code *orthxmm(elem *e, regm_t *pretregs) { elem *e1 = e->E1; elem *e2 = e->E2; regm_t retregs = *pretregs & XMMREGS; if (!retregs) retregs = XMMREGS; code *c = codelem(e1,&retregs,FALSE); // eval left leaf unsigned reg = findreg(retregs); regm_t rretregs = XMMREGS & ~retregs; code *cr = scodelem(e2, &rretregs, retregs, TRUE); // eval right leaf unsigned op = xmmoperator(e1->Ety, e->Eoper); unsigned rreg = findreg(rretregs); // float + ifloat is not actually addition if ((e->Eoper == OPadd || e->Eoper == OPmin) && ((tyreal(e1->Ety) && tyimaginary(e2->Ety)) || (tyreal(e2->Ety) && tyimaginary(e1->Ety)))) { retregs |= rretregs; c = cat(c, cr); if (e->Eoper == OPmin) { unsigned nretregs = XMMREGS & ~retregs; unsigned sreg; // hold sign bit unsigned sz = tysize[tybasic(e1->Ety)]; c = cat(c,allocreg(&nretregs,&sreg,e2->Ety)); targ_size_t signbit = 0x80000000; if (sz == 8) signbit = 0x8000000000000000LL; c = cat(c, movxmmconst(sreg, sz, signbit, 0)); c = cat(c, getregs(nretregs)); unsigned xop = (sz == 8) ? XORPD : XORPS; // XORPD/S rreg,sreg c = cat(c, gen2(CNIL,xop,modregxrmx(3,rreg-XMM0,sreg-XMM0))); } if (retregs != *pretregs) c = cat(c, fixresult(e,retregs,pretregs)); return c; } /* We should take advantage of mem addressing modes for OP XMM,MEM * but we do not at the moment. */ code *cg; if (OTrel(e->Eoper)) { retregs = mPSW; cg = NULL; code *cc = gen2(CNIL,op,modregxrmx(3,rreg-XMM0,reg-XMM0)); return cat4(c,cr,cg,cc); } else cg = getregs(retregs); code *co = gen2(CNIL,op,modregxrmx(3,reg-XMM0,rreg-XMM0)); if (retregs != *pretregs) co = cat(co,fixresult(e,retregs,pretregs)); return cat4(c,cr,cg,co); }
code *xmmneg(elem *e,regm_t *pretregs) { //printf("xmmneg()\n"); //elem_print(e); assert(*pretregs); tym_t tyml = tybasic(e->E1->Ety); int sz = _tysize[tyml]; regm_t retregs = *pretregs & XMMREGS; if (!retregs) retregs = XMMREGS; /* Generate: * MOV reg,e1 * MOV rreg,signbit * XOR reg,rreg */ CodeBuilder cdb; cdb.append(codelem(e->E1,&retregs,FALSE)); cdb.append(getregs(retregs)); unsigned reg = findreg(retregs); regm_t rretregs = XMMREGS & ~retregs; unsigned rreg; cdb.append(allocreg(&rretregs,&rreg,tyml)); targ_size_t signbit = 0x80000000; if (sz == 8) signbit = 0x8000000000000000LL; cdb.append(movxmmconst(rreg, sz, signbit, 0)); cdb.append(getregs(retregs)); unsigned op = (sz == 8) ? XORPD : XORPS; // XORPD/S reg,rreg cdb.gen2(op,modregxrmx(3,reg-XMM0,rreg-XMM0)); cdb.append(fixresult(e,retregs,pretregs)); return cdb.finish(); }
code *xmmneg(elem *e,regm_t *pretregs) { //printf("xmmneg()\n"); //elem_print(e); assert(*pretregs); tym_t tyml = tybasic(e->E1->Ety); int sz = tysize[tyml]; regm_t retregs = *pretregs & XMMREGS; if (!retregs) retregs = XMMREGS; /* Generate: * MOV reg,e1 * MOV rreg,signbit * XOR reg,rreg */ code *cl = codelem(e->E1,&retregs,FALSE); cl = cat(cl,getregs(retregs)); unsigned reg = findreg(retregs); regm_t rretregs = XMMREGS & ~retregs; unsigned rreg; cl = cat(cl,allocreg(&rretregs,&rreg,tyml)); targ_size_t signbit = 0x80000000; if (sz == 8) signbit = 0x8000000000000000LL; code *c = movxmmconst(rreg, sz, signbit, 0); code *cg = getregs(retregs); unsigned op = (sz == 8) ? XORPD : XORPS; // XORPD/S reg,rreg code *co = gen2(CNIL,op,modregxrmx(3,reg-XMM0,rreg-XMM0)); co = cat(co,fixresult(e,retregs,pretregs)); return cat4(cl,c,cg,co); }
code *movxmmconst(unsigned xreg, unsigned sz, targ_size_t value, regm_t flags) { /* Generate: * MOV reg,value * MOV xreg,reg * Not so efficient. We should at least do a PXOR for 0. */ assert(mask[xreg] & XMMREGS); assert(sz == 4 || sz == 8); CodeBuilder cdb; if (I32 && sz == 8) { unsigned r; regm_t rm = ALLREGS; cdb.append(allocreg(&rm,&r,TYint)); // allocate scratch register union { targ_size_t s; targ_long l[2]; } u; u.l[1] = 0; u.s = value; targ_long *p = &u.l[0]; cdb.append(movregconst(CNIL,r,p[0],0)); cdb.genfltreg(STO,r,0); // MOV floatreg,r cdb.append(movregconst(CNIL,r,p[1],0)); cdb.genfltreg(STO,r,4); // MOV floatreg+4,r unsigned op = xmmload(TYdouble, true); cdb.genxmmreg(op,xreg,0,TYdouble); // MOVSD XMMreg,floatreg } else { unsigned reg; cdb.append(regwithvalue(CNIL,ALLREGS,value,®,(sz == 8) ? 64 : 0)); cdb.gen2(LODD,modregxrmx(3,xreg-XMM0,reg)); // MOVD xreg,reg if (sz == 8) code_orrex(cdb.last(), REX_W); checkSetVex(cdb.last(), TYulong); } return cdb.finish(); }
code *movxmmconst(unsigned xreg, unsigned sz, targ_size_t value, regm_t flags) { /* Generate: * MOV reg,value * MOV xreg,reg * Not so efficient. We should at least do a PXOR for 0. */ assert(mask[xreg] & XMMREGS); assert(sz == 4 || sz == 8); code *c; if (I32 && sz == 8) { unsigned r; regm_t rm = ALLREGS; c = allocreg(&rm,&r,TYint); // allocate scratch register union { targ_size_t s; targ_long l[2]; } u; u.l[1] = 0; u.s = value; targ_long *p = &u.l[0]; c = movregconst(c,r,p[0],0); c = genfltreg(c,0x89,r,0); // MOV floatreg,r c = movregconst(c,r,p[1],0); c = genfltreg(c,0x89,r,4); // MOV floatreg+4,r unsigned op = xmmload(TYdouble); c = genfltreg(c,op,xreg - XMM0,0); // MOVSD XMMreg,floatreg } else { unsigned reg; c = regwithvalue(CNIL,ALLREGS,value,®,(sz == 8) ? 64 : 0); c = gen2(c,LODD,modregxrmx(3,xreg-XMM0,reg)); // MOVD xreg,reg if (sz == 8) code_orrex(c, REX_W); } return c; }
code *orthxmm(elem *e, regm_t *pretregs) { //printf("orthxmm(e = %p, *pretregs = %s)\n", e, regm_str(*pretregs)); elem *e1 = e->E1; elem *e2 = e->E2; // float + ifloat is not actually addition if ((e->Eoper == OPadd || e->Eoper == OPmin) && ((tyreal(e1->Ety) && tyimaginary(e2->Ety)) || (tyreal(e2->Ety) && tyimaginary(e1->Ety)))) { regm_t retregs = *pretregs & XMMREGS; if (!retregs) retregs = XMMREGS; unsigned reg; regm_t rretregs; unsigned rreg; if (tyreal(e1->Ety)) { reg = findreg(retregs); rreg = findreg(retregs & ~mask[reg]); retregs = mask[reg]; rretregs = mask[rreg]; } else { // Pick the second register, not the first rreg = findreg(retregs); rretregs = mask[rreg]; reg = findreg(retregs & ~rretregs); retregs = mask[reg]; } assert(retregs && rretregs); CodeBuilder cdb; cdb.append(codelem(e1,&retregs,FALSE)); // eval left leaf cdb.append(scodelem(e2, &rretregs, retregs, TRUE)); // eval right leaf retregs |= rretregs; if (e->Eoper == OPmin) { unsigned nretregs = XMMREGS & ~retregs; unsigned sreg; // hold sign bit unsigned sz = tysize(e1->Ety); cdb.append(allocreg(&nretregs,&sreg,e2->Ety)); targ_size_t signbit = 0x80000000; if (sz == 8) signbit = 0x8000000000000000LL; cdb.append(movxmmconst(sreg, sz, signbit, 0)); cdb.append(getregs(nretregs)); unsigned xop = (sz == 8) ? XORPD : XORPS; // XORPD/S rreg,sreg cdb.gen2(xop,modregxrmx(3,rreg-XMM0,sreg-XMM0)); } if (retregs != *pretregs) cdb.append(fixresult(e,retregs,pretregs)); return cdb.finish(); } regm_t retregs = *pretregs & XMMREGS; if (!retregs) retregs = XMMREGS; CodeBuilder cdb; cdb.append(codelem(e1,&retregs,FALSE)); // eval left leaf unsigned reg = findreg(retregs); regm_t rretregs = XMMREGS & ~retregs; cdb.append(scodelem(e2, &rretregs, retregs, TRUE)); // eval right leaf unsigned rreg = findreg(rretregs); unsigned op = xmmoperator(e1->Ety, e->Eoper); /* We should take advantage of mem addressing modes for OP XMM,MEM * but we do not at the moment. */ if (OTrel(e->Eoper)) { retregs = mPSW; cdb.gen2(op,modregxrmx(3,rreg-XMM0,reg-XMM0)); checkSetVex(cdb.last(), e1->Ety); return cdb.finish(); } else cdb.append(getregs(retregs)); cdb.gen2(op,modregxrmx(3,reg-XMM0,rreg-XMM0)); checkSetVex(cdb.last(), e1->Ety); if (retregs != *pretregs) cdb.append(fixresult(e,retregs,pretregs)); return cdb.finish(); }
code *xmmpost(elem *e,regm_t *pretregs) { elem *e1 = e->E1; elem *e2 = e->E2; tym_t ty1 = tybasic(e1->Ety); CodeBuilder cdb; regm_t retregs; unsigned reg; bool regvar = FALSE; if (config.flags4 & CFG4optimized) { // Be careful of cases like (x = x+x+x). We cannot evaluate in // x if x is in a register. unsigned varreg; regm_t varregm; if (isregvar(e1,&varregm,&varreg) && // if lvalue is register variable doinreg(e1->EV.sp.Vsym,e2) // and we can compute directly into it ) { regvar = TRUE; retregs = varregm; reg = varreg; // evaluate directly in target register cdb.append(getregs(retregs)); // destroy these regs } } code cs; if (!regvar) { code *c = getlvalue(&cs,e1,0); // get EA cdb.append(c); retregs = XMMREGS & ~*pretregs; if (!retregs) retregs = XMMREGS; c = allocreg(&retregs,®,ty1); cdb.append(c); cs.Iop = xmmload(ty1, true); // MOVSD xmm,xmm_m64 code_newreg(&cs,reg - XMM0); cdb.gen(&cs); checkSetVex(cdb.last(), ty1); } // Result register regm_t resultregs = XMMREGS & *pretregs & ~retregs; if (!resultregs) resultregs = XMMREGS & ~retregs; unsigned resultreg; code *c = allocreg(&resultregs, &resultreg, ty1); cdb.append(c); cdb.gen2(xmmload(ty1,true),modregxrmx(3,resultreg-XMM0,reg-XMM0)); // MOVSS/D resultreg,reg checkSetVex(cdb.last(), ty1); regm_t rretregs = XMMREGS & ~(*pretregs | retregs | resultregs); if (!rretregs) rretregs = XMMREGS & ~(retregs | resultregs); c = codelem(e2,&rretregs,FALSE); // eval right leaf cdb.append(c); unsigned rreg = findreg(rretregs); unsigned op = xmmoperator(e1->Ety, e->Eoper); cdb.gen2(op,modregxrmx(3,reg-XMM0,rreg-XMM0)); // ADD reg,rreg checkSetVex(cdb.last(), e1->Ety); if (!regvar) { cs.Iop = xmmstore(ty1,true); // reverse operand order of MOVS[SD] cdb.gen(&cs); checkSetVex(cdb.last(), ty1); } if (e1->Ecount || // if lvalue is a CSE or regvar) // rvalue can't be a CSE { cdb.append(getregs_imm(retregs)); // necessary if both lvalue and // rvalue are CSEs (since a reg // can hold only one e at a time) cssave(e1,retregs,EOP(e1)); // if lvalue is a CSE } cdb.append(fixresult(e,resultregs,pretregs)); freenode(e1); return cdb.finish(); }
code *xmmcnvt(elem *e,regm_t *pretregs) { unsigned op=0, regs; tym_t ty; unsigned char rex = 0; bool zx = false; // zero extend uint /* There are no ops for integer <-> float/real conversions * but there are instructions for them. In order to use these * try to fuse chained conversions. Be careful not to loose * precision for real to long. */ elem *e1 = e->E1; switch (e->Eoper) { case OPd_f: if (e1->Eoper == OPs32_d) ; else if (I64 && e1->Eoper == OPs64_d) rex = REX_W; else if (I64 && e1->Eoper == OPu32_d) { rex = REX_W; zx = true; } else { regs = XMMREGS; op = CVTSD2SS; ty = TYfloat; break; } // directly use si2ss regs = ALLREGS; e1 = e1->E1; op = CVTSI2SS; ty = TYfloat; break; case OPs32_d: goto Litod; case OPs64_d: rex = REX_W; goto Litod; case OPu32_d: rex = REX_W; zx = true; goto Litod; Litod: regs = ALLREGS; op = CVTSI2SD; ty = TYdouble; break; case OPd_s32: ty = TYint; goto Ldtoi; case OPd_u32: ty = TYlong; if (I64) rex = REX_W; goto Ldtoi; case OPd_s64: ty = TYlong; rex = REX_W; goto Ldtoi; Ldtoi: regs = XMMREGS; switch (e1->Eoper) { case OPf_d: e1 = e1->E1; op = CVTTSS2SI; break; case OPld_d: if (e->Eoper == OPd_s64) return cnvt87(e,pretregs); // precision /* FALL-THROUGH */ default: op = CVTTSD2SI; break; } break; case OPf_d: regs = XMMREGS; op = CVTSS2SD; ty = TYdouble; break; } assert(op); CodeBuilder cdb; cdb.append(codelem(e1, ®s, FALSE)); unsigned reg = findreg(regs); if (reg >= XMM0) reg -= XMM0; else if (zx) { assert(I64); cdb.append(getregs(regs)); cdb.append(genregs(CNIL,STO,reg,reg)); // MOV reg,reg to zero upper 32-bit code_orflag(cdb.last(),CFvolatile); } unsigned retregs = *pretregs; if (tyxmmreg(ty)) // target is XMM { if (!(*pretregs & XMMREGS)) retregs = XMMREGS; } else // source is XMM { assert(regs & XMMREGS); if (!(retregs & ALLREGS)) retregs = ALLREGS; } unsigned rreg; cdb.append(allocreg(&retregs,&rreg,ty)); if (rreg >= XMM0) rreg -= XMM0; cdb.gen2(op, modregxrmx(3,rreg,reg)); assert(I64 || !rex); if (rex) code_orrex(cdb.last(), rex); if (*pretregs != retregs) cdb.append(fixresult(e,retregs,pretregs)); return cdb.finish(); }
/*************** * Generate code for OPvecfill (broadcast). * OPvecfill takes the single value in e1 and * fills the vector type with it. */ code *cdvecfill(elem *e, regm_t *pretregs) { //printf("cdvecfill(e = %p, *pretregs = %s)\n",e,regm_str(*pretregs)); regm_t retregs = *pretregs & XMMREGS; if (!retregs) retregs = XMMREGS; CodeBuilder cdb; code *c; code cs; elem *e1 = e->E1; #if 0 if ((e1->Eoper == OPind && !e1->Ecount) || e1->Eoper == OPvar) { cr = getlvalue(&cs, e1, RMload | retregs); // get addressing mode } else { unsigned rretregs = XMMREGS & ~retregs; cr = scodelem(op2, &rretregs, retregs, TRUE); unsigned rreg = findreg(rretregs) - XMM0; cs.Irm = modregrm(3,0,rreg & 7); cs.Iflags = 0; cs.Irex = 0; if (rreg & 8) cs.Irex |= REX_B; } #endif unsigned reg; unsigned rreg; unsigned varreg; regm_t varregm; tym_t ty = tybasic(e->Ety); switch (ty) { case TYfloat4: case TYfloat8: if (config.avx && ((e1->Eoper == OPind && !e1->Ecount) || e1->Eoper == OPvar && !isregvar(e1,&varregm,&varreg)) || tysize(ty) == 32 && !isregvar(e1,&varregm,&varreg) ) { Lint: if (e1->Eoper == OPvar) e1->EV.sp.Vsym->Sflags &= ~GTregcand; // VBROADCASTSS XMM,MEM cdb.append(getlvalue(&cs, e1, 0)); // get addressing mode assert((cs.Irm & 0xC0) != 0xC0); // AVX1 doesn't have register source operands cdb.append(allocreg(&retregs,®,ty)); cs.Iop = VBROADCASTSS; cs.Irex &= ~REX_W; code_newreg(&cs,reg - XMM0); checkSetVex(&cs,ty); cdb.gen(&cs); } else { // SHUFPS XMM0,XMM0,0 0F C6 /r ib c = codelem(e1,&retregs,FALSE); // eval left leaf cdb.append(c); reg = findreg(retregs) - XMM0; cdb.append(getregs(retregs)); cs.Iop = SHUFPS; cs.Irm = modregxrmx(3,reg,reg); cs.Iflags = 0; cs.IFL2 = FLconst; cs.IEV2.Vsize_t = 0; if (config.avx >= 2 || tysize(ty) == 32) { // VBROADCASTSS XMM,XMM cs.Iop = VBROADCASTSS; checkSetVex(&cs, ty); } cdb.gen(&cs); } break; case TYdouble2: case TYdouble4: if (config.avx && ((e1->Eoper == OPind && !e1->Ecount) || e1->Eoper == OPvar && !isregvar(e1,&varregm,&varreg)) || tysize(ty) == 32 && !isregvar(e1,&varregm,&varreg) ) { if (e1->Eoper == OPvar) e1->EV.sp.Vsym->Sflags &= ~GTregcand; // VBROADCASTSD XMM,MEM cdb.append(getlvalue(&cs, e1, 0)); // get addressing mode assert((cs.Irm & 0xC0) != 0xC0); // AVX1 doesn't have register source operands cdb.append(allocreg(&retregs,®,ty)); cs.Iop = VBROADCASTSD; cs.Irex &= ~REX_W; code_newreg(&cs,reg - XMM0); checkSetVex(&cs,ty); cdb.gen(&cs); } else { // UNPCKLPD XMM0,XMM0 66 0F 14 /r c = codelem(e1,&retregs,FALSE); // eval left leaf cdb.append(c); reg = findreg(retregs) - XMM0; cdb.append(getregs(retregs)); cs.Iop = UNPCKLPD; cs.Irm = modregxrmx(3,reg,reg); cs.Iflags = 0; if (config.avx >= 2 || tysize(ty) == 32) { // VBROADCASTSD XMM,XMM cs.Iop = VBROADCASTSD; checkSetVex(&cs, ty); } cdb.gen(&cs); } break; case TYschar16: case TYuchar16: case TYschar32: case TYuchar32: { /* MOVD XMM0,r * PUNPCKLBW XMM0,XMM0 * PUNPCKLWD XMM0,XMM0 * PSHUFD XMM0,XMM0,0 */ regm_t regm = ALLREGS; c = codelem(e1,®m,FALSE); // eval left leaf cdb.append(c); unsigned r = findreg(regm); c = allocreg(&retregs,®, e->Ety); cdb.append(c); reg -= XMM0; cdb.gen2(LODD,modregxrmx(3,reg,r)); // MOVD reg,r checkSetVex(cdb.last(),TYschar16); cs.Iop = PUNPCKLBW; cs.Irm = modregxrmx(3,reg,reg); cs.Iflags = 0; cdb.gen(&cs); cs.Iop = PUNPCKLWD; cdb.gen(&cs); cs.Iop = PSHUFD; cs.IFL2 = FLconst; cs.IEV2.Vsize_t = 0; checkSetVex(&cs,TYschar16); cdb.gen(&cs); if (tysize(ty) == 32) { // VINSERTF128 YMM0,YMM0,XMM0,1 cs.Iop = VINSERTF128; cs.Irm = modregxrmx(3,reg,reg); cs.Iflags = 0; cs.IFL2 = FLconst; cs.IEV2.Vsize_t = 1; checkSetVex(&cs,ty); cdb.gen(&cs); } break; } case TYshort8: case TYushort8: case TYshort16: case TYushort16: { regm_t regm = ALLREGS; c = codelem(e1,®m,FALSE); // eval left leaf cdb.append(c); unsigned r = findreg(regm); if (config.avx || tysize(ty) == 32) { /* * VPXOR XMM0,XMM0,XMM0 * VPINSRW XMM0,XMM0,r,0 * VPINSRW XMM0,XMM0,r,1 * VPINSRW XMM0,XMM0,r,2 * VPINSRW XMM0,XMM0,r,3 */ cdb.append(allocreg(&retregs,®, ty)); cdb.gen2(PXOR,modregxrmx(3,reg-XMM0,reg-XMM0)); checkSetVex(cdb.last(), TYshort8); for (int i = 0; i < tysize(ty) / 4; ++i) { cdb.genc2(PINSRW,modregxrmx(3,reg-XMM0,r),i); checkSetVex(cdb.last(), TYshort8); } if (tysize(ty) == 32) { // VINSERTF128 YMM0,YMM0,XMM0,1 cs.Iop = VINSERTF128; cs.Irm = modregxrmx(3,reg-XMM0,reg-XMM0); cs.Iflags = 0; cs.IFL2 = FLconst; cs.IEV2.Vsize_t = 1; checkSetVex(&cs,ty); cdb.gen(&cs); } else { // VPSHUFD XMM0,XMM0,0 cs.Iop = PSHUFD; cs.Irm = modregxrmx(3,reg-XMM0,reg-XMM0); cs.Iflags = 0; cs.IFL2 = FLconst; cs.IEV2.Vsize_t = 0; checkSetVex(&cs,ty); cdb.gen(&cs); } } else { /* MOVD XMM0,r * PUNPCKLWD XMM0,XMM0 * PSHUFD XMM0,XMM0,0 */ c = allocreg(&retregs,®, e->Ety); cdb.append(c); reg -= XMM0; cdb.gen2(LODD,modregxrmx(3,reg,r)); // MOVD reg,r checkSetVex(cdb.last(),e->Ety); cs.Iop = PUNPCKLWD; cs.Irm = modregxrmx(3,reg,reg); cs.Iflags = 0; cdb.gen(&cs); cs.Iop = PSHUFD; cs.IFL2 = FLconst; cs.IEV2.Vsize_t = 0; cdb.gen(&cs); } break; } case TYlong8: case TYulong8: case TYlong4: case TYulong4: { if (config.avx && ((e1->Eoper == OPind && !e1->Ecount) || e1->Eoper == OPvar && !isregvar(e1,&varregm,&varreg)) || tysize(ty) == 32 && !isregvar(e1,&varregm,&varreg)) { goto Lint; } /* MOVD XMM1,r * PSHUFD XMM0,XMM1,0 */ regm_t regm = ALLREGS; c = codelem(e1,®m,FALSE); // eval left leaf cdb.append(c); unsigned r = findreg(regm); c = allocreg(&retregs,®, e->Ety); cdb.append(c); reg -= XMM0; cdb.gen2(LODD,modregxrmx(3,reg,r)); // MOVD reg,r cs.Iop = PSHUFD; cs.Irm = modregxrmx(3,reg,reg); cs.Iflags = 0; cs.IFL2 = FLconst; cs.IEV2.Vsize_t = 0; if (config.avx >= 2 || tysize(ty) == 32) { // VBROADCASTSS XMM,XMM cs.Iop = VBROADCASTSS; checkSetVex(&cs, ty); } cdb.gen(&cs); break; } case TYllong2: case TYullong2: case TYllong4: case TYullong4: if (config.avx || tysize(ty) >= 32) { if (e1->Eoper == OPvar) e1->EV.sp.Vsym->Sflags &= ~GTregcand; // VMOVDDUP XMM,MEM cdb.append(getlvalue(&cs, e1, 0)); // get addressing mode if ((cs.Irm & 0xC0) == 0xC0) { unsigned sreg = ((cs.Irm & 7) | (cs.Irex & REX_B ? 8 : 0)); regm_t sregm = XMMREGS; cdb.append(fixresult(e1, mask[sreg], &sregm)); unsigned rmreg = findreg(sregm); cs.Irm = (cs.Irm & ~7) | ((rmreg - XMM0) & 7); if ((rmreg - XMM0) & 8) cs.Irex |= REX_B; else cs.Irex &= ~REX_B; } cdb.append(allocreg(&retregs,®,ty)); if (config.avx >= 2 || tysize(ty) >= 32) { cs.Iop = VBROADCASTSD; cs.Irex &= ~REX_W; } else cs.Iop = MOVDDUP; code_newreg(&cs,reg - XMM0); checkSetVex(&cs,ty); cdb.gen(&cs); } else { /* MOVQ XMM0,mem128 * PUNPCKLQDQ XMM0,XMM0 */ c = codelem(e1,&retregs,FALSE); // eval left leaf cdb.append(c); unsigned reg = findreg(retregs); reg -= XMM0; //cdb.gen2(LODD,modregxrmx(3,reg,r)); // MOVQ reg,r cs.Iop = PUNPCKLQDQ; cs.Irm = modregxrmx(3,reg,reg); cs.Iflags = 0; cdb.gen(&cs); } break; default: assert(0); } c = fixresult(e,retregs,pretregs); cdb.append(c); return cdb.finish(); }
code *xmmopass(elem *e,regm_t *pretregs) { elem *e1 = e->E1; elem *e2 = e->E2; tym_t ty1 = tybasic(e1->Ety); unsigned sz1 = tysize[ty1]; regm_t rretregs = XMMREGS & ~*pretregs; if (!rretregs) rretregs = XMMREGS; code *cr = codelem(e2,&rretregs,FALSE); // eval right leaf unsigned rreg = findreg(rretregs); code cs; code *cl,*cg; regm_t retregs; unsigned reg; bool regvar = FALSE; if (config.flags4 & CFG4optimized) { // Be careful of cases like (x = x+x+x). We cannot evaluate in // x if x is in a register. unsigned varreg; regm_t varregm; if (isregvar(e1,&varregm,&varreg) && // if lvalue is register variable doinreg(e1->EV.sp.Vsym,e2) // and we can compute directly into it ) { regvar = TRUE; retregs = varregm; reg = varreg; // evaluate directly in target register cl = NULL; cg = getregs(retregs); // destroy these regs } } if (!regvar) { cl = getlvalue(&cs,e1,rretregs); // get EA retregs = *pretregs & XMMREGS & ~rretregs; if (!retregs) retregs = XMMREGS & ~rretregs; cg = allocreg(&retregs,®,ty1); cs.Iop = xmmload(ty1); // MOVSD xmm,xmm_m64 code_newreg(&cs,reg - XMM0); cg = gen(cg,&cs); } unsigned op = xmmoperator(e1->Ety, e->Eoper); code *co = gen2(CNIL,op,modregxrmx(3,reg-XMM0,rreg-XMM0)); if (!regvar) { cs.Iop = xmmstore(ty1); // reverse operand order of MOVS[SD] gen(co,&cs); } if (e1->Ecount || // if lvalue is a CSE or regvar) // rvalue can't be a CSE { cl = cat(cl,getregs_imm(retregs)); // necessary if both lvalue and // rvalue are CSEs (since a reg // can hold only one e at a time) cssave(e1,retregs,EOP(e1)); // if lvalue is a CSE } co = cat(co,fixresult(e,retregs,pretregs)); freenode(e1); return cat4(cr,cl,cg,co); }