void MapgenV6::addMud() { // 15ms @cs=8 //TimeTaker timer1("add mud"); MapNode n_dirt(c_dirt), n_gravel(c_gravel); MapNode n_sand(c_sand), n_desert_sand(c_desert_sand); MapNode addnode; u32 index = 0; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 x = node_min.X; x <= node_max.X; x++, index++) { // Randomize mud amount s16 mud_add_amount = getMudAmount(index) / 2.0 + 0.5; // Find ground level s16 surface_y = find_stone_level(v2s16(x, z)); /////////////////optimize this! // Handle area not found if (surface_y == vm->m_area.MinEdge.Y - 1) continue; BiomeV6Type bt = getBiome(v3POS(x, surface_y, z)); addnode = (bt == BT_DESERT) ? n_desert_sand : n_dirt; if (bt == BT_DESERT && surface_y + mud_add_amount <= water_level + 1) { addnode = n_sand; } else if (mud_add_amount <= 0) { mud_add_amount = 1 - mud_add_amount; addnode = n_gravel; } else if (bt != BT_DESERT && getHaveBeach(index) && surface_y + mud_add_amount <= water_level + 2) { addnode = n_sand; } if ((bt == BT_DESERT || bt == BT_TUNDRA) && surface_y > 20) mud_add_amount = MYMAX(0, mud_add_amount - (surface_y - 20) / 5); /* If topmost node is grass, change it to mud. It might be if it was // flown to there from a neighboring chunk and then converted. u32 i = vm->m_area.index(x, surface_y, z); if (vm->m_data[i].getContent() == c_dirt_with_grass) vm->m_data[i] = n_dirt;*/ // Add mud on ground s16 mudcount = 0; v3s16 em = vm->m_area.getExtent(); s16 y_start = surface_y + 1; u32 i = vm->m_area.index(x, y_start, z); for (s16 y = y_start; y <= node_max.Y; y++) { if (mudcount >= mud_add_amount) break; vm->m_data[i] = addnode; mudcount++; vm->m_area.add_y(em, i, 1); } } }
int MapgenIndev::generateGround() { //TimeTaker timer1("Generating ground level"); MapNode n_air(CONTENT_AIR), n_water_source(c_water_source); MapNode n_stone(c_stone), n_desert_stone(c_desert_stone); MapNode n_ice(c_ice), n_dirt(c_dirt),n_sand(c_sand), n_gravel(c_gravel), n_lava_source(c_lava_source); int stone_surface_max_y = -MAX_MAP_GENERATION_LIMIT; u32 index = 0; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 x = node_min.X; x <= node_max.X; x++, index++) { // Surface height s16 surface_y = (s16)baseTerrainLevelFromMap(index); // Log it if (surface_y > stone_surface_max_y) stone_surface_max_y = surface_y; auto bt = getBiome(index, v3POS(x, surface_y, z)); s16 heat = m_emerge->env->m_use_weather ? m_emerge->env->getServerMap().updateBlockHeat(m_emerge->env, v3POS(x,node_max.Y,z), nullptr, &heat_cache) : 0; // Fill ground with stone v3POS em = vm->m_area.getExtent(); u32 i = vm->m_area.index(x, node_min.Y, z); for (s16 y = node_min.Y; y <= node_max.Y; y++) { if (!vm->m_data[i]) { if (y <= surface_y) { int index3 = (z - node_min.Z) * zstride + (y - node_min.Y) * ystride + (x - node_min.X) * xstride; if (cave_noise_threshold && noise_cave_indev->result[index3] > cave_noise_threshold) { vm->m_data[i] = n_air; } else { auto n = (y > water_level - surface_y && bt == BT_DESERT) ? n_desert_stone : layers_get(index3); bool protect = n.getContent() != CONTENT_AIR; if (cave_noise_threshold && noise_cave_indev->result[index3] > cave_noise_threshold - 50) { vm->m_data[i] = protect ? n_stone : n; //cave shell without layers protect = true; } else { vm->m_data[i] = n; } if (protect) vm->m_flags[i] |= VOXELFLAG_CHECKED2; // no cave liquid } } else if (y <= water_level) { vm->m_data[i] = (heat < 0 && y > heat/3) ? n_ice : n_water_source; if (liquid_pressure && y <= 0) vm->m_data[i].addLevel(m_emerge->ndef, water_level - y, 1); } else { vm->m_data[i] = n_air; } } vm->m_area.add_y(em, i, 1); } } return stone_surface_max_y; }
int MapgenValleys::generateTerrain() { MapNode n_air(CONTENT_AIR); MapNode n_river_water(c_river_water_source); MapNode n_sand(c_sand); MapNode n_stone(c_stone); MapNode n_water(c_water_source); v3s16 em = vm->m_area.getExtent(); s16 surface_max_y = -MAX_MAP_GENERATION_LIMIT; u32 index_2d = 0; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 x = node_min.X; x <= node_max.X; x++, index_2d++) { s16 river_y = floor(noise_rivers->result[index_2d]); s16 surface_y = floor(noise_terrain_height->result[index_2d]); float slope = noise_inter_valley_slope->result[index_2d]; heightmap[index_2d] = surface_y; if (surface_y > surface_max_y) surface_max_y = surface_y; u32 index_3d = (z - node_min.Z) * zstride + (x - node_min.X); u32 index_data = vm->m_area.index(x, node_min.Y - 1, z); // Mapgens concern themselves with stone and water. for (s16 y = node_min.Y - 1; y <= node_max.Y + 1; y++) { float fill = 0.f; fill = noise_inter_valley_fill->result[index_3d]; if (vm->m_data[index_data].getContent() == CONTENT_IGNORE) { bool river = (river_y > surface_y); if (river && y == surface_y) { // river bottom vm->m_data[index_data] = n_sand; } else if (river && y <= surface_y) { // ground vm->m_data[index_data] = n_stone; } else if (river && y < river_y) { // river vm->m_data[index_data] = n_river_water; } else if ((!river) && myround(fill * slope) >= y - surface_y) { // ground vm->m_data[index_data] = n_stone; heightmap[index_2d] = surface_max_y = y; } else if (y <= water_level) { // sea vm->m_data[index_data] = n_water; } else { vm->m_data[index_data] = n_air; } } vm->m_area.add_y(em, index_data, 1); index_3d += ystride; } // Although the original valleys adjusts humidity by distance // from seawater, this causes problems with the default biomes. // Adjust only by freshwater proximity. const float humidity_offset = 0.8f; // derived by testing if (humid_rivers) noise_humidity->result[index_2d] *= (1 + pow(0.5f, MYMAX((surface_max_y - noise_rivers->result[index_2d]) / 3.f, 0.f))) * humidity_offset; // Assign the heat adjusted by altitude. if (use_altitude_chill && surface_max_y > 0) noise_heat->result[index_2d] *= pow(0.5f, (surface_max_y - altitude_chill / 3.f) / altitude_chill); } return surface_max_y; }
int MapgenValleys::generateTerrain() { // Raising this reduces the rate of evaporation. static const float evaporation = 300.f; // from the lua static const float humidity_dropoff = 4.f; // constant to convert altitude chill (compatible with lua) to heat static const float alt_to_heat = 20.f; // humidity reduction by altitude static const float alt_to_humid = 10.f; MapNode n_air(CONTENT_AIR); MapNode n_river_water(c_river_water_source); MapNode n_sand(c_sand); MapNode n_stone(c_stone); MapNode n_water(c_water_source); v3s16 em = vm->m_area.getExtent(); s16 surface_max_y = -MAX_MAP_GENERATION_LIMIT; u32 index_2d = 0; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 x = node_min.X; x <= node_max.X; x++, index_2d++) { float river_y = noise_rivers->result[index_2d]; float surface_y = noise_terrain_height->result[index_2d]; float slope = noise_inter_valley_slope->result[index_2d]; float t_heat = m_bgen->heatmap[index_2d]; heightmap[index_2d] = -MAX_MAP_GENERATION_LIMIT; if (surface_y > surface_max_y) surface_max_y = ceil(surface_y); if (humid_rivers) { // Derive heat from (base) altitude. This will be most correct // at rivers, since other surface heights may vary below. if (use_altitude_chill && (surface_y > 0.f || river_y > 0.f)) t_heat -= alt_to_heat * MYMAX(surface_y, river_y) / altitude_chill; // If humidity is low or heat is high, lower the water table. float delta = m_bgen->humidmap[index_2d] - 50.f; if (delta < 0.f) { float t_evap = (t_heat - 32.f) / evaporation; river_y += delta * MYMAX(t_evap, 0.08f); } } u32 index_3d = (z - node_min.Z) * zstride_1u1d + (x - node_min.X); u32 index_data = vm->m_area.index(x, node_min.Y - 1, z); // Mapgens concern themselves with stone and water. for (s16 y = node_min.Y - 1; y <= node_max.Y + 1; y++) { if (vm->m_data[index_data].getContent() == CONTENT_IGNORE) { float fill = noise_inter_valley_fill->result[index_3d]; float surface_delta = (float)y - surface_y; bool river = y + 1 < river_y; if (fabs(surface_delta) <= 0.5f && y > water_level && river) { // river bottom vm->m_data[index_data] = n_sand; } else if (slope * fill > surface_delta) { // ground vm->m_data[index_data] = n_stone; if (y > heightmap[index_2d]) heightmap[index_2d] = y; if (y > surface_max_y) surface_max_y = y; } else if (y <= water_level) { // sea vm->m_data[index_data] = n_water; } else if (river) { // river vm->m_data[index_data] = n_river_water; } else { vm->m_data[index_data] = n_air; } } vm->m_area.add_y(em, index_data, 1); index_3d += ystride; } // This happens if we're generating a chunk that doesn't // contain the terrain surface, in which case, we need // to set heightmap to a value outside of the chunk, // to avoid confusing lua mods that use heightmap. if (heightmap[index_2d] == -MAX_MAP_GENERATION_LIMIT) { s16 surface_y_int = myround(surface_y); if (surface_y_int > node_max.Y + 1 || surface_y_int < node_min.Y - 1) { // If surface_y is outside the chunk, it's good enough. heightmap[index_2d] = surface_y_int; } else { // If the ground is outside of this chunk, but surface_y // is within the chunk, give a value outside. heightmap[index_2d] = node_min.Y - 2; } } if (humid_rivers) { // Use base ground (water table) in a riverbed, to // avoid an unnatural rise in humidity. float t_alt = MYMAX(noise_rivers->result[index_2d], (float)heightmap[index_2d]); float humid = m_bgen->humidmap[index_2d]; float water_depth = (t_alt - river_y) / humidity_dropoff; humid *= 1.f + pow(0.5f, MYMAX(water_depth, 1.f)); // Reduce humidity with altitude (ignoring riverbeds). // This is similar to the lua version's seawater adjustment, // but doesn't increase the base humidity, which causes // problems with the default biomes. if (t_alt > 0.f) humid -= alt_to_humid * t_alt / altitude_chill; m_bgen->humidmap[index_2d] = humid; } // Assign the heat adjusted by any changed altitudes. // The altitude will change about half the time. if (use_altitude_chill) { // ground height ignoring riverbeds float t_alt = MYMAX(noise_rivers->result[index_2d], (float)heightmap[index_2d]); if (humid_rivers && heightmap[index_2d] == (s16)myround(surface_y)) // The altitude hasn't changed. Use the first result. m_bgen->heatmap[index_2d] = t_heat; else if (t_alt > 0.f) m_bgen->heatmap[index_2d] -= alt_to_heat * t_alt / altitude_chill; } } return surface_max_y; }
int MapgenValleys::generateTerrain() { MapNode n_air(CONTENT_AIR); MapNode n_river_water(c_river_water_source); MapNode n_sand(c_sand); MapNode n_stone(c_stone); MapNode n_water(c_water_source); v3s16 em = vm->m_area.getExtent(); s16 surface_max_y = -MAX_MAP_GENERATION_LIMIT; u32 index_2d = 0; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 x = node_min.X; x <= node_max.X; x++, index_2d++) { s16 river_y = floor(noise_rivers->result[index_2d]); s16 surface_y = floor(noise_terrain_height->result[index_2d]); float slope = noise_inter_valley_slope->result[index_2d]; heightmap[index_2d] = surface_y; if (surface_y > surface_max_y) surface_max_y = surface_y; u32 index_3d = 0; if (!fast_terrain) index_3d = (z - node_min.Z) * zstride + (x - node_min.X); u32 index_data = vm->m_area.index(x, node_min.Y - 1, z); // Mapgens concern themselves with stone and water. for (s16 y = node_min.Y - 1; y <= node_max.Y + 1; y++) { float fill = 0.f; if (!fast_terrain) fill = noise_inter_valley_fill->result[index_3d]; if (vm->m_data[index_data].getContent() == CONTENT_IGNORE) { bool river = (river_y > surface_y); if (river && y == surface_y) { // river bottom vm->m_data[index_data] = n_sand; } else if ((fast_terrain || river) && y <= surface_y) { // ground vm->m_data[index_data] = n_stone; } else if (river && y < river_y) { // river vm->m_data[index_data] = n_river_water; } else if ((!fast_terrain) && (!river) && round(fill * slope) >= y - surface_y) { // ground (slow method) vm->m_data[index_data] = n_stone; heightmap[index_2d] = surface_max_y = y; } else if (y <= water_level) { // sea vm->m_data[index_data] = n_water; } else { vm->m_data[index_data] = n_air; } } vm->m_area.add_y(em, index_data, 1); if (!fast_terrain) index_3d += ystride; } if (!fast_terrain) { // Assign the humidity adjusted by water proximity. noise_humidity->result[index_2d] = humidityByTerrain( noise_humidity->result[index_2d], surface_max_y, noise_rivers->result[index_2d], noise_valley_depth->result[index_2d]); // Assign the heat adjusted by altitude. See humidity, above. if (use_altitude_chill && surface_max_y > 0) noise_heat->result[index_2d] *= pow(0.5f, (surface_max_y - altitude_chill / 3.f) / altitude_chill); } } return surface_max_y; }