예제 #1
0
/* axis is using another define!!! */
static bool calc_curve_deform(Scene *scene, Object *par, float co[3],
                              const short axis, CurveDeform *cd, float r_quat[4])
{
	Curve *cu = par->data;
	float fac, loc[4], dir[3], new_quat[4], radius;
	short index;
	const bool is_neg_axis = (axis > 2);

	/* to be sure, mostly after file load */
	if (ELEM(NULL, par->curve_cache, par->curve_cache->path)) {
#ifdef CYCLIC_DEPENDENCY_WORKAROUND
		BKE_displist_make_curveTypes(scene, par, false);
#endif
		if (par->curve_cache->path == NULL) {
			return 0;  // happens on append and cyclic dependencies...
		}
	}
	
	/* options */
	if (is_neg_axis) {
		index = axis - 3;
		if (cu->flag & CU_STRETCH)
			fac = (-co[index] - cd->dmax[index]) / (cd->dmax[index] - cd->dmin[index]);
		else
			fac = -(co[index] - cd->dmax[index]) / (par->curve_cache->path->totdist);
	}
	else {
		index = axis;
		if (cu->flag & CU_STRETCH) {
			fac = (co[index] - cd->dmin[index]) / (cd->dmax[index] - cd->dmin[index]);
		}
		else {
			if (LIKELY(par->curve_cache->path->totdist > FLT_EPSILON)) {
				fac = +(co[index] - cd->dmin[index]) / (par->curve_cache->path->totdist);
			}
			else {
				fac = 0.0f;
			}
		}
	}
	
	if (where_on_path_deform(par, fac, loc, dir, new_quat, &radius)) {  /* returns OK */
		float quat[4], cent[3];

		if (cd->no_rot_axis) {  /* set by caller */

			/* this is not exactly the same as 2.4x, since the axis is having rotation removed rather than
			 * changing the axis before calculating the tilt but serves much the same purpose */
			float dir_flat[3] = {0, 0, 0}, q[4];
			copy_v3_v3(dir_flat, dir);
			dir_flat[cd->no_rot_axis - 1] = 0.0f;

			normalize_v3(dir);
			normalize_v3(dir_flat);

			rotation_between_vecs_to_quat(q, dir, dir_flat); /* Could this be done faster? */

			mul_qt_qtqt(new_quat, q, new_quat);
		}


		/* Logic for 'cent' orientation *
		 *
		 * The way 'co' is copied to 'cent' may seem to have no meaning, but it does.
		 *
		 * Use a curve modifier to stretch a cube out, color each side RGB, positive side light, negative dark.
		 * view with X up (default), from the angle that you can see 3 faces RGB colors (light), anti-clockwise
		 * Notice X,Y,Z Up all have light colors and each ordered CCW.
		 *
		 * Now for Neg Up XYZ, the colors are all dark, and ordered clockwise - Campbell
		 *
		 * note: moved functions into quat_apply_track/vec_apply_track
		 * */
		copy_qt_qt(quat, new_quat);
		copy_v3_v3(cent, co);

		/* zero the axis which is not used,
		 * the big block of text above now applies to these 3 lines */
		quat_apply_track(quat, axis, (axis == 0 || axis == 2) ? 1 : 0); /* up flag is a dummy, set so no rotation is done */
		vec_apply_track(cent, axis);
		cent[index] = 0.0f;


		/* scale if enabled */
		if (cu->flag & CU_PATH_RADIUS)
			mul_v3_fl(cent, radius);
		
		/* local rotation */
		normalize_qt(quat);
		mul_qt_v3(quat, cent);

		/* translation */
		add_v3_v3v3(co, cent, loc);

		if (r_quat)
			copy_qt_qt(r_quat, quat);

		return 1;
	}
	return 0;
}
예제 #2
0
	/* axis is using another define!!! */
static int calc_curve_deform(Scene *scene, Object *par, float *co, short axis, CurveDeform *cd, float *quatp)
{
	Curve *cu= par->data;
	float fac, loc[4], dir[3], new_quat[4], radius;
	short /*upflag, */ index;

	index= axis-1;
	if(index>2)
		index -= 3; /* negative  */

	/* to be sure, mostly after file load */
	if(cu->path==NULL) {
		makeDispListCurveTypes(scene, par, 0);
		if(cu->path==NULL) return 0;	// happens on append...
	}
	
	/* options */
	if(ELEM3(axis, OB_NEGX+1, OB_NEGY+1, OB_NEGZ+1)) { /* OB_NEG# 0-5, MOD_CURVE_POS# 1-6 */
		if(cu->flag & CU_STRETCH)
			fac= (-co[index]-cd->dmax[index])/(cd->dmax[index] - cd->dmin[index]);
		else
			fac= (cd->dloc[index])/(cu->path->totdist) - (co[index]-cd->dmax[index])/(cu->path->totdist);
	}
	else {
		if(cu->flag & CU_STRETCH)
			fac= (co[index]-cd->dmin[index])/(cd->dmax[index] - cd->dmin[index]);
		else
			fac= (cd->dloc[index])/(cu->path->totdist) + (co[index]-cd->dmin[index])/(cu->path->totdist);
	}
	
#if 0 // XXX old animation system
	/* we want the ipo to work on the default 100 frame range, because there's no  
	   actual time involved in path position */
	// huh? by WHY!!!!???? - Aligorith
	if(cu->ipo) {
		fac*= 100.0f;
		if(calc_ipo_spec(cu->ipo, CU_SPEED, &fac)==0)
			fac/= 100.0;
	}
#endif // XXX old animation system
	
	if( where_on_path_deform(par, fac, loc, dir, new_quat, &radius)) {	/* returns OK */
		float quat[4], cent[3];

#if 0	// XXX - 2.4x Z-Up, Now use bevel tilt.
		if(cd->no_rot_axis)	/* set by caller */
			dir[cd->no_rot_axis-1]= 0.0f;
		
		/* -1 for compatibility with old track defines */
		vec_to_quat( quat,dir, axis-1, upflag);
		
		/* the tilt */
		if(loc[3]!=0.0) {
			normalize_v3(dir);
			q[0]= (float)cos(0.5*loc[3]);
			fac= (float)sin(0.5*loc[3]);
			q[1]= -fac*dir[0];
			q[2]= -fac*dir[1];
			q[3]= -fac*dir[2];
			mul_qt_qtqt(quat, q, quat);
		}
#endif

		if(cd->no_rot_axis) {	/* set by caller */

			/* this is not exactly the same as 2.4x, since the axis is having rotation removed rather than
			 * changing the axis before calculating the tilt but serves much the same purpose */
			float dir_flat[3]={0,0,0}, q[4];
			copy_v3_v3(dir_flat, dir);
			dir_flat[cd->no_rot_axis-1]= 0.0f;

			normalize_v3(dir);
			normalize_v3(dir_flat);

			rotation_between_vecs_to_quat(q, dir, dir_flat); /* Could this be done faster? */

			mul_qt_qtqt(new_quat, q, new_quat);
		}


		/* Logic for 'cent' orientation *
		 *
		 * The way 'co' is copied to 'cent' may seem to have no meaning, but it does.
		 *
		 * Use a curve modifier to stretch a cube out, color each side RGB, positive side light, negative dark.
		 * view with X up (default), from the angle that you can see 3 faces RGB colors (light), anti-clockwise
		 * Notice X,Y,Z Up all have light colors and each ordered CCW.
		 *
		 * Now for Neg Up XYZ, the colors are all dark, and ordered clockwise - Campbell
		 *
		 * note: moved functions into quat_apply_track/vec_apply_track
		 * */
		copy_qt_qt(quat, new_quat);
		copy_v3_v3(cent, co);

		/* zero the axis which is not used,
		 * the big block of text above now applies to these 3 lines */
		quat_apply_track(quat, axis-1, (axis==1 || axis==3) ? 1:0); /* up flag is a dummy, set so no rotation is done */
		vec_apply_track(cent, axis-1);
		cent[axis < 4 ? axis-1 : axis-4]= 0.0f;


		/* scale if enabled */
		if(cu->flag & CU_PATH_RADIUS)
			mul_v3_fl(cent, radius);
		
		/* local rotation */
		normalize_qt(quat);
		mul_qt_v3(quat, cent);

		/* translation */
		add_v3_v3v3(co, cent, loc);

		if(quatp)
			copy_qt_qt(quatp, quat);

		return 1;
	}
	return 0;
}
예제 #3
0
static void do_physical_effector(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, float *total_force)
{
	PartDeflect *pd = eff->pd;
	RNG *rng = pd->rng;
	float force[3] = {0, 0, 0};
	float temp[3];
	float fac;
	float strength = pd->f_strength;
	float damp = pd->f_damp;
	float noise_factor = pd->f_noise;

	if (noise_factor > 0.0f) {
		strength += wind_func(rng, noise_factor);

		if (ELEM(pd->forcefield, PFIELD_HARMONIC, PFIELD_DRAG))
			damp += wind_func(rng, noise_factor);
	}

	copy_v3_v3(force, efd->vec_to_point);

	switch (pd->forcefield) {
		case PFIELD_WIND:
			copy_v3_v3(force, efd->nor);
			mul_v3_fl(force, strength * efd->falloff);
			break;
		case PFIELD_FORCE:
			normalize_v3(force);
			mul_v3_fl(force, strength * efd->falloff);
			break;
		case PFIELD_VORTEX:
			/* old vortex force */
			if (pd->shape == PFIELD_SHAPE_POINT) {
				cross_v3_v3v3(force, efd->nor, efd->vec_to_point);
				normalize_v3(force);
				mul_v3_fl(force, strength * efd->distance * efd->falloff);
			}
			else {
				/* new vortex force */
				cross_v3_v3v3(temp, efd->nor2, efd->vec_to_point2);
				mul_v3_fl(temp, strength * efd->falloff);
				
				cross_v3_v3v3(force, efd->nor2, temp);
				mul_v3_fl(force, strength * efd->falloff);
				
				madd_v3_v3fl(temp, point->vel, -point->vel_to_sec);
				add_v3_v3(force, temp);
			}
			break;
		case PFIELD_MAGNET:
			if (eff->pd->shape == PFIELD_SHAPE_POINT)
				/* magnetic field of a moving charge */
				cross_v3_v3v3(temp, efd->nor, efd->vec_to_point);
			else
				copy_v3_v3(temp, efd->nor);

			normalize_v3(temp);
			mul_v3_fl(temp, strength * efd->falloff);
			cross_v3_v3v3(force, point->vel, temp);
			mul_v3_fl(force, point->vel_to_sec);
			break;
		case PFIELD_HARMONIC:
			mul_v3_fl(force, -strength * efd->falloff);
			copy_v3_v3(temp, point->vel);
			mul_v3_fl(temp, -damp * 2.0f * sqrtf(fabsf(strength)) * point->vel_to_sec);
			add_v3_v3(force, temp);
			break;
		case PFIELD_CHARGE:
			mul_v3_fl(force, point->charge * strength * efd->falloff);
			break;
		case PFIELD_LENNARDJ:
			fac = pow((efd->size + point->size) / efd->distance, 6.0);
			
			fac = - fac * (1.0f - fac) / efd->distance;

			/* limit the repulsive term drastically to avoid huge forces */
			fac = ((fac>2.0f) ? 2.0f : fac);

			mul_v3_fl(force, strength * fac);
			break;
		case PFIELD_BOID:
			/* Boid field is handled completely in boids code. */
			return;
		case PFIELD_TURBULENCE:
			if (pd->flag & PFIELD_GLOBAL_CO) {
				copy_v3_v3(temp, point->loc);
			}
			else {
				add_v3_v3v3(temp, efd->vec_to_point2, efd->nor2);
			}
			force[0] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[0], temp[1], temp[2], 2, 0, 2);
			force[1] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[1], temp[2], temp[0], 2, 0, 2);
			force[2] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[2], temp[0], temp[1], 2, 0, 2);
			mul_v3_fl(force, strength * efd->falloff);
			break;
		case PFIELD_DRAG:
			copy_v3_v3(force, point->vel);
			fac = normalize_v3(force) * point->vel_to_sec;

			strength = MIN2(strength, 2.0f);
			damp = MIN2(damp, 2.0f);

			mul_v3_fl(force, -efd->falloff * fac * (strength * fac + damp));
			break;
		case PFIELD_SMOKEFLOW:
			zero_v3(force);
			if (pd->f_source) {
				float density;
				if ((density = smoke_get_velocity_at(pd->f_source, point->loc, force)) >= 0.0f) {
					float influence = strength * efd->falloff;
					if (pd->flag & PFIELD_SMOKE_DENSITY)
						influence *= density;
					mul_v3_fl(force, influence);
					/* apply flow */
					madd_v3_v3fl(total_force, point->vel, -pd->f_flow * influence);
				}
			}
			break;

	}

	if (pd->flag & PFIELD_DO_LOCATION) {
		madd_v3_v3fl(total_force, force, 1.0f/point->vel_to_sec);

		if (ELEM(pd->forcefield, PFIELD_HARMONIC, PFIELD_DRAG, PFIELD_SMOKEFLOW)==0 && pd->f_flow != 0.0f) {
			madd_v3_v3fl(total_force, point->vel, -pd->f_flow * efd->falloff);
		}
	}

	if (point->ave)
		zero_v3(point->ave);
	if (pd->flag & PFIELD_DO_ROTATION && point->ave && point->rot) {
		float xvec[3] = {1.0f, 0.0f, 0.0f};
		float dave[3];
		mul_qt_v3(point->rot, xvec);
		cross_v3_v3v3(dave, xvec, force);
		if (pd->f_flow != 0.0f) {
			madd_v3_v3fl(dave, point->ave, -pd->f_flow * efd->falloff);
		}
		add_v3_v3(point->ave, dave);
	}
}
예제 #4
0
파일: boids.c 프로젝트: mik0001/Blender
/* tries to realize the wanted velocity taking all constraints into account */
void boid_body(BoidBrainData *bbd, ParticleData *pa)
{
	BoidSettings *boids = bbd->part->boids;
	BoidParticle *bpa = pa->boid;
	BoidValues val;
	EffectedPoint epoint;
	float acc[3] = {0.0f, 0.0f, 0.0f}, tan_acc[3], nor_acc[3];
	float dvec[3], bvec[3];
	float new_dir[3], new_speed;
	float old_dir[3], old_speed;
	float wanted_dir[3];
	float q[4], mat[3][3]; /* rotation */
	float ground_co[3] = {0.0f, 0.0f, 0.0f}, ground_nor[3] = {0.0f, 0.0f, 1.0f};
	float force[3] = {0.0f, 0.0f, 0.0f};
	float pa_mass=bbd->part->mass, dtime=bbd->dfra*bbd->timestep;

	set_boid_values(&val, boids, pa);

	/* make sure there's something in new velocity, location & rotation */
	copy_particle_key(&pa->state,&pa->prev_state,0);

	if(bbd->part->flag & PART_SIZEMASS)
		pa_mass*=pa->size;

	/* if boids can't fly they fall to the ground */
	if((boids->options & BOID_ALLOW_FLIGHT)==0 && ELEM(bpa->data.mode, eBoidMode_OnLand, eBoidMode_Climbing)==0 && psys_uses_gravity(bbd->sim))
		bpa->data.mode = eBoidMode_Falling;

	if(bpa->data.mode == eBoidMode_Falling) {
		/* Falling boids are only effected by gravity. */
		acc[2] = bbd->sim->scene->physics_settings.gravity[2];
	}
	else {
		/* figure out acceleration */
		float landing_level = 2.0f;
		float level = landing_level + 1.0f;
		float new_vel[3];

		if(bpa->data.mode == eBoidMode_Liftoff) {
			bpa->data.mode = eBoidMode_InAir;
			bpa->ground = boid_find_ground(bbd, pa, ground_co, ground_nor);
		}
		else if(bpa->data.mode == eBoidMode_InAir && boids->options & BOID_ALLOW_LAND) {
			/* auto-leveling & landing if close to ground */

			bpa->ground = boid_find_ground(bbd, pa, ground_co, ground_nor);
			
			/* level = how many particle sizes above ground */
			level = (pa->prev_state.co[2] - ground_co[2])/(2.0f * pa->size) - 0.5f;

			landing_level = - boids->landing_smoothness * pa->prev_state.vel[2] * pa_mass;

			if(pa->prev_state.vel[2] < 0.0f) {
				if(level < 1.0f) {
					bbd->wanted_co[0] = bbd->wanted_co[1] = bbd->wanted_co[2] = 0.0f;
					bbd->wanted_speed = 0.0f;
					bpa->data.mode = eBoidMode_Falling;
				}
				else if(level < landing_level) {
					bbd->wanted_speed *= (level - 1.0f)/landing_level;
					bbd->wanted_co[2] *= (level - 1.0f)/landing_level;
				}
			}
		}

		copy_v3_v3(old_dir, pa->prev_state.ave);
		new_speed = normalize_v3_v3(wanted_dir, bbd->wanted_co);

		/* first check if we have valid direction we want to go towards */
		if(new_speed == 0.0f) {
			copy_v3_v3(new_dir, old_dir);
		}
		else {
			float old_dir2[2], wanted_dir2[2], nor[3], angle;
			copy_v2_v2(old_dir2, old_dir);
			normalize_v2(old_dir2);
			copy_v2_v2(wanted_dir2, wanted_dir);
			normalize_v2(wanted_dir2);

			/* choose random direction to turn if wanted velocity */
			/* is directly behind regardless of z-coordinate */
			if(dot_v2v2(old_dir2, wanted_dir2) < -0.99f) {
				wanted_dir[0] = 2.0f*(0.5f - BLI_frand());
				wanted_dir[1] = 2.0f*(0.5f - BLI_frand());
				wanted_dir[2] = 2.0f*(0.5f - BLI_frand());
				normalize_v3(wanted_dir);
			}

			/* constrain direction with maximum angular velocity */
			angle = saacos(dot_v3v3(old_dir, wanted_dir));
			angle = MIN2(angle, val.max_ave);

			cross_v3_v3v3(nor, old_dir, wanted_dir);
			axis_angle_to_quat( q,nor, angle);
			copy_v3_v3(new_dir, old_dir);
			mul_qt_v3(q, new_dir);
			normalize_v3(new_dir);

			/* save direction in case resulting velocity too small */
			axis_angle_to_quat( q,nor, angle*dtime);
			copy_v3_v3(pa->state.ave, old_dir);
			mul_qt_v3(q, pa->state.ave);
			normalize_v3(pa->state.ave);
		}

		/* constrain speed with maximum acceleration */
		old_speed = len_v3(pa->prev_state.vel);
		
		if(bbd->wanted_speed < old_speed)
			new_speed = MAX2(bbd->wanted_speed, old_speed - val.max_acc);
		else
			new_speed = MIN2(bbd->wanted_speed, old_speed + val.max_acc);

		/* combine direction and speed */
		copy_v3_v3(new_vel, new_dir);
		mul_v3_fl(new_vel, new_speed);

		/* maintain minimum flying velocity if not landing */
		if(level >= landing_level) {
			float len2 = dot_v2v2(new_vel,new_vel);
			float root;

			len2 = MAX2(len2, val.min_speed*val.min_speed);
			root = sasqrt(new_speed*new_speed - len2);

			new_vel[2] = new_vel[2] < 0.0f ? -root : root;

			normalize_v2(new_vel);
			mul_v2_fl(new_vel, sasqrt(len2));
		}

		/* finally constrain speed to max speed */
		new_speed = normalize_v3(new_vel);
		mul_v3_fl(new_vel, MIN2(new_speed, val.max_speed));

		/* get acceleration from difference of velocities */
		sub_v3_v3v3(acc, new_vel, pa->prev_state.vel);

		/* break acceleration to components */
		project_v3_v3v3(tan_acc, acc, pa->prev_state.ave);
		sub_v3_v3v3(nor_acc, acc, tan_acc);
	}

	/* account for effectors */
	pd_point_from_particle(bbd->sim, pa, &pa->state, &epoint);
	pdDoEffectors(bbd->sim->psys->effectors, bbd->sim->colliders, bbd->part->effector_weights, &epoint, force, NULL);

	if(ELEM(bpa->data.mode, eBoidMode_OnLand, eBoidMode_Climbing)) {
		float length = normalize_v3(force);

		length = MAX2(0.0f, length - boids->land_stick_force);

		mul_v3_fl(force, length);
	}
	
	add_v3_v3(acc, force);

	/* store smoothed acceleration for nice banking etc. */
	madd_v3_v3fl(bpa->data.acc, acc, dtime);
	mul_v3_fl(bpa->data.acc, 1.0f / (1.0f + dtime));

	/* integrate new location & velocity */

	/* by regarding the acceleration as a force at this stage we*/
	/* can get better control allthough it's a bit unphysical	*/
	mul_v3_fl(acc, 1.0f/pa_mass);

	copy_v3_v3(dvec, acc);
	mul_v3_fl(dvec, dtime*dtime*0.5f);
	
	copy_v3_v3(bvec, pa->prev_state.vel);
	mul_v3_fl(bvec, dtime);
	add_v3_v3(dvec, bvec);
	add_v3_v3(pa->state.co, dvec);

	madd_v3_v3fl(pa->state.vel, acc, dtime);

	//if(bpa->data.mode != eBoidMode_InAir)
	bpa->ground = boid_find_ground(bbd, pa, ground_co, ground_nor);

	/* change modes, constrain movement & keep track of down vector */
	switch(bpa->data.mode) {
		case eBoidMode_InAir:
		{
			float grav[3];

			grav[0]= 0.0f;
			grav[1]= 0.0f;
			grav[2]= bbd->sim->scene->physics_settings.gravity[2] < 0.0f ? -1.0f : 0.0f;

			/* don't take forward acceleration into account (better banking) */
			if(dot_v3v3(bpa->data.acc, pa->state.vel) > 0.0f) {
				project_v3_v3v3(dvec, bpa->data.acc, pa->state.vel);
				sub_v3_v3v3(dvec, bpa->data.acc, dvec);
			}
			else {
				copy_v3_v3(dvec, bpa->data.acc);
			}

			/* gather apparent gravity */
			madd_v3_v3v3fl(bpa->gravity, grav, dvec, -boids->banking);
			normalize_v3(bpa->gravity);

			/* stick boid on goal when close enough */
			if(bbd->goal_ob && boid_goal_signed_dist(pa->state.co, bbd->goal_co, bbd->goal_nor) <= pa->size * boids->height) {
				bpa->data.mode = eBoidMode_Climbing;
				bpa->ground = bbd->goal_ob;
				boid_find_ground(bbd, pa, ground_co, ground_nor);
				boid_climb(boids, pa, ground_co, ground_nor);
			}
			else if(pa->state.co[2] <= ground_co[2] + pa->size * boids->height) {
				/* land boid when below ground */
				if(boids->options & BOID_ALLOW_LAND) {
					pa->state.co[2] = ground_co[2] + pa->size * boids->height;
					pa->state.vel[2] = 0.0f;
					bpa->data.mode = eBoidMode_OnLand;
				}
				/* fly above ground */
				else if(bpa->ground) {
					pa->state.co[2] = ground_co[2] + pa->size * boids->height;
					pa->state.vel[2] = 0.0f;
				}
			}
			break;
		}
		case eBoidMode_Falling:
		{
			float grav[3];

			grav[0]= 0.0f;
			grav[1]= 0.0f;
			grav[2]= bbd->sim->scene->physics_settings.gravity[2] < 0.0f ? -1.0f : 0.0f;


			/* gather apparent gravity */
			madd_v3_v3fl(bpa->gravity, grav, dtime);
			normalize_v3(bpa->gravity);

			if(boids->options & BOID_ALLOW_LAND) {
				/* stick boid on goal when close enough */
				if(bbd->goal_ob && boid_goal_signed_dist(pa->state.co, bbd->goal_co, bbd->goal_nor) <= pa->size * boids->height) {
					bpa->data.mode = eBoidMode_Climbing;
					bpa->ground = bbd->goal_ob;
					boid_find_ground(bbd, pa, ground_co, ground_nor);
					boid_climb(boids, pa, ground_co, ground_nor);
				}
				/* land boid when really near ground */
				else if(pa->state.co[2] <= ground_co[2] + 1.01f * pa->size * boids->height){
					pa->state.co[2] = ground_co[2] + pa->size * boids->height;
					pa->state.vel[2] = 0.0f;
					bpa->data.mode = eBoidMode_OnLand;
				}
				/* if we're falling, can fly and want to go upwards lets fly */
				else if(boids->options & BOID_ALLOW_FLIGHT && bbd->wanted_co[2] > 0.0f)
					bpa->data.mode = eBoidMode_InAir;
			}
			else
				bpa->data.mode = eBoidMode_InAir;
			break;
		}
		case eBoidMode_Climbing:
		{
			boid_climb(boids, pa, ground_co, ground_nor);
			//float nor[3];
			//copy_v3_v3(nor, ground_nor);

			///* gather apparent gravity to r_ve */
			//madd_v3_v3fl(pa->r_ve, ground_nor, -1.0);
			//normalize_v3(pa->r_ve);

			///* raise boid it's size from surface */
			//mul_v3_fl(nor, pa->size * boids->height);
			//add_v3_v3v3(pa->state.co, ground_co, nor);

			///* remove normal component from velocity */
			//project_v3_v3v3(v, pa->state.vel, ground_nor);
			//sub_v3_v3v3(pa->state.vel, pa->state.vel, v);
			break;
		}
		case eBoidMode_OnLand:
		{
			/* stick boid on goal when close enough */
			if(bbd->goal_ob && boid_goal_signed_dist(pa->state.co, bbd->goal_co, bbd->goal_nor) <= pa->size * boids->height) {
				bpa->data.mode = eBoidMode_Climbing;
				bpa->ground = bbd->goal_ob;
				boid_find_ground(bbd, pa, ground_co, ground_nor);
				boid_climb(boids, pa, ground_co, ground_nor);
			}
			/* ground is too far away so boid falls */
			else if(pa->state.co[2]-ground_co[2] > 1.1f * pa->size * boids->height)
				bpa->data.mode = eBoidMode_Falling;
			else {
				/* constrain to surface */
				pa->state.co[2] = ground_co[2] + pa->size * boids->height;
				pa->state.vel[2] = 0.0f;
			}

			if(boids->banking > 0.0f) {
				float grav[3];
				/* Don't take gravity's strength in to account, */
				/* otherwise amount of banking is hard to control. */
				negate_v3_v3(grav, ground_nor);

				project_v3_v3v3(dvec, bpa->data.acc, pa->state.vel);
				sub_v3_v3v3(dvec, bpa->data.acc, dvec);

				/* gather apparent gravity */
				madd_v3_v3v3fl(bpa->gravity, grav, dvec, -boids->banking);
				normalize_v3(bpa->gravity);
			}
			else {
				/* gather negative surface normal */
				madd_v3_v3fl(bpa->gravity, ground_nor, -1.0f);
				normalize_v3(bpa->gravity);
			}
			break;
		}
	}

	/* save direction to state.ave unless the boid is falling */
	/* (boids can't effect their direction when falling) */
	if(bpa->data.mode!=eBoidMode_Falling && len_v3(pa->state.vel) > 0.1f*pa->size) {
		copy_v3_v3(pa->state.ave, pa->state.vel);
		pa->state.ave[2] *= bbd->part->boids->pitch;
		normalize_v3(pa->state.ave);
	}

	/* apply damping */
	if(ELEM(bpa->data.mode, eBoidMode_OnLand, eBoidMode_Climbing))
		mul_v3_fl(pa->state.vel, 1.0f - 0.2f*bbd->part->dampfac);

	/* calculate rotation matrix based on forward & down vectors */
	if(bpa->data.mode == eBoidMode_InAir) {
		copy_v3_v3(mat[0], pa->state.ave);

		project_v3_v3v3(dvec, bpa->gravity, pa->state.ave);
		sub_v3_v3v3(mat[2], bpa->gravity, dvec);
		normalize_v3(mat[2]);
	}
	else {
		project_v3_v3v3(dvec, pa->state.ave, bpa->gravity);
		sub_v3_v3v3(mat[0], pa->state.ave, dvec);
		normalize_v3(mat[0]);

		copy_v3_v3(mat[2], bpa->gravity);
	}
	negate_v3(mat[2]);
	cross_v3_v3v3(mat[1], mat[2], mat[0]);
	
	/* apply rotation */
	mat3_to_quat_is_ok( q,mat);
	copy_qt_qt(pa->state.rot, q);
}
예제 #5
0
int get_effector_data(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, int real_velocity)
{
	float cfra = eff->scene->r.cfra;
	int ret = 0;

	if (eff->pd && eff->pd->shape==PFIELD_SHAPE_SURFACE && eff->surmd) {
		/* closest point in the object surface is an effector */
		float vec[3];

		/* using velocity corrected location allows for easier sliding over effector surface */
		copy_v3_v3(vec, point->vel);
		mul_v3_fl(vec, point->vel_to_frame);
		add_v3_v3(vec, point->loc);

		ret = closest_point_on_surface(eff->surmd, vec, efd->loc, efd->nor, real_velocity ? efd->vel : NULL);

		efd->size = 0.0f;
	}
	else if (eff->pd && eff->pd->shape==PFIELD_SHAPE_POINTS) {

		if (eff->ob->derivedFinal) {
			DerivedMesh *dm = eff->ob->derivedFinal;

			dm->getVertCo(dm, *efd->index, efd->loc);
			dm->getVertNo(dm, *efd->index, efd->nor);

			mul_m4_v3(eff->ob->obmat, efd->loc);
			mul_mat3_m4_v3(eff->ob->obmat, efd->nor);

			normalize_v3(efd->nor);

			efd->size = 0.0f;

			/**/
			ret = 1;
		}
	}
	else if (eff->psys) {
		ParticleData *pa = eff->psys->particles + *efd->index;
		ParticleKey state;

		/* exclude the particle itself for self effecting particles */
		if (eff->psys == point->psys && *efd->index == point->index) {
			/* pass */
		}
		else {
			ParticleSimulationData sim= {NULL};
			sim.scene= eff->scene;
			sim.ob= eff->ob;
			sim.psys= eff->psys;

			/* TODO: time from actual previous calculated frame (step might not be 1) */
			state.time = cfra - 1.0f;
			ret = psys_get_particle_state(&sim, *efd->index, &state, 0);

			/* TODO */
			//if (eff->pd->forcefiled == PFIELD_HARMONIC && ret==0) {
			//	if (pa->dietime < eff->psys->cfra)
			//		eff->flag |= PE_VELOCITY_TO_IMPULSE;
			//}

			copy_v3_v3(efd->loc, state.co);

			/* rather than use the velocity use rotated x-axis (defaults to velocity) */
			efd->nor[0] = 1.f;
			efd->nor[1] = efd->nor[2] = 0.f;
			mul_qt_v3(state.rot, efd->nor);
		
			if (real_velocity)
				copy_v3_v3(efd->vel, state.vel);

			efd->size = pa->size;
		}
	}
	else {
		/* use center of object for distance calculus */
		const Object *ob = eff->ob;

		/* use z-axis as normal*/
		normalize_v3_v3(efd->nor, ob->obmat[2]);

		if (eff->pd && eff->pd->shape == PFIELD_SHAPE_PLANE) {
			float temp[3], translate[3];
			sub_v3_v3v3(temp, point->loc, ob->obmat[3]);
			project_v3_v3v3(translate, temp, efd->nor);

			/* for vortex the shape chooses between old / new force */
			if (eff->pd->forcefield == PFIELD_VORTEX)
				add_v3_v3v3(efd->loc, ob->obmat[3], translate);
			else /* normally efd->loc is closest point on effector xy-plane */
				sub_v3_v3v3(efd->loc, point->loc, translate);
		}
		else {
			copy_v3_v3(efd->loc, ob->obmat[3]);
		}

		if (real_velocity)
			copy_v3_v3(efd->vel, eff->velocity);

		efd->size = 0.0f;

		ret = 1;
	}

	if (ret) {
		sub_v3_v3v3(efd->vec_to_point, point->loc, efd->loc);
		efd->distance = len_v3(efd->vec_to_point);

		/* rest length for harmonic effector, will have to see later if this could be extended to other effectors */
		if (eff->pd && eff->pd->forcefield == PFIELD_HARMONIC && eff->pd->f_size)
			mul_v3_fl(efd->vec_to_point, (efd->distance-eff->pd->f_size)/efd->distance);

		if (eff->flag & PE_USE_NORMAL_DATA) {
			copy_v3_v3(efd->vec_to_point2, efd->vec_to_point);
			copy_v3_v3(efd->nor2, efd->nor);
		}
		else {
			/* for some effectors we need the object center every time */
			sub_v3_v3v3(efd->vec_to_point2, point->loc, eff->ob->obmat[3]);
			normalize_v3_v3(efd->nor2, eff->ob->obmat[2]);
		}
	}

	return ret;
}