예제 #1
0
static PointSymmetry get_lattice_symmetry(SPGCONST Cell *cell,
					  const double symprec)
{
  int i, j, k, num_sym;
  int axes[3][3];
  double lattice[3][3], min_lattice[3][3];
  double metric[3][3], metric_orig[3][3];
  PointSymmetry lattice_sym;

  debug_print("get_lattice_symmetry:\n");

  if (! lat_smallest_lattice_vector(min_lattice,
				    cell->lattice,
				    symprec)) {
    goto err;
  }

  mat_get_metric(metric_orig, min_lattice);

  num_sym = 0;
  for (i = 0; i < 26; i++) {
    for (j = 0; j < 26; j++) {
      for (k = 0; k < 26; k++) {
	set_axes(axes, i, j, k);
	if (! ((mat_get_determinant_i3(axes) == 1) ||
	       (mat_get_determinant_i3(axes) == -1))) {
	  continue;
	}
	mat_multiply_matrix_di3(lattice, min_lattice, axes);
	mat_get_metric(metric, lattice);
	
	if (is_identity_metric(metric, metric_orig, symprec)) {
	  mat_copy_matrix_i3(lattice_sym.rot[num_sym], axes);
	  num_sym++;
	}
	  
	if (num_sym > 48) {
	  warning_print("spglib: Too many lattice symmetries was found.\n");
	  warning_print("        Tolerance may be too large ");
	  warning_print("(line %d, %s).\n", __LINE__, __FILE__);
	  goto err;
	}
      }
    }
  }

  lattice_sym.size = num_sym;
  return transform_pointsymmetry(&lattice_sym,
				 cell->lattice,
				 min_lattice);
  
 err:
  lattice_sym.size = 0;
  return lattice_sym;
}
예제 #2
0
static void sort_axes(int axes[3])
{
  int axis;
  int t_mat[3][3];

  if (axes[1] > axes[2]) {
    axis = axes[1];
    axes[1] = axes[2];
    axes[2] = axis;
  }

  if (axes[0] > axes[1]) {
    axis = axes[0];
    axes[0] = axes[1];
    axes[1] = axis;
  }

  if (axes[1] > axes[2]) {
    axis = axes[1];
    axes[1] = axes[2];
    axes[2] = axis;
  }

  set_transformation_matrix(t_mat, axes);
  if (mat_get_determinant_i3(t_mat) < 0) {
    axis = axes[1];
    axes[1] = axes[2];
    axes[2] = axis;
  }
}
예제 #3
0
static int lauem3m( int axes[3],
		    const Symmetry * symmetry )
{
  int i, count, axis, tmpval;
  int prop_rot[3][3], t_mat[3][3];

  for ( i = 0; i < 3; i++ ) { axes[i] = -1; }
  count = 0;
  for ( i = 0; i < symmetry->size; i++ ) {
    get_proper_rotation( prop_rot, symmetry->rot[i] );

    /* Search four-fold rotation */
    if ( ! ( mat_get_trace_i3( prop_rot ) == 1 ) ) {
      continue;
    }

    axis = get_rotation_axis( prop_rot );
    if ( ! ( ( axis == axes[0] ) ||
	     ( axis == axes[1] ) ||
	     ( axis == axes[2] ) ) ) {
      axes[count] = axis;
      count++;
    }
  }

  get_transform_matrix( t_mat, axes );
  if ( mat_get_determinant_i3( t_mat ) < 0 ) {
    tmpval = axes[0];
    axes[0] = axes[1];
    axes[1] = tmpval;
  }

  return 1;
}
예제 #4
0
static int laue4m(int axes[3],
		  SPGCONST PointSymmetry * pointsym)
{
  int i, num_ortho_axis, norm, min_norm, is_found, tmpval;
  int axis_vec[3];
  int prop_rot[3][3], t_mat[3][3];
  int ortho_axes[NUM_ROT_AXES];

  for (i = 0; i < pointsym->size; i++) {
    get_proper_rotation(prop_rot, pointsym->rot[i]);

    /* Search foud-fold rotation */
    if ( mat_get_trace_i3(prop_rot) == 1) {
      /* The first axis */
      axes[2] = get_rotation_axis(prop_rot);
      break;
    }
  }

  /* The second axis */
  num_ortho_axis = get_orthogonal_axis(ortho_axes, prop_rot, 4);
  if (! num_ortho_axis) { goto err; }
  
  min_norm = 8;
  is_found = 0;
  for (i = 0; i < num_ortho_axis; i++) {
    norm = mat_norm_squared_i3(rot_axes[ortho_axes[i]]);
    if (norm < min_norm) {
      min_norm = norm;
      axes[0] = ortho_axes[i];
      is_found = 1;
    }
  }
  if (! is_found) { goto err; }
  
  /* The third axis */
  mat_multiply_matrix_vector_i3(axis_vec, prop_rot, rot_axes[axes[0]]);
  is_found = 0;
  for (i = 0; i < NUM_ROT_AXES; i++) {
    if (is_exist_axis(axis_vec, i)) {
      is_found = 1;
      axes[1] = i;
      break;
    }
  }
  if (! is_found) { goto err; }

  set_transformation_matrix(t_mat, axes);
  if (mat_get_determinant_i3(t_mat) < 0) {
    tmpval = axes[0];
    axes[0] = axes[1];
    axes[1] = tmpval;
  }

  return 1;

 err:
  return 0;
}
예제 #5
0
static void get_proper_rotation(int prop_rot[3][3],
				SPGCONST int rot[3][3])
{
  if (mat_get_determinant_i3(rot) == -1) {
    mat_multiply_matrix_i3(prop_rot, inversion, rot);
  } else {
    mat_copy_matrix_i3(prop_rot, rot);
  }
}
예제 #6
0
파일: lattice.c 프로젝트: ATNDiaye/pymatgen
static Centering get_centering(double correction_mat[3][3],
			       SPGCONST int transform_mat[3][3],
			       const Laue laue)
{
  int det;
  double trans_corr_mat[3][3];
  Centering centering;

  mat_copy_matrix_d3(correction_mat, identity);
  det = abs(mat_get_determinant_i3(transform_mat));
  debug_print("laue class: %d\n", laue);
  debug_print("multiplicity: %d\n", det);

  if (det == 1) { centering = NO_CENTER; }
  if (det == 2) { centering = get_base_center(transform_mat);
    if (centering == A_FACE) {
      if (laue == LAUE2M) {
	debug_print("Monocli A to C\n");
	mat_copy_matrix_d3(correction_mat, monocli_a2c);
      } else {
	mat_copy_matrix_d3(correction_mat, a2c);
      }
      centering = C_FACE;
    }
    if (centering == B_FACE) {
      mat_copy_matrix_d3(correction_mat, b2c);
      centering = C_FACE;
    }
    if (laue == LAUE2M && centering == BODY) {
      debug_print("Monocli I to C\n");
      mat_copy_matrix_d3(correction_mat, monocli_i2c);
      centering = C_FACE;
    }
  }
  if (det == 3) {
    centering = NO_CENTER;
    mat_multiply_matrix_id3(trans_corr_mat,
			    transform_mat, rhombo_obverse);
    if (mat_is_int_matrix(trans_corr_mat, INT_PREC)) {
      mat_copy_matrix_d3(correction_mat, rhombo_obverse);
      debug_print("R-center observe setting\n");
      debug_print_matrix_d3(trans_corr_mat);
    }
    mat_multiply_matrix_id3(trans_corr_mat,
			    transform_mat, rhomb_reverse);
    if (mat_is_int_matrix(trans_corr_mat, INT_PREC)) {
      mat_copy_matrix_d3(correction_mat, rhomb_reverse);
      debug_print("R-center reverse setting\n");
      debug_print_matrix_d3(trans_corr_mat);
    }
  }
  if (det == 4) { centering = FACE; }

  return centering;
}
예제 #7
0
static int get_rotation_type(SPGCONST int rot[3][3])
{
  int rot_type;

  if (mat_get_determinant_i3(rot) == -1) {
    switch (mat_get_trace_i3(rot)) {
    case -2: /* -6 */
      rot_type = 0;
      break;
    case -1: /* -4 */
      rot_type = 1;
      break;
    case 0:  /* -3 */
      rot_type = 2;
      break;
    case 1:  /* -2 */
      rot_type = 3;
      break;
    case -3: /* -1 */
      rot_type = 4;
      break;
    default:
      rot_type = -1;
      break;
    }
  } else {
    switch (mat_get_trace_i3(rot)) {
    case 3:  /* 1 */
      rot_type = 5;
      break;
    case -1: /* 2 */
      rot_type = 6;
      break;
    case 0:  /* 3 */
      rot_type = 7;
      break;
    case 1:  /* 4 */
      rot_type = 8;
      break;
    case 2:  /* 6 */
      rot_type = 9;
      break;
    default:
      rot_type = -1;
      break;
    }	
  }

  return rot_type;
}
예제 #8
0
static PointSymmetry
transform_pointsymmetry(SPGCONST PointSymmetry * lat_sym_orig,
			SPGCONST double new_lattice[3][3],
			SPGCONST double original_lattice[3][3])
{
  int i, size;
  double trans_mat[3][3], inv_mat[3][3], drot[3][3];
  PointSymmetry lat_sym_new;

  lat_sym_new.size = 0;

  mat_inverse_matrix_d3(inv_mat, original_lattice, 0);
  mat_multiply_matrix_d3(trans_mat, inv_mat, new_lattice);

  size = 0;
  for (i = 0; i < lat_sym_orig->size; i++) {
    mat_cast_matrix_3i_to_3d(drot, lat_sym_orig->rot[i]);
    mat_get_similar_matrix_d3(drot, drot, trans_mat, 0);

    /* new_lattice may have lower point symmetry than original_lattice.*/
    /* The operations that have non-integer elements are not counted. */
    if (mat_is_int_matrix(drot, mat_Dabs(mat_get_determinant_d3(trans_mat)) / 10)) {
      mat_cast_matrix_3d_to_3i(lat_sym_new.rot[size], drot);
      if (abs(mat_get_determinant_i3(lat_sym_new.rot[size])) != 1) {
	warning_print("spglib: A point symmetry operation is not unimodular.");
	warning_print("(line %d, %s).\n", __LINE__, __FILE__);
	goto err;
      }
      size++;
    }
  }

#ifdef SPGWARNING
  if (! (lat_sym_orig->size == size)) {
    warning_print("spglib: Some of point symmetry operations were dropped.");
    warning_print("(line %d, %s).\n", __LINE__, __FILE__);
  }
#endif

  lat_sym_new.size = size;
  return lat_sym_new;

 err:
  return lat_sym_new;
}
예제 #9
0
static int laue3m(int axes[3],
		  SPGCONST PointSymmetry * pointsym)
{
  int i, is_found, tmpval, axis;
  int prop_rot[3][3], prop_rot2[3][3], t_mat[3][3];
  int axis_vec[3];

  for (i = 0; i < pointsym->size; i++) {
    get_proper_rotation(prop_rot, pointsym->rot[i]);

    /* Search three-fold rotation */
    if (mat_get_trace_i3(prop_rot) == 0) {
      /* The first axis */
      axes[2] = get_rotation_axis(prop_rot);
      debug_print("laue3m prop_rot\n");
      debug_print_matrix_i3(prop_rot);
      break;
    }
  }

  is_found = 0;
  for (i = 0; i < pointsym->size; i++) {
    get_proper_rotation(prop_rot2, pointsym->rot[i]);

    /* Search two-fold rotation */
    if (! (mat_get_trace_i3(prop_rot2) == -1)) {
      continue;
    }

    /* The second axis */
    axis = get_rotation_axis(prop_rot2);
    if (! (axis == axes[2])) {
      axes[0] = axis;
      is_found = 1;
      break;
    }
  }
  if (! is_found) { goto err; }

  /* The third axis */
  mat_multiply_matrix_vector_i3(axis_vec, prop_rot, rot_axes[axes[0]]);
  is_found = 0;
  for (i = 0; i < NUM_ROT_AXES; i++) {
    is_found = is_exist_axis(axis_vec, i);
    if (is_found == 1) {
      axes[1] = i;
      break;
    }
    if (is_found == -1) {
      axes[1] = i + NUM_ROT_AXES;
      break;
    }
  }
  if (! is_found) { goto err; }

  set_transformation_matrix(t_mat, axes);
  if (mat_get_determinant_i3(t_mat) < 0) {
    tmpval = axes[0];
    axes[0] = axes[1];
    axes[1] = tmpval;
  }

  return 1;

 err:
  return 0;
}
예제 #10
0
static int laue_one_axis(int axes[3],
			 SPGCONST PointSymmetry * pointsym,
			 const int rot_order)
{
  int i, j, num_ortho_axis, det, is_found, tmpval;
  int axis_vec[3], tmp_axes[3];
  int prop_rot[3][3], t_mat[3][3];
  int ortho_axes[NUM_ROT_AXES];

  debug_print("laue_one_axis with rot_order %d\n", rot_order);
  
  for (i = 0; i < pointsym->size; i++) {
    get_proper_rotation(prop_rot, pointsym->rot[i]);

    /* Search foud-fold rotation */
    if (rot_order == 4) {
      if (mat_get_trace_i3(prop_rot) == 1) {
	/* The first axis */
	axes[2] = get_rotation_axis(prop_rot);
	break;
      }
    }

    /* Search three-fold rotation */
    if (rot_order == 3) {
      if (mat_get_trace_i3(prop_rot) == 0) {
	/* The first axis */
	axes[2] = get_rotation_axis(prop_rot);
	break;
      }
    }
  }

  /* Candidates of the second axis */
  num_ortho_axis = get_orthogonal_axis(ortho_axes, prop_rot, rot_order);
  if (! num_ortho_axis) { goto err; }

  tmp_axes[1] = -1;
  tmp_axes[2] = axes[2];
  for (i = 0; i < num_ortho_axis; i++) {
    is_found = 0;
    tmp_axes[0] = ortho_axes[i];
    mat_multiply_matrix_vector_i3(axis_vec,
				  prop_rot,
				  rot_axes[tmp_axes[0]]);
    for (j = 0; j < num_ortho_axis; j++) {
      is_found = is_exist_axis(axis_vec, ortho_axes[j]);
      if (is_found == 1) {
	tmp_axes[1] = ortho_axes[j];
	break;
      }
      if (is_found == -1) {
	tmp_axes[1] = ortho_axes[j] + NUM_ROT_AXES;
	break;
      }
    }

    if (!is_found) { continue; }
    
    set_transformation_matrix(t_mat, tmp_axes);
    det = abs(mat_get_determinant_i3(t_mat));
    if (det < 4) { /* to avoid F-center choice det=4 */
      axes[0] = tmp_axes[0];
      axes[1] = tmp_axes[1];
      goto end;
    }
  }

 err: /* axes are not correctly found. */
  warning_print("spglib: Secondary axis is not found.");
  warning_print("(line %d, %s).\n", __LINE__, __FILE__);
  return 0;

 end:
  set_transformation_matrix(t_mat, axes);
  if (mat_get_determinant_i3(t_mat) < 0) {
    tmpval = axes[0];
    axes[0] = axes[1];
    axes[1] = tmpval;
  }

  debug_print("axes[0] = %d\n", axes[0]);
  debug_print("axes[1] = %d\n", axes[1]);
  debug_print("axes[2] = %d\n", axes[2]);

  return 1;

}
예제 #11
0
static int laue_one_axis( int axes[3],
			  const Symmetry * symmetry,
			  const int rot_order )
{
  int i, j, num_ortho_axis, det, min_det, is_found, tmpval;
  int axis_vec[3], tmp_axes[3];
  int prop_rot[3][3], t_mat[3][3];
  int ortho_axes[NUM_ROT_AXES];

  for ( i = 0; i < symmetry->size; i++ ) {
    get_proper_rotation( prop_rot, symmetry->rot[i] );

    /* Search foud-fold rotation */
    if ( rot_order == 4 ) {
      if (  mat_get_trace_i3( prop_rot ) == 1 ) {
	/* The first axis */
	axes[2] = get_rotation_axis( prop_rot );
	break;
      }
    }

    /* Search three-fold rotation */
    if ( rot_order == 3 ) {
      if (  mat_get_trace_i3( prop_rot ) == 0 ) {
	/* The first axis */
	axes[2] = get_rotation_axis( prop_rot );
	break;
      }
    }
  }

  /* Candidates of the second axis */
  num_ortho_axis = get_orthogonal_axis( ortho_axes, prop_rot, rot_order );
  if ( ! num_ortho_axis ) { goto err; }

  tmp_axes[2] = axes[2];
  min_det = 4;
  is_found = 0;
  for ( i = 0; i < num_ortho_axis; i++ ) {
    tmp_axes[0] = ortho_axes[i];
    mat_multiply_matrix_vector_i3( axis_vec, prop_rot,
				   rot_axes[tmp_axes[0]] );
    for ( j = 0; j < num_ortho_axis; j++ ) {
      is_found = is_exist_axis( axis_vec, ortho_axes[j] );
      if ( is_found == 1 ) {
	tmp_axes[1] = ortho_axes[j];
	break;
      }
      if ( is_found == -1 ) {
	tmp_axes[1] = ortho_axes[j] + NUM_ROT_AXES;
	break;
      }
    }

    get_transform_matrix( t_mat, tmp_axes );
    det = mat_get_determinant_i3( t_mat );
    if ( det < 0 ) { det = -det; }
    if ( det < min_det ) {
      min_det = det;
      axes[0] = tmp_axes[0];
      axes[1] = tmp_axes[1];
    }
  }
  if ( ! is_found ) { goto err; }
  
  get_transform_matrix( t_mat, axes );
  if ( mat_get_determinant_i3( t_mat ) < 0 ) {
    tmpval = axes[0];
    axes[0] = axes[1];
    axes[1] = tmpval;
  }

  return 1;

 err:
  return 0;
}
예제 #12
0
static int laue4mmm( int axes[3],
		     const Symmetry * symmetry )
{
  int i, is_found, tmpval, axis;
  int prop_rot[3][3], prop_rot2[3][3], t_mat[3][3];
  int axis_vec[3];

  for ( i = 0; i < symmetry->size; i++ ) {
    get_proper_rotation( prop_rot, symmetry->rot[i] );

    /* Search foud-fold rotation */
    if ( mat_get_trace_i3( prop_rot ) == 1 ) {
      /* The first axis */
      axes[2] = get_rotation_axis( prop_rot );
      break;
    }
  }

  is_found = 0;
  for ( i = 0; i < symmetry->size; i++ ) {
    get_proper_rotation( prop_rot2, symmetry->rot[i] );

    /* Search two-fold rotation */
    if ( ! ( mat_get_trace_i3( prop_rot2 ) == -1 ) ) {
      continue;
    }

    /* The second axis */
    axis = get_rotation_axis( prop_rot2 );
    if ( ! ( axis == axes[2] ) ) {
      axes[0] = axis;
      is_found = 1;
      break;
    }
  }
  if ( ! is_found ) { goto err; }


  /* The third axis */
  mat_multiply_matrix_vector_i3( axis_vec, prop_rot, rot_axes[axes[0]] );
  is_found = 0;
  for ( i = 0; i < NUM_ROT_AXES; i++ ) {
    if ( is_exist_axis( axis_vec, i ) ) {
      is_found = 1;
      axes[1] = i;
      break;
    }
  }
  if ( ! is_found ) { goto err; }

  get_transform_matrix( t_mat, axes );
  if ( mat_get_determinant_i3( t_mat ) < 0 ) {
    tmpval = axes[0];
    axes[0] = axes[1];
    axes[1] = tmpval;
  }

  return 1;

 err:
  return 0;
}
예제 #13
0
static int laue2m( int axes[3],
		   const Symmetry * symmetry )
{
  int i, num_ortho_axis, norm, min_norm, is_found, tmpval;
  int prop_rot[3][3], t_mat[3][3];
  int ortho_axes[NUM_ROT_AXES];

  for ( i = 0; i < symmetry->size; i++ ) {
    get_proper_rotation( prop_rot, symmetry->rot[i] );

    /* Search two-fold rotation */
    if ( ! ( mat_get_trace_i3( prop_rot ) == -1 ) ) {
      continue;
    }

    /* The first axis */
    axes[1] = get_rotation_axis( prop_rot );
    break;
  }

  /* The second axis */
  num_ortho_axis = get_orthogonal_axis( ortho_axes, prop_rot, 2 );
  if ( ! num_ortho_axis ) { goto err; }
  
  min_norm = 8;
  is_found = 0;
  for ( i = 0; i < num_ortho_axis; i++ ) {
    norm = mat_norm_squared_i3( rot_axes[ortho_axes[i]] );
    if ( norm < min_norm ) {
      min_norm = norm;
      axes[0] = ortho_axes[i];
      is_found = 1;
    }
  }
  if ( ! is_found ) { goto err; }
  
  /* The third axis */
  min_norm = 8;
  is_found = 0;
  for ( i = 0; i < num_ortho_axis; i++ ) {
    norm = mat_norm_squared_i3( rot_axes[ortho_axes[i]] );
    if ( norm < min_norm && ( ! ( ortho_axes[i] == axes[0] ) ) ) {
      min_norm = norm;
      axes[2] = ortho_axes[i];
      is_found = 1;
    }
  }
  if ( ! is_found ) { goto err; }

  get_transform_matrix( t_mat, axes );
  if ( mat_get_determinant_i3( t_mat ) < 0 ) {
    tmpval = axes[0];
    axes[0] = axes[2];
    axes[2] = tmpval;
  }

  return 1;

 err:
  return 0;
}
예제 #14
0
static PointSymmetry get_lattice_symmetry(SPGCONST double cell_lattice[3][3],
					  const double symprec,
					  const double angle_symprec)
{
  int i, j, k, attempt, num_sym;
  double angle_tol;
  int axes[3][3];
  double lattice[3][3], min_lattice[3][3];
  double metric[3][3], metric_orig[3][3];
  PointSymmetry lattice_sym;

  debug_print("get_lattice_symmetry:\n");

  lattice_sym.size = 0;

  if (! del_delaunay_reduce(min_lattice, cell_lattice, symprec)) {
    goto err;
  }

  mat_get_metric(metric_orig, min_lattice);
  angle_tol = angle_symprec;

  for (attempt = 0; attempt < 100; attempt++) {
    num_sym = 0;
    for (i = 0; i < 26; i++) {
      for (j = 0; j < 26; j++) {
	for (k = 0; k < 26; k++) {
	  set_axes(axes, i, j, k);
	  if (! ((mat_get_determinant_i3(axes) == 1) ||
		 (mat_get_determinant_i3(axes) == -1))) {
	    continue;
	  }
	  mat_multiply_matrix_di3(lattice, min_lattice, axes);
	  mat_get_metric(metric, lattice);

	  if (is_identity_metric(metric, metric_orig, symprec, angle_tol)) {
	    if (num_sym > 47) {
	      angle_tol *= ANGLE_REDUCE_RATE;
	      warning_print("spglib: Too many lattice symmetries was found.\n");
	      warning_print("        Reduce angle tolerance to %f", angle_tol);
	      warning_print(" (line %d, %s).\n", __LINE__, __FILE__);
	      goto next_attempt;
	    }

	    mat_copy_matrix_i3(lattice_sym.rot[num_sym], axes);
	    num_sym++;
	  }
	}
      }
    }

    if (num_sym < 49 || angle_tol < 0) {
      lattice_sym.size = num_sym;
      return transform_pointsymmetry(&lattice_sym, cell_lattice, min_lattice);
    }

  next_attempt:
    ;
  }

 err:
  debug_print("get_lattice_symmetry failed.\n");
  return lattice_sym;
}
예제 #15
0
/* Return 0 if failed */
static int get_primitive_lattice_vectors(double prim_lattice[3][3],
					 const VecDBL * vectors,
					 SPGCONST Cell * cell,
					 const double symprec)
{
  int i, j, k, size;
  double initial_volume, volume;
  double relative_lattice[3][3], min_vectors[3][3], tmp_lattice[3][3];
  double inv_mat_dbl[3][3];
  int inv_mat_int[3][3];

  debug_print("get_primitive_lattice_vectors:\n");

  size = vectors->size;
  initial_volume = mat_Dabs(mat_get_determinant_d3(cell->lattice));

  /* check volumes of all possible lattices, find smallest volume */
  for (i = 0; i < size; i++) {
    for (j = i + 1; j < size; j++) {
      for (k = j + 1; k < size; k++) {
	mat_multiply_matrix_vector_d3(tmp_lattice[0],
				      cell->lattice,
				      vectors->vec[i]);
	mat_multiply_matrix_vector_d3(tmp_lattice[1],
				      cell->lattice,
				      vectors->vec[j]);
	mat_multiply_matrix_vector_d3(tmp_lattice[2],
				      cell->lattice,
				      vectors->vec[k]);
	volume = mat_Dabs(mat_get_determinant_d3(tmp_lattice));
	if (volume > symprec) {
	  if (mat_Nint(initial_volume / volume) == size-2) {
	    mat_copy_vector_d3(min_vectors[0], vectors->vec[i]);
	    mat_copy_vector_d3(min_vectors[1], vectors->vec[j]);
	    mat_copy_vector_d3(min_vectors[2], vectors->vec[k]);
	    goto ret;
	  }
	}
      }
    }
  }

  /* Not found */
  warning_print("spglib: Primitive lattice vectors cound not be found ");
  warning_print("(line %d, %s).\n", __LINE__, __FILE__);
  return 0;

  /* Found */
 ret:
  for (i = 0; i < 3; i++) {
    for (j = 0; j < 3; j++) {
      relative_lattice[j][i] = min_vectors[i][j];
    }
  }

  mat_inverse_matrix_d3(inv_mat_dbl, relative_lattice, 0);
  mat_cast_matrix_3d_to_3i(inv_mat_int, inv_mat_dbl);
  if (abs(mat_get_determinant_i3(inv_mat_int)) == size-2) {
    mat_cast_matrix_3i_to_3d(inv_mat_dbl, inv_mat_int);
    mat_inverse_matrix_d3(relative_lattice, inv_mat_dbl, 0);
  } else {
    warning_print("spglib: Primitive lattice cleaning is incomplete ");
    warning_print("(line %d, %s).\n", __LINE__, __FILE__);
  }
  mat_multiply_matrix_d3(prim_lattice, cell->lattice, relative_lattice);

  return 1;  
}
예제 #16
0
/* Return CENTERING_ERROR if failed */
static Centering get_centering(double correction_mat[3][3],
			       SPGCONST int transform_mat[3][3],
			       const Laue laue)
{
  int det;
  double trans_corr_mat[3][3];
  Centering centering;

  mat_copy_matrix_d3(correction_mat, identity);
  det = abs(mat_get_determinant_i3(transform_mat));
  debug_print("laue class: %d\n", laue);
  debug_print("multiplicity: %d\n", det);

  switch (det) {

  case 1:
    centering = PRIMITIVE;
    break;

  case 2:
    centering = get_base_center(transform_mat);
    if (centering == A_FACE) {
      if (laue == LAUE2M) {
	debug_print("Monocli A to C\n");
	mat_copy_matrix_d3(correction_mat, monocli_a2c);
      } else {
	mat_copy_matrix_d3(correction_mat, a2c);
      }
      centering = C_FACE;
    }
    if (centering == B_FACE) {
      mat_copy_matrix_d3(correction_mat, b2c);
      centering = C_FACE;
    }
    if (laue == LAUE2M && centering == BODY) {
      debug_print("Monocli I to C\n");
      mat_copy_matrix_d3(correction_mat, monocli_i2c);
      centering = C_FACE;
    }
    break;

  case 3:
    /* hP (a=b) but not hR (a=b=c) */
    centering = R_CENTER;
    mat_multiply_matrix_id3(trans_corr_mat, transform_mat, rhombo_obverse);
    if (mat_is_int_matrix(trans_corr_mat, INT_PREC)) {
      mat_copy_matrix_d3(correction_mat, rhombo_obverse);
      debug_print("R-center observe setting\n");
      debug_print_matrix_d3(trans_corr_mat);
    }
    mat_multiply_matrix_id3(trans_corr_mat, transform_mat, rhomb_reverse);
    if (mat_is_int_matrix(trans_corr_mat, INT_PREC)) {
      mat_copy_matrix_d3(correction_mat, rhomb_reverse);
      debug_print("R-center reverse setting\n");
      debug_print_matrix_d3(trans_corr_mat);
    }
    break;

  case 4:
    centering = FACE;
    break;

  default:
    centering = CENTERING_ERROR;
    break;
  }

  return centering;
}