpx_get_int_parm(lp,
         LPX_K_ITLIM));
      lpx_set_int_parm(mip, LPX_K_ITCNT, lpx_get_int_parm(lp,
         LPX_K_ITCNT));
      /* analyze exit code reported by the mip driver */
      switch (ret)
      {  case MIP_E_OK:
            if (tree->found)
            {  if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 3)
                  print("INTEGER OPTIMAL SOLUTION FOUND");
               lpx_put_mip_soln(mip, LPX_I_OPT, NULL, NULL);
            }
            else
            {  if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 3)
                  print("PROBLEM HAS NO INTEGER FEASIBLE SOLUTION");
               lpx_put_mip_soln(mip, LPX_I_NOFEAS, NULL, NULL);
            }
            ret = LPX_E_OK;
            break;
         case MIP_E_ITLIM:
            if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 3)
               print("ITERATIONS LIMIT EXCEEDED; SEARCH TERMINATED");
            ret = LPX_E_ITLIM;
            break;
         case MIP_E_TMLIM:
            if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 3)
               print("TIME LIMIT EXCEEDED; SEARCH TERMINATED");
            ret = LPX_E_TMLIM;
            break;
         case MIP_E_ERROR:
            if (lpx_get_int_parm(mip, LPX_K_MSGLEV) >= 1)
               print("lpx_integer: cannot solve current LP relaxation");
            ret = LPX_E_SING;
            break;
         default:
            xassert(ret != ret);
      }
      /* delete the branch-and-bound tree */
      mip_delete_tree(tree);
done: /* return to the application program */
      return ret;
}
예제 #5
0
LPX *lpx_extract_prob(void *_mpl)
{     MPL *mpl = _mpl;
      LPX *lp;
      int m, n, i, j, t, kind, type, len, *ind;
      double lb, ub, *val;
      /* create problem instance */
      lp = lpx_create_prob();
      /* set problem name */
      lpx_set_prob_name(lp, mpl_get_prob_name(mpl));
      /* build rows (constraints) */
      m = mpl_get_num_rows(mpl);
      if (m > 0) lpx_add_rows(lp, m);
      for (i = 1; i <= m; i++)
      {  /* set row name */
         lpx_set_row_name(lp, i, mpl_get_row_name(mpl, i));
         /* set row bounds */
         type = mpl_get_row_bnds(mpl, i, &lb, &ub);
         switch (type)
         {  case MPL_FR: type = LPX_FR; break;
            case MPL_LO: type = LPX_LO; break;
            case MPL_UP: type = LPX_UP; break;
            case MPL_DB: type = LPX_DB; break;
            case MPL_FX: type = LPX_FX; break;
            default: insist(type != type);
         }
         if (type == LPX_DB && fabs(lb - ub) < 1e-9 * (1.0 + fabs(lb)))
         {  type = LPX_FX;
            if (fabs(lb) <= fabs(ub)) ub = lb; else lb = ub;
         }
         lpx_set_row_bnds(lp, i, type, lb, ub);
         /* warn about non-zero constant term */
         if (mpl_get_row_c0(mpl, i) != 0.0)
            print("lpx_read_model: row %s; constant term %.12g ignored",
               mpl_get_row_name(mpl, i), mpl_get_row_c0(mpl, i));
      }
      /* build columns (variables) */
      n = mpl_get_num_cols(mpl);
      if (n > 0) lpx_add_cols(lp, n);
      for (j = 1; j <= n; j++)
      {  /* set column name */
         lpx_set_col_name(lp, j, mpl_get_col_name(mpl, j));
         /* set column kind */
         kind = mpl_get_col_kind(mpl, j);
         switch (kind)
         {  case MPL_NUM:
               break;
            case MPL_INT:
            case MPL_BIN:
               lpx_set_class(lp, LPX_MIP);
               lpx_set_col_kind(lp, j, LPX_IV);
               break;
            default:
               insist(kind != kind);
         }
         /* set column bounds */
         type = mpl_get_col_bnds(mpl, j, &lb, &ub);
         switch (type)
         {  case MPL_FR: type = LPX_FR; break;
            case MPL_LO: type = LPX_LO; break;
            case MPL_UP: type = LPX_UP; break;
            case MPL_DB: type = LPX_DB; break;
            case MPL_FX: type = LPX_FX; break;
            default: insist(type != type);
         }
         if (kind == MPL_BIN)
         {  if (type == LPX_FR || type == LPX_UP || lb < 0.0) lb = 0.0;
            if (type == LPX_FR || type == LPX_LO || ub > 1.0) ub = 1.0;
            type = LPX_DB;
         }
         if (type == LPX_DB && fabs(lb - ub) < 1e-9 * (1.0 + fabs(lb)))
         {  type = LPX_FX;
            if (fabs(lb) <= fabs(ub)) ub = lb; else lb = ub;
         }
         lpx_set_col_bnds(lp, j, type, lb, ub);
      }
      /* load the constraint matrix */
      ind = ucalloc(1+n, sizeof(int));
      val = ucalloc(1+n, sizeof(double));
      for (i = 1; i <= m; i++)
      {  len = mpl_get_mat_row(mpl, i, ind, val);
         lpx_set_mat_row(lp, i, len, ind, val);
      }
      /* build objective function (the first objective is used) */
      for (i = 1; i <= m; i++)
      {  kind = mpl_get_row_kind(mpl, i);
         if (kind == MPL_MIN || kind == MPL_MAX)
         {  /* set objective name */
            lpx_set_obj_name(lp, mpl_get_row_name(mpl, i));
            /* set optimization direction */
            lpx_set_obj_dir(lp, kind == MPL_MIN ? LPX_MIN : LPX_MAX);
            /* set constant term */
            lpx_set_obj_coef(lp, 0, mpl_get_row_c0(mpl, i));
            /* set objective coefficients */
            len = mpl_get_mat_row(mpl, i, ind, val);
            for (t = 1; t <= len; t++)
               lpx_set_obj_coef(lp, ind[t], val[t]);
            break;
         }
      }
      /* free working arrays */
      ufree(ind);
      ufree(val);
      /* bring the problem object to the calling program */
      return lp;
}
예제 #6
0
LPX *ipp_build_prob(IPP *ipp)
{     LPX *prob;
      IPPROW *row;
      IPPCOL *col;
      IPPAIJ *aij;
      int i, j, type, len, *ind;
      double *val;
      /* create problem object */
      prob = lpx_create_prob();
#if 0
      lpx_set_class(prob, LPX_MIP);
#endif
      /* the resultant problem should have the same optimization sense
         as the original problem */
      lpx_set_obj_dir(prob, ipp->orig_dir);
      /* set the constant term of the objective function */
      lpx_set_obj_coef(prob, 0,
         ipp->orig_dir == LPX_MIN ? + ipp->c0 : - ipp->c0);
      /* copy rows of the resultant problem */
      for (row = ipp->row_ptr; row != NULL; row = row->next)
      {  i = lpx_add_rows(prob, 1);
         if (row->lb == -DBL_MAX && row->ub == +DBL_MAX)
            type = LPX_FR;
         else if (row->ub == +DBL_MAX)
            type = LPX_LO;
         else if (row->lb == -DBL_MAX)
            type = LPX_UP;
         else if (row->lb != row->ub)
            type = LPX_DB;
         else
            type = LPX_FX;
         lpx_set_row_bnds(prob, i, type, row->lb, row->ub);
         row->temp = i;
      }
      /* copy columns of the resultant problem */
      ind = xcalloc(1+lpx_get_num_rows(prob), sizeof(int));
      val = xcalloc(1+lpx_get_num_rows(prob), sizeof(double));
      for (col = ipp->col_ptr; col != NULL; col = col->next)
      {  j = lpx_add_cols(prob, 1);
         if (col->i_flag) lpx_set_col_kind(prob, j, LPX_IV);
         if (col->lb == -DBL_MAX && col->ub == +DBL_MAX)
            type = LPX_FR;
         else if (col->ub == +DBL_MAX)
            type = LPX_LO;
         else if (col->lb == -DBL_MAX)
            type = LPX_UP;
         else if (col->lb != col->ub)
            type = LPX_DB;
         else
            type = LPX_FX;
         lpx_set_col_bnds(prob, j, type, col->lb, col->ub);
         lpx_set_obj_coef(prob, j,
            ipp->orig_dir == LPX_MIN ? + col->c : - col->c);
         /* copy constraint coefficients */
         len = 0;
         for (aij = col->ptr; aij != NULL; aij = aij->c_next)
         {  len++;
            ind[len] = aij->row->temp;
            val[len] = aij->val;
         }
         lpx_set_mat_col(prob, j, len, ind, val);
      }
      xfree(ind);
      xfree(val);
      return prob;
}
예제 #7
0
파일: sc.cpp 프로젝트: ChrisMoreton/Test3
int TankBlendOptimiser::go()
{
  lp = lpx_create_prob();

  lpx_set_int_parm(lp, LPX_K_MSGLEV, 0); // 0 = no output
  lpx_set_int_parm(lp, LPX_K_SCALE, 3); // 3 = geometric mean scaling, then equilibration scaling
  lpx_set_int_parm(lp, LPX_K_DUAL, 1); // 1 = if initial basic solution is dual feasible, use the dual simplex
  lpx_set_int_parm(lp, LPX_K_ROUND, 1); // 1 = replace tiny primal and dual values by exact zero

  lpx_set_int_parm(lp, LPX_K_PRESOL, 1); // 1 = use the built-in presolver.

  lpx_set_prob_name(lp, "Blend Optimiser");
  lpx_set_obj_dir(lp, LPX_MIN);

  // Columns...
  
  lpx_add_cols(lp, cols);

  for (int i=0; i<tanks; i++) // 0.0 < x < tankMax
  {
    if (tankMax[i]>0.0)
      lpx_set_col_bnds(lp, col, LPX_DB, 0.0, tankMax[i]);
    else
      lpx_set_col_bnds(lp, col, LPX_FX, 0.0, 0.0);
    col++;
  }

  for (int i=0; i<tanks; i++) // 0.0 < slackTankLow
  {
    lpx_set_col_bnds(lp,  col, LPX_LO, 0.0, 0.0);
    lpx_set_obj_coef(lp,  col, tankLowPenalty[i]); // penalty weight.
    col++;
  }

  for (int i=0; i<tanks; i++) // 0.0 < slackTankHigh
  {
    lpx_set_col_bnds(lp,  col, LPX_LO, 0.0, 0.0);
    lpx_set_obj_coef(lp,  col, tankHighPenalty[i]); // penalty weight.
    col++;
  }

  for (int i=0; i<assays; i++) // 0.0 < slackAssayLow
  {
    lpx_set_col_bnds(lp,  col, LPX_LO, 0.0, 0.0);
    lpx_set_obj_coef(lp,  col, assayLowPenalty[i]); // penalty weight.
    col++;
  }

  for (int i=0; i<assays; i++) // 0.0 < slackAssayHigh
  {
    lpx_set_col_bnds(lp,  col, LPX_LO, 0.0, 0.0);
    lpx_set_obj_coef(lp,  col, assayHighPenalty[i]); // penalty weight.
    col++;
  }

  for (int i=0; i<assays; i++) // 0.0 < slackAssayRatioLow
    for (int j=0; j<assays; j++)
    {
      lpx_set_col_bnds(lp,  col, LPX_LO, 0.0, 0.0);
      lpx_set_obj_coef(lp,  col, assayRatioLowPenalty[i][j]); // penalty weight.
      col++;
    }

  for (int i=0; i<assays; i++) // 0.0 < slackAssayRatioHigh
    for (int j=0; j<assays; j++)
    {
      lpx_set_col_bnds(lp,  col, LPX_LO, 0.0, 0.0);
      lpx_set_obj_coef(lp,  col, assayRatioHighPenalty[i][j]); // penalty weight.
      col++;
    }

  // Rows...

  lpx_add_rows(lp, rows);

  
  { // x1 + ... + xn = 1.0
  lpx_set_row_bnds(lp, row, LPX_FX, 1.0, 1.0);
  for (int i=0; i<tanks; i++)
    ia[constraint] = row, ja[constraint] = 1+i, ar[constraint++] =  1.0;
  row++;
  }

  for (int i=0; i<tanks; i++) // tankLow < tank + slackTankLow
  {
    lpx_set_row_bnds(lp, row, LPX_LO, tankLow[i], 0.0);
    ia[constraint] = row, ja[constraint] = 1+i, ar[constraint++] = 1.0;
    ia[constraint] = row, ja[constraint] = 1+i+tanks, ar[constraint++] = 1.0;
    row++;
  }  

  for (int i=0; i<tanks; i++) // tank - slackTankHigh < tankHigh
  {
    lpx_set_row_bnds(lp, row, LPX_UP, 0.0, tankHigh[i]);
    ia[constraint] = row, ja[constraint] = 1+i, ar[constraint++] = 1.0;
    ia[constraint] = row, ja[constraint] = 1+i+2*tanks, ar[constraint++] = -1.0;
    row++;
  }  

  for (int i=0; i<assays; i++) // assayLow < assay + slackAssayLow
  {
    lpx_set_row_bnds(lp, row, LPX_LO, assayLow[i], 0.0);
    for (int j=0; j<tanks; j++)
    {
      if (assayConc[i][j]>0.0)
        ia[constraint] = row, ja[constraint] = 1+j, ar[constraint++] = assayConc[i][j];
    }
    ia[constraint] = row, ja[constraint] = 1+i+3*tanks, ar[constraint++] = 1.0;
    row++;
  }  

  for (int i=0; i<assays; i++) // assay - slackAssayHigh < assayHigh
  {
    lpx_set_row_bnds(lp, row, LPX_UP, 0.0, assayHigh[i]);
    for (int j=0; j<tanks; j++)
    {
      if (assayConc[i][j]>0.0)
        ia[constraint] = row, ja[constraint] = 1+j, ar[constraint++] = assayConc[i][j];
    }
    ia[constraint] = row, ja[constraint] = 1+i+3*tanks+assays, ar[constraint++] = -1.0;
    row++;
  }  

  for (int i=0; i<assays; i++) // 0 < assayNum - assayRatioLow*assayDen + slackAssayLow
    for (int j=0; j<assays; j++)
    {
      if (assayRatioLowEnabled[i][j])
        lpx_set_row_bnds(lp, row, LPX_LO, 0.0, 0.0);
      else
        lpx_set_row_bnds(lp, row, LPX_FR, 0.0, 0.0);
      for (int k=0; k<tanks; k++)
      {
        if (assayConc[i][k] - assayRatioLow[i][j]*assayConc[j][k]!=0.0)
          ia[constraint] = row, ja[constraint] = 1+k, ar[constraint++] = assayConc[i][k] - assayRatioLow[i][j]*assayConc[j][k];
      }
      ia[constraint] = row, ja[constraint] = 1+i*assays+j+3*tanks+2*assays, ar[constraint++] = 1.0;
      row++;
    }  

  for (int i=0; i<assays; i++) // assayNum - assayRatioHigh*assayDen - slackAssayHigh < 0
    for (int j=0; j<assays; j++)
    {
      if (assayRatioHighEnabled[i][j])
        lpx_set_row_bnds(lp, row, LPX_UP, 0.0, 0.0);
      else
        lpx_set_row_bnds(lp, row, LPX_FR, 0.0, 0.0);
      for (int k=0; k<tanks; k++)
      {
        if (assayConc[i][k] - assayRatioHigh[i][j]*assayConc[j][k]!=0.0)
          ia[constraint] = row, ja[constraint] = 1+k, ar[constraint++] = assayConc[i][k] - assayRatioHigh[i][j]*assayConc[j][k];
      }
      ia[constraint] = row, ja[constraint] = 1+i*assays+j+3*tanks+2*assays+assays*assays, ar[constraint++] = -1.0;
      row++;
    }  

  lpx_load_matrix(lp, constraint-1, ia, ja, ar);
  int exitCode = lpx_simplex(lp);

  for (int i=0; i<tanks; i++)    
    tank[i] = lpx_get_col_prim(lp, 1+i);

  for (int i=0; i<assays; i++)
  {
    assay[i] = 0.0;
    for (int j=0; j<tanks; j++)
      assay[i] += lpx_get_col_prim(lp, 1+j)*assayConc[i][j];
  }

  return exitCode;

  // LPX_E_OK        200   /* success */
  // LPX_E_FAULT     204   /* unable to start the search */
  // LPX_E_ITLIM     207   /* iterations limit exhausted */
  // LPX_E_TMLIM     208   /* time limit exhausted */
  // LPX_E_SING      211   /* problems with basis matrix */
  // LPX_E_NOPFS     213   /* no primal feas. sol. (LP presolver) */
  // LPX_E_NODFS     214   /* no dual feas. sol. (LP presolver) */

  // Usually:
  // LPX_E_OK = Solution found.
  // LPX_E_NOPFS = Sum-to-1.0 or tank-max constraints not met.
  // Others = Some major fault has occurred.
}
void Gspan::lpboost(){
  std::cout << "in lpboost" << std::endl;
  const char *out = "model";
  //initialize
  unsigned int gnum = gdata.size(); 
  weight.resize(gnum);
  std::fill(weight.begin(),weight.end(),1.0);
  corlab.resize(gnum);
  for(unsigned int gid=0;gid<gnum;++gid){
    corlab[gid]=gdata[gid].class_label;
  }
  wbias=0.0;
  Hypothesis model;
  first_flag=true;
  need_to_cooc = false;
  cooc_is_opt = false;
  
  std::cout.setf(std::ios::fixed,std::ios::floatfield);
  std::cout.precision(8);
  //Initialize GLPK

  int* index = new int[gnum+2]; double* value = new double[gnum+2];
  LPX* lp = lpx_create_prob();
		       
  lpx_add_cols(lp, gnum+1); // set u_1,...u_l, beta
  for (unsigned int i = 0; i < gnum; ++i){
    lpx_set_col_bnds(lp, COL(i), LPX_DB, 0.0, 1/(nu*gnum));
    lpx_set_obj_coef(lp, COL(i), 0); // u
  }
  lpx_set_col_bnds(lp, COL(gnum), LPX_FR, 0.0, 0.0);
  lpx_set_obj_coef(lp, COL(gnum), 1); // beta
  lpx_set_obj_dir(lp, LPX_MIN); //optimization direction: min objective
		       
  lpx_add_rows(lp,1); // Add one row constraint s.t. sum_u == 1
  for (unsigned int i = 0; i < gnum; ++i){
    index[i+1] = COL(i);
    value[i+1] = 1;
  }
  lpx_set_mat_row(lp, ROW(0), gnum, index, value);
  lpx_set_row_bnds(lp, ROW(0), LPX_FX, 1, 1);
		       
  double beta = 0.0;
  double margin = 0.0;
  
  //main loop
  for(unsigned int itr=0;itr < max_itr;++itr){
    std::cout <<"itrator : "<<itr+1<<std::endl;
    if(itr==coocitr) need_to_cooc=true;
    opt_pat.gain=0.0;//gain init
    opt_pat.size=0;
    opt_pat.locsup.resize(0);
    pattern.resize(0);
    opt_pat.dfscode="";
    Crun();
    //std::cout<<opt_pat.gain<<"  :"<<opt_pat.dfscode<<std::endl;
    std::vector <int>     result (gnum);
    int _y;
    vector<int> locvec;
    std::string dfscode;
    if(cooc_is_opt == false){
      _y = opt_pat.gain > 0 ? +1 :-1;
      locvec =opt_pat.locsup;
      dfscode=opt_pat.dfscode;
    }else{
      _y = opt_pat_cooc.gain > 0 ? +1 :-1;
      locvec =opt_pat_cooc.locsup;
      dfscode=opt_pat_cooc.dfscode[0]+"\t"+opt_pat_cooc.dfscode[1];//=opt_pat_cooc.dfscode;
    }
    model.flag.resize(itr+1);
    model.flag[itr]=_y;

    std::fill (result.begin (), result.end(), -_y);
      
    for (unsigned int i = 0; i < locvec.size(); ++i) result[locvec[i]] = _y;
    double uyh = 0;
    for (unsigned int i = 0; i < gnum;  ++i) { // summarizing hypotheses
      uyh += weight[i]*corlab[i]*result[i];
    }
      
    std::cout << "Stopping criterion: " << uyh << "<=?" << beta << " + " << conv_epsilon << std::endl;

    if( (uyh <= beta + conv_epsilon ) ){
      std::cout << "*********************************" << std::endl;
      std::cout << "Convergence ! at iteration: " << itr+1 << std::endl;
      std::cout << "*********************************" << std::endl;
      if(!end_of_cooc || need_to_cooc == true) break;
      need_to_cooc = true;
    }
      
    lpx_add_rows(lp,1); // Add one row constraint s.t. sum( uyh - beta ) <= 0
    for (unsigned int i = 0; i < gnum; ++i){
      index[i+1] = COL(i);
      value[i+1] = result[i] * corlab[i];
    }
    index[gnum+1] = COL(gnum);
    value[gnum+1] = -1;
    lpx_set_mat_row(lp, ROW(itr+1), gnum+1, index, value);
    lpx_set_row_bnds(lp, ROW(itr+1), LPX_UP, 0.0, 0.0);

    model.weight.push_back(0);
    model.dfs_vector.push_back(dfscode);
      
    lpx_simplex(lp); 
    beta = lpx_get_obj_val(lp);
    for (unsigned int i = 0; i < gnum; ++i){
      double new_weight;
      new_weight = lpx_get_col_prim(lp, COL(i));
      if(new_weight < 0) new_weight = 0; // weight > 0
      weight[i] = new_weight;
    }
    margin = lpx_get_row_dual(lp, ROW(0));
    double margin_error = 0.0;
    for (unsigned int i = 0; i < gnum;  ++i) { // summarizing hypotheses
      if (corlab[i]*result[i] < margin){
	++margin_error;
      }
    }
    margin_error /= gnum;

    //next rule is estimated
    wbias = 0.0;
    for (unsigned int i = 0; i < gnum; ++i){
      wbias += corlab[i] * weight[i];
    }
    std::ofstream os (out);
    if (! os) {
      std::cerr << "FATAL: Cannot open output file: " << out << std::endl;
      return;
    }
    os.setf(std::ios::fixed,std::ios::floatfield);
    os.precision(12);
    for (unsigned int r = 0; r < itr; ++r){
      model.weight[r] = - lpx_get_row_dual(lp, ROW(r+1));
      if(model.weight[r] < 0) model.weight[r] = 0; // alpha > 0
      os << model.flag[r] * model.weight[r] << "\t" << model.dfs_vector[r] << std::endl;
      std::cout << model.flag[r] * model.weight[r] << "\t" << model.dfs_vector[r] << std::endl;
    }
    std::cout << "After iteration " << itr+1 << std::endl;
    std::cout << "Margin: " << margin << std::endl;
    std::cout << "Margin Error: " << margin_error << std::endl;
  }
  std::cout << "end lpboost" << std::endl;

}
예제 #9
0
LPX *lpp_build_prob(LPP *lpp)
{     LPX *prob;
      LPPROW *row;
      LPPCOL *col;
      int i, j, typx;
      /* count number of rows and columns in the resultant problem */
      lpp->m = lpp->n = 0;
      for (row = lpp->row_ptr; row != NULL; row = row->next) lpp->m++;
      for (col = lpp->col_ptr; col != NULL; col = col->next) lpp->n++;
      /* allocate two arrays to save reference numbers assigned to rows
         and columns of the resultant problem */
      lpp->row_ref = xcalloc(1+lpp->m, sizeof(int));
      lpp->col_ref = xcalloc(1+lpp->n, sizeof(int));
      /* create LP problem object */
      prob = lpx_create_prob();
      /* the resultant problem should have the same optimization sense
         as the original problem */
      lpx_set_obj_dir(prob, lpp->orig_dir);
      /* set the constant term of the objective function */
      lpx_set_obj_coef(prob, 0,
         lpp->orig_dir == LPX_MIN ? + lpp->c0 : - lpp->c0);
      /* create rows of the resultant problem */
#if 0 /* 03/VII-2008 */
      xassert(lpp->m > 0);
#endif
      if (lpp->m > 0)
         lpx_add_rows(prob, lpp->m);
      for (i = 1, row = lpp->row_ptr; i <= lpp->m; i++, row = row->next)
      {  xassert(row != NULL);
         lpp->row_ref[i] = row->i;
         row->i = i;
         if (row->lb == -DBL_MAX && row->ub == +DBL_MAX)
            typx = LPX_FR;
         else if (row->ub == +DBL_MAX)
            typx = LPX_LO;
         else if (row->lb == -DBL_MAX)
            typx = LPX_UP;
         else if (row->lb != row->ub)
            typx = LPX_DB;
         else
            typx = LPX_FX;
         lpx_set_row_bnds(prob, i, typx, row->lb, row->ub);
      }
      xassert(row == NULL);
      /* create columns of the resultant problem */
#if 0 /* 03/VII-2008 */
      xassert(lpp->n > 0);
#endif
      if (lpp->n > 0)
         lpx_add_cols(prob, lpp->n);
      for (j = 1, col = lpp->col_ptr; j <= lpp->n; j++, col = col->next)
      {  xassert(col != NULL);
         lpp->col_ref[j] = col->j;
         col->j = j;
         if (col->lb == -DBL_MAX && col->ub == +DBL_MAX)
            typx = LPX_FR;
         else if (col->ub == +DBL_MAX)
            typx = LPX_LO;
         else if (col->lb == -DBL_MAX)
            typx = LPX_UP;
         else if (col->lb != col->ub)
            typx = LPX_DB;
         else
            typx = LPX_FX;
         lpx_set_col_bnds(prob, j, typx, col->lb, col->ub);
         lpx_set_obj_coef(prob, j,
            lpp->orig_dir == LPX_MIN ? + col->c : - col->c);
      }
      xassert(col == NULL);
      /* create the constraint matrix of the resultant problem */
#if 0
      info.lpp = lpp;
      info.row = NULL;
      info.aij = NULL;
      lpx_load_mat(prob, &info, next_aij);
#else
      {  LPPAIJ *aij;
         int len, *ind;
         double *val;
         ind = xcalloc(1+lpp->n, sizeof(int));
         val = xcalloc(1+lpp->n, sizeof(double));
         for (row = lpp->row_ptr; row != NULL; row = row->next)
         {  len = 0;
            for (aij = row->ptr; aij != NULL; aij = aij->r_next)
               len++, ind[len] = aij->col->j, val[len] = aij->val;
            lpx_set_mat_row(prob, row->i, len, ind, val);
         }
         xfree(ind);
         xfree(val);
      }
#endif
      /* count number of non-zeros in the resultant problem */
      lpp->nnz = lpx_get_num_nz(prob);
      /* internal data structures that represnts the resultant problem
         are no longer needed, so free them */
      dmp_delete_pool(lpp->row_pool), lpp->row_pool = NULL;
      dmp_delete_pool(lpp->col_pool), lpp->col_pool = NULL;
      dmp_delete_pool(lpp->aij_pool), lpp->aij_pool = NULL;
      lpp->row_ptr = NULL, lpp->col_ptr = NULL;
      lpp->row_que = NULL, lpp->col_que = NULL;
      /* return a pointer to the built LP problem object */
      return prob;
}