dgUnsigned32 dgHingeConstraint::JacobianDerivative (dgContraintDescritor& params) { dgMatrix matrix0; dgMatrix matrix1; dgVector angle (CalculateGlobalMatrixAndAngle (matrix0, matrix1)); m_angle = -angle.m_x; dgAssert (dgAbsf (1.0f - (matrix0.m_front % matrix0.m_front)) < dgFloat32 (1.0e-5f)); dgAssert (dgAbsf (1.0f - (matrix0.m_up % matrix0.m_up)) < dgFloat32 (1.0e-5f)); dgAssert (dgAbsf (1.0f - (matrix0.m_right % matrix0.m_right)) < dgFloat32 (1.0e-5f)); const dgVector& dir0 = matrix0.m_front; const dgVector& dir1 = matrix0.m_up; const dgVector& dir2 = matrix0.m_right; const dgVector& p0 = matrix0.m_posit; const dgVector& p1 = matrix1.m_posit; dgVector q0 (p0 + matrix0.m_front.Scale3(MIN_JOINT_PIN_LENGTH)); dgVector q1 (p1 + matrix1.m_front.Scale3(MIN_JOINT_PIN_LENGTH)); // dgAssert (((p1 - p0) % (p1 - p0)) < 1.0e-2f); dgPointParam pointDataP; dgPointParam pointDataQ; InitPointParam (pointDataP, m_stiffness, p0, p1); InitPointParam (pointDataQ, m_stiffness, q0, q1); CalculatePointDerivative (0, params, dir0, pointDataP, &m_jointForce[0]); CalculatePointDerivative (1, params, dir1, pointDataP, &m_jointForce[1]); CalculatePointDerivative (2, params, dir2, pointDataP, &m_jointForce[2]); CalculatePointDerivative (3, params, dir1, pointDataQ, &m_jointForce[3]); CalculatePointDerivative (4, params, dir2, pointDataQ, &m_jointForce[4]); dgInt32 ret = 5; if (m_jointAccelFnt) { dgJointCallbackParam axisParam; axisParam.m_accel = dgFloat32 (0.0f); axisParam.m_timestep = params.m_timestep; axisParam.m_minFriction = DG_MIN_BOUND; axisParam.m_maxFriction = DG_MAX_BOUND; if (m_jointAccelFnt (*this, &axisParam)) { if ((axisParam.m_minFriction > DG_MIN_BOUND) || (axisParam.m_maxFriction < DG_MAX_BOUND)) { params.m_forceBounds[5].m_low = axisParam.m_minFriction; params.m_forceBounds[5].m_upper = axisParam.m_maxFriction; params.m_forceBounds[5].m_normalIndex = DG_BILATERAL_FRICTION_CONSTRAINT; } CalculateAngularDerivative (5, params, dir0, m_stiffness, dgFloat32 (0.0f), &m_jointForce[5]); // params.m_jointAccel[5] = axisParam.m_accel; SetMotorAcceleration (5, axisParam.m_accel, params); ret = 6; } } return dgUnsigned32 (ret); }
dgUnsigned32 dgUniversalConstraint::JacobianDerivative (dgContraintDescritor& params) { dgInt32 ret; dgFloat32 sinAngle; dgFloat32 cosAngle; dgMatrix matrix0; dgMatrix matrix1; CalculateGlobalMatrixAndAngle (matrix0, matrix1); const dgVector& dir0 = matrix0.m_front; const dgVector& dir1 = matrix1.m_up; dgVector dir2 (dir0 * dir1); dgVector dir3 (dir2 * dir0); dir3 = dir3.Scale3 (dgRsqrt (dir3 % dir3)); const dgVector& p0 = matrix0.m_posit; const dgVector& p1 = matrix1.m_posit; dgVector q0 (p0 + dir3.Scale3(MIN_JOINT_PIN_LENGTH)); dgVector q1 (p1 + dir1.Scale3(MIN_JOINT_PIN_LENGTH)); dgPointParam pointDataP; dgPointParam pointDataQ; InitPointParam (pointDataP, m_stiffness, p0, p1); InitPointParam (pointDataQ, m_stiffness, q0, q1); CalculatePointDerivative (0, params, dir0, pointDataP, &m_jointForce[0]); CalculatePointDerivative (1, params, dir1, pointDataP, &m_jointForce[1]); CalculatePointDerivative (2, params, dir2, pointDataP, &m_jointForce[2]); CalculatePointDerivative (3, params, dir0, pointDataQ, &m_jointForce[3]); ret = 4; // dgVector sinAngle0 (matrix1.m_up * matrix0.m_up); // m_angle0 = dgAsin (ClampValue (sinAngle0 % dir0, -0.9999999f, 0.9999999f)); // if ((matrix0.m_up % matrix1.m_up) < dgFloat32 (0.0f)) { // m_angle0 = (m_angle0 >= dgFloat32 (0.0f)) ? dgPI - m_angle0 : dgPI + m_angle0; // } sinAngle = (matrix1.m_up * matrix0.m_up) % matrix0.m_front; cosAngle = matrix0.m_up % matrix1.m_up; // dgAssert (dgAbsf (m_angle0 - dgAtan2 (sinAngle, cosAngle)) < 1.0e-1f); m_angle0 = dgAtan2 (sinAngle, cosAngle); // dgVector sinAngle1 (matrix0.m_front * matrix1.m_front); // m_angle1 = dgAsin (ClampValue (sinAngle1 % dir1, -0.9999999f, 0.9999999f)); // if ((matrix0.m_front % matrix1.m_front) < dgFloat32 (0.0f)) { // m_angle1 = (m_angle1 >= dgFloat32 (0.0f)) ? dgPI - m_angle1 : dgPI + m_angle1; // } sinAngle = (matrix0.m_front * matrix1.m_front) % matrix1.m_up; cosAngle = matrix0.m_front % matrix1.m_front; // dgAssert (dgAbsf (m_angle1 - dgAtan2 (sinAngle, cosAngle)) < 1.0e-1f); m_angle1 = dgAtan2 (sinAngle, cosAngle); if (m_jointAccelFnt) { dgUnsigned32 code; dgJointCallbackParam axisParam[2]; // linear acceleration axisParam[0].m_accel = dgFloat32 (0.0f); axisParam[0].m_timestep = params.m_timestep; axisParam[0].m_minFriction = DG_MIN_BOUND; axisParam[0].m_maxFriction = DG_MAX_BOUND; // angular acceleration axisParam[1].m_accel = dgFloat32 (0.0f); axisParam[1].m_timestep = params.m_timestep; axisParam[1].m_minFriction = DG_MIN_BOUND; axisParam[1].m_maxFriction = DG_MAX_BOUND; code = m_jointAccelFnt (*this, axisParam); if (code & 1) { if ((axisParam[0].m_minFriction > DG_MIN_BOUND) || (axisParam[0].m_maxFriction < DG_MAX_BOUND)) { params.m_forceBounds[ret].m_low = axisParam[0].m_minFriction; params.m_forceBounds[ret].m_upper = axisParam[0].m_maxFriction; params.m_forceBounds[ret].m_normalIndex = DG_BILATERAL_FRICTION_CONSTRAINT; } // CalculatePointDerivative (ret, params, dir0, pointDataP, &m_jointForce[ret]); CalculateAngularDerivative (ret, params, dir0, m_stiffness, dgFloat32 (0.0f), &m_jointForce[ret]); //params.m_jointAccel[ret] = axisParam[0].m_accel; SetMotorAcceleration (ret, axisParam[0].m_accel, params); ret ++; } if (code & 2) { if ((axisParam[1].m_minFriction > DG_MIN_BOUND) || (axisParam[1].m_maxFriction < DG_MAX_BOUND)) { params.m_forceBounds[ret].m_low = axisParam[1].m_minFriction; params.m_forceBounds[ret].m_upper = axisParam[1].m_maxFriction; params.m_forceBounds[ret].m_normalIndex = DG_BILATERAL_FRICTION_CONSTRAINT; } CalculateAngularDerivative (ret, params, dir1, m_stiffness, dgFloat32 (0.0f), &m_jointForce[ret]); //params.m_jointAccel[ret] = axisParam[1].m_accel; SetMotorAcceleration (ret, axisParam[1].m_accel, params); ret ++; } } return dgUnsigned32 (ret); }
dgUnsigned32 dgCorkscrewConstraint::JacobianDerivative (dgContraintDescritor& params) { dgMatrix matrix0; dgMatrix matrix1; dgVector angle (CalculateGlobalMatrixAndAngle (matrix0, matrix1)); m_angle = -angle.m_x; m_posit = (matrix0.m_posit - matrix1.m_posit) % matrix0.m_front; matrix1.m_posit += matrix1.m_front.Scale3 (m_posit); dgAssert (dgAbsf (dgFloat32 (1.0f) - (matrix0.m_front % matrix0.m_front)) < dgFloat32 (1.0e-5f)); dgAssert (dgAbsf (dgFloat32 (1.0f) - (matrix0.m_up % matrix0.m_up)) < dgFloat32 (1.0e-5f)); dgAssert (dgAbsf (dgFloat32 (1.0f) - (matrix0.m_right % matrix0.m_right)) < dgFloat32 (1.0e-5f)); const dgVector& dir1 = matrix0.m_up; const dgVector& dir2 = matrix0.m_right; // const dgVector& p0 = matrix0.m_posit; // const dgVector& p1 = matrix1.m_posit; dgVector p0 (matrix0.m_posit); dgVector p1 (matrix1.m_posit + matrix1.m_front.Scale3 ((p0 - matrix1.m_posit) % matrix1.m_front)); dgVector q0 (p0 + matrix0.m_front.Scale3(MIN_JOINT_PIN_LENGTH)); dgVector q1 (p1 + matrix1.m_front.Scale3(MIN_JOINT_PIN_LENGTH)); dgPointParam pointDataP; dgPointParam pointDataQ; InitPointParam (pointDataP, m_stiffness, p0, p1); InitPointParam (pointDataQ, m_stiffness, q0, q1); CalculatePointDerivative (0, params, dir1, pointDataP, &m_jointForce[0]); CalculatePointDerivative (1, params, dir2, pointDataP, &m_jointForce[1]); CalculatePointDerivative (2, params, dir1, pointDataQ, &m_jointForce[2]); CalculatePointDerivative (3, params, dir2, pointDataQ, &m_jointForce[3]); dgInt32 ret = 4; if (m_jointAccelFnt) { dgUnsigned32 code; dgJointCallbackParam axisParam[2]; // linear acceleration axisParam[0].m_accel = dgFloat32 (0.0f); axisParam[0].m_timestep = params.m_timestep; axisParam[0].m_minFriction = DG_MIN_BOUND; axisParam[0].m_maxFriction = DG_MAX_BOUND; // angular acceleration axisParam[1].m_accel = dgFloat32 (0.0f); axisParam[1].m_timestep = params.m_timestep; axisParam[1].m_minFriction = DG_MIN_BOUND; axisParam[1].m_maxFriction = DG_MAX_BOUND; code = m_jointAccelFnt (*this, axisParam); if (code & 1) { if ((axisParam[0].m_minFriction > DG_MIN_BOUND) || (axisParam[0].m_maxFriction < DG_MAX_BOUND)) { params.m_forceBounds[ret].m_low = axisParam[0].m_minFriction; params.m_forceBounds[ret].m_upper = axisParam[0].m_maxFriction; params.m_forceBounds[ret].m_normalIndex = DG_BILATERAL_FRICTION_CONSTRAINT; } CalculatePointDerivative (ret, params, matrix0.m_front, pointDataP, &m_jointForce[ret]); //params.m_jointAccel[ret] = axisParam[0].m_accel; SetMotorAcceleration (ret, axisParam[0].m_accel, params); ret ++; } if (code & 2) { if ((axisParam[1].m_minFriction > DG_MIN_BOUND) || (axisParam[1].m_maxFriction < DG_MAX_BOUND)) { params.m_forceBounds[ret].m_low = axisParam[1].m_minFriction; params.m_forceBounds[ret].m_upper = axisParam[1].m_maxFriction; params.m_forceBounds[ret].m_normalIndex = DG_BILATERAL_FRICTION_CONSTRAINT; } // dgVector p (p0 + dir1); // dgPointParam pointData; // InitPointParam (pointData, m_stiffness, p, p); // CalculatePointDerivative (ret, params, dir2, pointData, &m_jointForce[ret]); CalculateAngularDerivative (ret, params, matrix0.m_front, m_stiffness, dgFloat32 (0.0f), &m_jointForce[ret]); //params.m_jointAccel[ret] = axisParam[1].m_accel; SetMotorAcceleration (ret, axisParam[1].m_accel, params); ret ++; } } return dgUnsigned32 (ret); }