/** Replaces observation errors in the observation file with the modified * values. The original values are stored as "std_orig". */ void das_addmodifiederrors(dasystem* das, char fname[]) { int ncid; int dimid_nobs[1]; size_t nobs; int varid_std; double* std; int i; if (rank != 0) return; ncw_open(fname, NC_WRITE, &ncid); ncw_inq_dimid(fname, ncid, "nobs", dimid_nobs); ncw_inq_dimlen(fname, ncid, dimid_nobs[0], &nobs); ncw_redef(fname, ncid); if (ncw_var_exists(ncid, "std_orig")) enkf_quit("\"observations.nc\" has already been modified by `enkf_calc\'. To proceed please remove observations*.nc and rerun `enkf_prep\'."); ncw_rename_var(fname, ncid, "std", "std_orig"); ncw_def_var(fname, ncid, "std", NC_FLOAT, 1, dimid_nobs, &varid_std); ncw_enddef(fname, ncid); std = malloc(nobs * sizeof(double)); for (i = 0; i < (int) nobs; ++i) std[i] = das->obs->data[i].std; ncw_put_var_double(fname, ncid, varid_std, std); free(std); ncw_close(fname, ncid); }
/** Replaces observation errors in the observation file with the modified * values. The original values are stored as "std_orig". */ void das_addmodifiederrors(dasystem* das, char fname[]) { int ncid; int dimid_nobs[1]; size_t nobs; int varid_std; double* std; int i; double da_julday = NaN; if (rank != 0) return; ncw_open(fname, NC_WRITE, &ncid); ncw_inq_dimid(ncid, "nobs", dimid_nobs); ncw_inq_dimlen(ncid, dimid_nobs[0], &nobs); ncw_get_att_double(ncid, NC_GLOBAL, "DA_JULDAY", &da_julday); if (!enkf_noobsdatecheck && (isnan(da_julday) || fabs(das->obs->da_date - da_julday) > 1e-6)) enkf_quit("\"observations.nc\" from a different cycle"); if (ncw_var_exists(ncid, "std_orig")) { enkf_printf(" nothing to do\n"); ncw_close(ncid); return; } ncw_redef(ncid); ncw_rename_var(ncid, "std", "std_orig"); ncw_def_var(ncid, "std", NC_FLOAT, 1, dimid_nobs, &varid_std); ncw_enddef(ncid); std = malloc(nobs * sizeof(double)); for (i = 0; i < (int) nobs; ++i) std[i] = das->obs->data[i].std; ncw_put_var_double(ncid, varid_std, std); free(std); ncw_close(ncid); }
/** Adds forecast observations and forecast ensemble spread to the observation * file. */ void das_addforecast(dasystem* das, char fname[]) { int ncid; int dimid_nobs[1]; size_t nobs; int varid_Hx, varid_spread; double* Hx; int o; if (das->obs->nobs == 0) return; if (rank != 0) return; assert(das->s_mode == S_MODE_HA_f); ncw_open(fname, NC_WRITE, &ncid); if (ncw_var_exists(ncid, "Hx_f")) { enkf_printf(" Hx already added to \"%s\" (skipping)\n", fname); goto finish; } ncw_inq_dimid(fname, ncid, "nobs", dimid_nobs); ncw_inq_dimlen(fname, ncid, dimid_nobs[0], &nobs); ncw_redef(fname, ncid); ncw_def_var(fname, ncid, "Hx_f", NC_FLOAT, 1, dimid_nobs, &varid_Hx); ncw_def_var(fname, ncid, "std_f", NC_FLOAT, 1, dimid_nobs, &varid_spread); ncw_enddef(fname, ncid); Hx = calloc(nobs, sizeof(double)); for (o = 0; o < (int) nobs; ++o) Hx[o] = das->obs->data[o].value - das->s_f[o]; ncw_put_var_double(fname, ncid, varid_Hx, Hx); ncw_put_var_double(fname, ncid, varid_spread, das->std_f); free(Hx); finish: ncw_close(fname, ncid); }
/** Add analysed observation estimates and ensemble spread to FNAME_SOBS. */ void das_addanalysis(dasystem* das, char fname[]) { int ncid; int dimid_nobs[1]; size_t nobs; int varid_Hx, varid_spread; observation* data = das->obs->data; double* s; int i; if (rank != 0) return; assert(das->s_mode == S_MODE_HA_a); ncw_open(fname, NC_WRITE, &ncid); ncw_inq_dimid(fname, ncid, "nobs", dimid_nobs); ncw_inq_dimlen(fname, ncid, dimid_nobs[0], &nobs); ncw_redef(fname, ncid); ncw_def_var(fname, ncid, "Hx_a", NC_FLOAT, 1, dimid_nobs, &varid_Hx); ncw_def_var(fname, ncid, "std_a", NC_FLOAT, 1, dimid_nobs, &varid_spread); ncw_enddef(fname, ncid); ncw_put_var_double(fname, ncid, varid_spread, das->std_a); s = malloc(nobs * sizeof(double)); /* * the obs are still sorted by ij */ for (i = 0; i < (int) nobs; ++i) s[data[i].id] = data[i].value; for (i = 0; i < (int) nobs; ++i) s[i] -= das->s_a[i]; ncw_put_var_double(fname, ncid, varid_Hx, s); free(s); ncw_close(fname, ncid); }
static void update_Hx(dasystem* das) { model* m = das->m; int ngrid = model_getngrid(m); int gid; observations* obs = das->obs; int e, o; enkf_printf(" updating Hx:\n"); assert(das->s_mode == S_MODE_HE_f); /* * the following code for interpolation of X5 essentially coincides with * that in das_updatefields() */ for (gid = 0, o = 0; gid < ngrid && o < obs->nobs; ++gid) { void* grid = model_getgridbyid(m, gid); int periodic_i = grid_isperiodic_x(grid); int periodic_j = grid_isperiodic_y(grid); char fname_w[MAXSTRLEN]; int ncid; int varid; int dimids[3]; size_t dimlens[3]; size_t start[3], count[3]; float** wj = NULL; float** wjj = NULL; float** wjj1 = NULL; float** wjj2 = NULL; int mni, mnj; int* iiter; int* jiter; int i, j, ni, nj; int jj, stepj, ii, stepi; assert(obs->obstypes[obs->data[o].type].gridid == gid); das_getfname_w(das, grid, fname_w); ncw_open(fname_w, NC_NOWRITE, &ncid); ncw_inq_varid(fname_w, ncid, "w", &varid); ncw_inq_vardimid(fname_w, ncid, varid, dimids); for (i = 0; i < 3; ++i) ncw_inq_dimlen(fname_w, ncid, dimids[i], &dimlens[i]); ni = dimlens[1]; nj = dimlens[0]; assert((int) dimlens[2] == das->nmem); jiter = malloc((nj + 1) * sizeof(int)); /* "+ 1" to handle periodic * grids */ iiter = malloc((ni + 1) * sizeof(int)); for (j = 0, i = 0; j < nj; ++j, i += das->stride) jiter[j] = i; if (periodic_j) jiter[nj] = jiter[nj - 1] + das->stride; for (i = 0, j = 0; i < ni; ++i, j += das->stride) iiter[i] = j; if (periodic_i) iiter[ni] = iiter[ni - 1] + das->stride; grid_getdims(grid, &mni, &mnj, NULL); start[0] = 0; start[1] = 0; start[2] = 0; count[0] = 1; count[1] = ni; count[2] = das->nmem; wj = alloc2d(mni, das->nmem, sizeof(float)); if (das->stride > 1) { wjj = alloc2d(ni, das->nmem, sizeof(float)); wjj1 = alloc2d(ni, das->nmem, sizeof(float)); wjj2 = alloc2d(ni, das->nmem, sizeof(float)); ncw_get_vara_float(fname_w, ncid, varid, start, count, wjj2[0]); } /* * jj, ii are the indices of the subsampled grid; i, j are the indices * of the model grid */ for (jj = 0, j = 0; jj < nj; ++jj) { for (stepj = 0; stepj < das->stride && j < mnj; ++stepj, ++j) { if (das->stride == 1) { /* * no interpolation necessary; simply read the ETMs for the * j-th row from disk */ start[0] = j; ncw_get_vara_float(fname_w, ncid, varid, start, count, wj[0]); } else { /* * the following code interpolates the ETM back to the * original grid, first by j, and then by i */ if (stepj == 0) { memcpy(wjj[0], wjj2[0], ni * das->nmem * sizeof(float)); memcpy(wjj1[0], wjj2[0], ni * das->nmem * sizeof(float)); if (jj < nj - 1 || periodic_j) { start[0] = (jj + 1) % nj; ncw_get_vara_float(fname_w, ncid, varid, start, count, wjj2[0]); } } else { float weight2 = (float) stepj / das->stride; float weight1 = (float) 1.0 - weight2; for (ii = 0; ii < ni; ++ii) { float* wjjii = wjj[ii]; float* wjj1ii = wjj1[ii]; float* wjj2ii = wjj2[ii]; for (e = 0; e < das->nmem; ++e) wjjii[e] = wjj1ii[e] * weight1 + wjj2ii[e] * weight2; } } for (ii = 0, i = 0; ii < ni; ++ii) { for (stepi = 0; stepi < das->stride && i < mni; ++stepi, ++i) { if (stepi == 0) memcpy(wj[i], wjj[ii], das->nmem * sizeof(float)); else { float weight2 = (float) stepi / das->stride; float weight1 = (float) 1.0 - weight2; float* wjjii1 = wjj[ii]; float* wji = wj[i]; float* wjjii2; if (ii < ni - 1) wjjii2 = wjj[ii + 1]; else wjjii2 = wjj[(periodic_i) ? (ii + 1) % ni : ii]; for (e = 0; e < das->nmem; ++e) wji[e] = wjjii1[e] * weight1 + wjjii2[e] * weight2; } } } } /* stride != 1 */ /* * (at this stage wj should contain the array of b vectors for * the j-th row of the grid) */ if (o >= obs->nobs) break; if ((int) (obs->data[o].fj) > j) continue; for (; o < obs->nobs && (int) (obs->data[o].fj) == j; ++o) { double dHx = 0.0; double Hx = 0.0; for (e = 0; e < das->nmem; ++e) Hx += das->S[e][o]; Hx /= (double) das->nmem; i = (int) (obs->data[o].fi); /* * HE(i, :) += HA(i, :) * b * 1' */ for (e = 0; e < das->nmem; ++e) dHx += (das->S[e][o] - Hx) * wj[i][e]; for (e = 0; e < das->nmem; ++e) das->S[e][o] += dHx; } } /* for stepj */ } /* for jj */ ncw_close(fname_w, ncid); free(iiter); free(jiter); free2d(wj); if (das->stride > 1) { free2d(wjj); free2d(wjj1); free2d(wjj2); } } /* for gid */ das->s_mode = S_MODE_HE_a; } /* update_Hx() */
void reader_windsat_standard(char* fname, int fid, obsmeta* meta, model* m, observations* obs) { int ncid; int dimid_nobs; size_t nobs_local; int varid_lon, varid_lat, varid_sst, varid_error, varid_time; double* lon; double* lat; double* sst; double* error_std; double* time; int year, month, day; char tunits[MAXSTRLEN]; size_t tunits_len; double tunits_multiple, tunits_offset; char* basename; int mvid; float** depth; int ktop; int i; for (i = 0; i < meta->npars; ++i) enkf_quit("unknown PARAMETER \"%s\"\n", meta->pars[i].name); basename = strrchr(fname, '/'); if (basename == NULL) basename = fname; else basename += 1; ncw_open(fname, NC_NOWRITE, &ncid); ncw_inq_dimid(ncid, "nobs", &dimid_nobs); ncw_inq_dimlen(ncid, dimid_nobs, &nobs_local); enkf_printf(" nobs = %u\n", (unsigned int) nobs_local); if (nobs_local == 0) { ncw_close(ncid); return; } ncw_inq_varid(ncid, "lon", &varid_lon); lon = malloc(nobs_local * sizeof(double)); ncw_get_var_double(ncid, varid_lon, lon); ncw_inq_varid(ncid, "lat", &varid_lat); lat = malloc(nobs_local * sizeof(double)); ncw_get_var_double(ncid, varid_lat, lat); ncw_inq_varid(ncid, "sst", &varid_sst); sst = malloc(nobs_local * sizeof(double)); ncw_get_var_double(ncid, varid_sst, sst); ncw_inq_varid(ncid, "error", &varid_error); error_std = malloc(nobs_local * sizeof(double)); ncw_get_var_double(ncid, varid_error, error_std); ncw_inq_varid(ncid, "age", &varid_time); time = malloc(nobs_local * sizeof(double)); ncw_get_var_double(ncid, varid_time, time); ncw_inq_attlen(ncid, varid_time, "units", &tunits_len); ncw_get_att_text(ncid, varid_time, "units", tunits); basename[16] = 0; if (!str2int(&basename[14], &day)) enkf_quit("WindSat reader: could not convert file name \"%s\" to date", fname); basename[14] = 0; if (!str2int(&basename[12], &month)) enkf_quit("WindSat reader: could not convert file name \"%s\" to date", fname); basename[12] = 0; if (!str2int(&basename[8], &year)) enkf_quit("WindSat reader: could not convert file name \"%s\" to date", fname); snprintf(&tunits[tunits_len], MAXSTRLEN - tunits_len, " since %4d-%02d-%02d", year, month, day); ncw_close(ncid); tunits_convert(tunits, &tunits_multiple, &tunits_offset); mvid = model_getvarid(m, obs->obstypes[obstype_getid(obs->nobstypes, obs->obstypes, meta->type, 1)].varnames[0], 1); ktop = grid_gettoplayerid(model_getvargrid(m, mvid)); depth = model_getdepth(m, mvid, 0); for (i = 0; i < (int) nobs_local; ++i) if (time[i] != 0.0) break; if (i == (int) nobs_local) for (i = 0; i < (int) nobs_local; ++i) time[i] = 0.5; for (i = 0; i < (int) nobs_local; ++i) { observation* o; obstype* ot; obs_checkalloc(obs); o = &obs->data[obs->nobs]; o->product = st_findindexbystring(obs->products, meta->product); assert(o->product >= 0); o->type = obstype_getid(obs->nobstypes, obs->obstypes, meta->type, 1); ot = &obs->obstypes[o->type]; o->instrument = st_add_ifabscent(obs->instruments, "WindSat", -1); o->id = obs->nobs; o->fid = fid; o->batch = 0; o->value = sst[i]; o->std = error_std[i]; o->lon = lon[i]; o->lat = lat[i]; o->depth = 0.0; o->fk = (double) ktop; o->status = model_xy2fij(m, mvid, o->lon, o->lat, &o->fi, &o->fj); if (!obs->allobs && o->status == STATUS_OUTSIDEGRID) continue; if ((o->status == STATUS_OK) && (o->lon <= ot->xmin || o->lon >= ot->xmax || o->lat <= ot->ymin || o->lat >= ot->ymax || o->depth <= ot->zmin || o->depth >= ot->zmax)) o->status = STATUS_OUTSIDEOBSDOMAIN; o->model_depth = (depth == NULL || isnan(o->fi + o->fj)) ? NaN : depth[(int) (o->fj + 0.5)][(int) (o->fi + 0.5)]; o->date = time[i] * tunits_multiple + tunits_offset; o->aux = -1; obs->nobs++; } free(lon); free(lat); free(sst); free(error_std); free(time); }
/** For files of the form ??_yyyymmdd.nc. They are assumed to have "time" * variable. */ void reader_rads_standard(char* fname, int fid, obsmeta* meta, model* m, observations* obs) { double mindepth = MINDEPTH_DEF; char* addname = NULL; int ncid; int dimid_nobs; size_t nobs_local; int varid_lon, varid_lat, varid_pass, varid_sla, varid_time, varid_add; double* lon; double* lat; int* pass; double* sla; double* time; double error_std; double* add = NULL; size_t tunits_len; char* tunits; double tunits_multiple, tunits_offset; char* basename; char instname[3]; int mvid; float** depth; int i, ktop; for (i = 0; i < meta->npars; ++i) { if (strcasecmp(meta->pars[i].name, "MINDEPTH") == 0) { if (!str2double(meta->pars[i].value, &mindepth)) enkf_quit("observation prm file: can not convert MINDEPTH = \"%s\" to double\n", meta->pars[i].value); } else if (strcasecmp(meta->pars[i].name, "ADD") == 0) { addname = meta->pars[i].value; enkf_printf(" ADDING \"%s\"\n", addname); } else enkf_quit("unknown PARAMETER \"%s\"\n", meta->pars[i].name); } enkf_printf(" MINDEPTH = %.0f\n", mindepth); ncw_open(fname, NC_NOWRITE, &ncid); ncw_inq_dimid(ncid, "nobs", &dimid_nobs); ncw_inq_dimlen(ncid, dimid_nobs, &nobs_local); enkf_printf(" nobs = %u\n", (unsigned int) nobs_local); if (nobs_local == 0) { ncw_close(ncid); return; } ncw_inq_varid(ncid, "lon", &varid_lon); lon = malloc(nobs_local * sizeof(double)); ncw_get_var_double(ncid, varid_lon, lon); ncw_inq_varid(ncid, "lat", &varid_lat); lat = malloc(nobs_local * sizeof(double)); ncw_get_var_double(ncid, varid_lat, lat); ncw_inq_varid(ncid, "pass", &varid_pass); pass = malloc(nobs_local * sizeof(int)); ncw_get_var_int(ncid, varid_pass, pass); ncw_inq_varid(ncid, "sla", &varid_sla); sla = malloc(nobs_local * sizeof(double)); ncw_get_var_double(ncid, varid_sla, sla); ncw_get_att_double(ncid, varid_sla, "error_std", &error_std); enkf_printf(" error_std = %3g\n", error_std); if (addname != NULL) { ncw_inq_varid(ncid, addname, &varid_add); add = malloc(nobs_local * sizeof(double)); ncw_get_var_double(ncid, varid_add, add); } ncw_inq_varid(ncid, "time", &varid_time); time = malloc(nobs_local * sizeof(double)); ncw_get_var_double(ncid, varid_time, time); ncw_inq_attlen(ncid, varid_time, "units", &tunits_len); tunits = calloc(tunits_len + 1, 1); ncw_get_att_text(ncid, varid_time, "units", tunits); ncw_close(ncid); tunits_convert(tunits, &tunits_multiple, &tunits_offset); basename = strrchr(fname, '/'); if (basename == NULL) basename = fname; else basename += 1; strncpy(instname, basename, 2); instname[2] = 0; mvid = model_getvarid(m, obs->obstypes[obstype_getid(obs->nobstypes, obs->obstypes, meta->type, 1)].varnames[0], 1); ktop = grid_gettoplayerid(model_getvargrid(m, mvid)); depth = model_getdepth(m, mvid, 1); for (i = 0; i < (int) nobs_local; ++i) { observation* o; obstype* ot; obs_checkalloc(obs); o = &obs->data[obs->nobs]; o->product = st_findindexbystring(obs->products, meta->product); assert(o->product >= 0); o->type = obstype_getid(obs->nobstypes, obs->obstypes, meta->type, 1); ot = &obs->obstypes[o->type]; o->instrument = st_add_ifabscent(obs->instruments, instname, -1); o->id = obs->nobs; o->fid = fid; o->batch = pass[i]; o->value = sla[i]; if (add != NULL) o->value += add[i]; o->std = error_std; o->lon = lon[i]; o->lat = lat[i]; o->depth = 0.0; o->status = model_xy2fij(m, mvid, o->lon, o->lat, &o->fi, &o->fj); if (!obs->allobs && o->status == STATUS_OUTSIDEGRID) continue; o->fk = (double) ktop; o->model_depth = (isnan(o->fi + o->fj)) ? NaN : depth[(int) (o->fj + 0.5)][(int) (o->fi + 0.5)]; o->date = time[i] * tunits_multiple + tunits_offset; if (o->status == STATUS_OK && o->model_depth < mindepth) o->status = STATUS_SHALLOW; if ((o->status == STATUS_OK) && (o->lon <= ot->xmin || o->lon >= ot->xmax || o->lat <= ot->ymin || o->lat >= ot->ymax)) o->status = STATUS_OUTSIDEOBSDOMAIN; o->aux = -1; obs->nobs++; } if (add != NULL) free(add); free(lon); free(lat); free(pass); free(sla); free(tunits); free(time); }
void reader_mmt_standard(char* fname, int fid, obsmeta* meta, model* m, observations* obs) { int ncid; int dimid_nprof, dimid_nz; size_t nprof, nz; int varid_lon, varid_lat, varid_z, varid_type; int varid_v = -1; double* lon; double* lat; double** z; double** v; double missval; double validmin = DBL_MAX; double validmax = -DBL_MAX; char* type; char buf[MAXSTRLEN]; int len; int year, month, day; double tunits_multiple, tunits_offset; int mvid; int p, i; for (i = 0; i < meta->npars; ++i) enkf_quit("unknown PARAMETER \"%s\"\n", meta->pars[i].name); if (meta->nstds == 0) enkf_quit("ERROR_STD is necessary but not specified for product \"%s\"", meta->product); ncw_open(fname, NC_NOWRITE, &ncid); ncw_inq_dimid(fname, ncid, "N_PROF", &dimid_nprof); ncw_inq_dimlen(fname, ncid, dimid_nprof, &nprof); ncw_inq_dimid(fname, ncid, "N_LEVELS", &dimid_nz); ncw_inq_dimlen(fname, ncid, dimid_nz, &nz); enkf_printf(" # profiles = %u\n", (unsigned int) nprof); if (nprof == 0) { ncw_close(fname, ncid); return; } enkf_printf(" # z levels = %u\n", (unsigned int) nz); ncw_inq_varid(fname, ncid, "LONGITUDE", &varid_lon); lon = malloc(nprof * sizeof(double)); ncw_get_var_double(fname, ncid, varid_lon, lon); ncw_inq_varid(fname, ncid, "LATITUDE", &varid_lat); lat = malloc(nprof * sizeof(double)); ncw_get_var_double(fname, ncid, varid_lat, lat); ncw_inq_varid(fname, ncid, "PRES_BLUELINK", &varid_z); z = alloc2d(nprof, nz, sizeof(double)); ncw_get_var_double(fname, ncid, varid_z, z[0]); if (strncmp(meta->type, "TEM", 3) == 0) { validmin = -2.0; validmax = 40.0; ncw_inq_varid(fname, ncid, "TEMP_BLUELINK", &varid_v); } else if (strncmp(meta->type, "SAL", 3) == 0) { validmin = 0; validmax = 50.0; ncw_inq_varid(fname, ncid, "PSAL_BLUELINK", &varid_v); } else enkf_quit("observation type \"%s\" not handled for MMT product", meta->type); v = alloc2d(nprof, nz, sizeof(double)); ncw_get_var_double(fname, ncid, varid_v, v[0]); ncw_get_att_double(fname, ncid, varid_v, "_FillValue", &missval); ncw_inq_varid(fname, ncid, "WMO_INST_TYPE", &varid_type); type = malloc(nprof * WMO_INSTSIZE); ncw_get_var_text(fname, ncid, varid_type, type); ncw_close(fname, ncid); strcpy(buf, fname); len = strlen(buf); buf[len - 10] = 0; /* _mmt_qc.nc */ if (!str2int(&buf[len - 12], &day)) enkf_quit("MMT reader: could not convert file name \"%s\" to date", fname); buf[len - 12] = 0; if (!str2int(&buf[len - 14], &month)) enkf_quit("MMT reader: could not convert file name \"%s\" to date", fname); buf[len - 14] = 0; if (!str2int(&buf[len - 18], &year)) enkf_quit("MMT reader: could not convert file name \"%s\" to date", fname); snprintf(buf, MAXSTRLEN, "days since %4d-%02d-%02d", year, month, day); tunits_convert(buf, &tunits_multiple, &tunits_offset); mvid = model_getvarid(m, obs->obstypes[obstype_getid(obs->nobstypes, obs->obstypes, meta->type)].varname, 1); for (p = 0; p < (int) nprof; ++p) { char inststr[MAXSTRLEN]; snprintf(inststr, MAXSTRLEN, "WMO%04u", type[p * WMO_INSTSIZE]); for (i = 0; i < (int) nz; ++i) { observation* o; obstype* ot; if (fabs(v[p][i] - missval) < EPS || v[p][i] < validmin || v[p][i] > validmax) continue; if (z[p][i] < 0.0) continue; obs_checkalloc(obs); o = &obs->data[obs->nobs]; o->product = st_findindexbystring(obs->products, meta->product); assert(o->product >= 0); o->type = obstype_getid(obs->nobstypes, obs->obstypes, meta->type); assert(o->type >= 0); ot = &obs->obstypes[o->type]; o->instrument = st_add_ifabscent(obs->instruments, inststr, -1); o->id = obs->nobs; o->fid = fid; o->batch = p; o->value = v[p][i]; o->std = 0.0; o->lon = lon[p]; o->lat = lat[p]; o->depth = z[p][i]; o->status = model_xy2fij(m, mvid, o->lon, o->lat, &o->fi, &o->fj); if (!obs->allobs && o->status == STATUS_OUTSIDEGRID) break; if (o->status == STATUS_OK) o->status = model_z2fk(m, mvid, o->fi, o->fj, o->depth, &o->fk); else o->fk = NaN; if ((o->status == STATUS_OK) && (o->lon <= ot->xmin || o->lon >= ot->xmax || o->lat <= ot->ymin || o->lat >= ot->ymax || o->depth <= ot->zmin || o->depth >= ot->zmax)) o->status = STATUS_OUTSIDEOBSDOMAIN; o->date = tunits_offset + 0.5; o->aux = -1; obs->nobs++; } } free(lon); free(lat); free2d(v); free2d(z); free(type); }
/** For files of the form ??_yyyymmdd.nc. They are assumed to have "time" * variable. */ void reader_rads_standard(char* fname, int fid, obsmeta* meta, model* m, observations* obs) { int ncid; int dimid_nobs; size_t nobs_local; int varid_lon, varid_lat, varid_pass, varid_sla, varid_time; double* lon; double* lat; int* pass; double* sla; double* time; double error_std; size_t tunits_len; char* tunits; double tunits_multiple, tunits_offset; char* basename; char instname[3]; int mvid; float** depth; int i; ncw_open(fname, NC_NOWRITE, &ncid); ncw_inq_dimid(fname, ncid, "nobs", &dimid_nobs); ncw_inq_dimlen(fname, ncid, dimid_nobs, &nobs_local); enkf_printf(" nobs = %u\n", (unsigned int) nobs_local); if (nobs_local == 0) { ncw_close(fname, ncid); return; } ncw_inq_varid(fname, ncid, "lon", &varid_lon); lon = malloc(nobs_local * sizeof(double)); ncw_get_var_double(fname, ncid, varid_lon, lon); ncw_inq_varid(fname, ncid, "lat", &varid_lat); lat = malloc(nobs_local * sizeof(double)); ncw_get_var_double(fname, ncid, varid_lat, lat); ncw_inq_varid(fname, ncid, "pass", &varid_pass); pass = malloc(nobs_local * sizeof(int)); ncw_get_var_int(fname, ncid, varid_pass, pass); ncw_inq_varid(fname, ncid, "sla", &varid_sla); sla = malloc(nobs_local * sizeof(double)); ncw_get_var_double(fname, ncid, varid_sla, sla); ncw_get_att_double(fname, ncid, varid_sla, "error_std", &error_std); enkf_printf(" error_std = %3g\n", error_std); ncw_inq_varid(fname, ncid, "time", &varid_time); time = malloc(nobs_local * sizeof(double)); ncw_get_var_double(fname, ncid, varid_time, time); ncw_inq_attlen(fname, ncid, varid_time, "units", &tunits_len); tunits = calloc(tunits_len + 1, 1); ncw_get_att_text(fname, ncid, varid_time, "units", tunits); ncw_close(fname, ncid); tunits_convert(tunits, &tunits_multiple, &tunits_offset); basename = strrchr(fname, '/'); if (basename == NULL) basename = fname; else basename += 1; strncpy(instname, basename, 2); instname[2] = 0; mvid = model_getvarid(m, obs->obstypes[obstype_getid(obs->nobstypes, obs->obstypes, meta->type)].varname, 1); depth = model_getdepth(m, mvid); for (i = 0; i < (int) nobs_local; ++i) { observation* o; obstype* ot; obs_checkalloc(obs); o = &obs->data[obs->nobs]; o->product = st_findindexbystring(obs->products, meta->product); assert(o->product >= 0); o->type = obstype_getid(obs->nobstypes, obs->obstypes, meta->type); assert(o->type >= 0); ot = &obs->obstypes[o->type]; o->instrument = st_add_ifabscent(obs->instruments, instname, -1); o->id = obs->nobs; o->fid = fid; o->batch = pass[i]; o->value = sla[i]; o->std = error_std; o->lon = lon[i]; o->lat = lat[i]; o->depth = 0.0; o->status = model_xy2fij(m, mvid, o->lon, o->lat, &o->fi, &o->fj); if (!obs->allobs && o->status == STATUS_OUTSIDEGRID) continue; o->fk = 0.0; o->date = time[i] * tunits_multiple + tunits_offset; if (o->status == STATUS_OK && depth[(int) floor(o->fj + 0.5)][(int) floor(o->fi + 0.5)] < MINDEPTH) o->status = STATUS_SHALLOW; if ((o->status == STATUS_OK) && (o->lon <= ot->xmin || o->lon >= ot->xmax || o->lat <= ot->ymin || o->lat >= ot->ymax || o->depth <= ot->zmin || o->depth >= ot->zmax)) o->status = STATUS_OUTSIDEOBSDOMAIN; o->aux = -1; obs->nobs++; } free(lon); free(lat); free(pass); free(sla); free(tunits); free(time); }
void reader_cars_standard(char* fname, int fid, obsmeta* meta, grid* g, observations* obs) { int ncid; int dimid_nprof, dimid_nz = -1; size_t nprof, nz; int varid_lon, varid_lat, varid_z, varid_type; int varid_v = -1; double* lon; double* lat; double** z; double** v; double missval, validmin, validmax; int* type; char buf[MAXSTRLEN]; int len; int year, month, day; double tunits_multiple, tunits_offset; int p, i; for (i = 0; i < meta->npars; ++i) enkf_quit("unknown PARAMETER \"%s\"\n", meta->pars[i].name); if (meta->nstds == 0) enkf_quit("ERROR_STD is necessary but not specified for product \"%s\"", meta->product); ncw_open(fname, NC_NOWRITE, &ncid); ncw_inq_dimid(ncid, "nobs", &dimid_nprof); ncw_inq_dimlen(ncid, dimid_nprof, &nprof); enkf_printf(" # profiles = %u\n", (unsigned int) nprof); if (nprof == 0) { ncw_close(ncid); return; } if (ncw_dim_exists(ncid, "zt")) ncw_inq_dimid(ncid, "zt", &dimid_nz); else if (ncw_dim_exists(ncid, "ztd")) ncw_inq_dimid(ncid, "ztd", &dimid_nz); else enkf_quit("reader_cars_standard(): neither dimension \"zt\" ot \"ztd\" exist"); ncw_inq_dimlen(ncid, dimid_nz, &nz); enkf_printf(" # z levels = %u\n", (unsigned int) nz); ncw_inq_varid(ncid, "lon", &varid_lon); lon = malloc(nprof * sizeof(double)); ncw_get_var_double(ncid, varid_lon, lon); ncw_inq_varid(ncid, "lat", &varid_lat); lat = malloc(nprof * sizeof(double)); ncw_get_var_double(ncid, varid_lat, lat); ncw_inq_varid(ncid, "zt", &varid_z); z = alloc2d(nprof, nz, sizeof(double)); ncw_get_var_double(ncid, varid_z, z[0]); if (strncmp(meta->type, "TEM", 3) == 0) ncw_inq_varid(ncid, "temp", &varid_v); else if (strncmp(meta->type, "SAL", 3) == 0) ncw_inq_varid(ncid, "salt", &varid_v); else enkf_quit("observation type \"%s\" not handled for CARS product", meta->type); v = alloc2d(nprof, nz, sizeof(double)); ncw_get_var_double(ncid, varid_v, v[0]); ncw_get_att_double(ncid, varid_v, "missing_value", &missval); ncw_get_att_double(ncid, varid_v, "valid_min", &validmin); ncw_get_att_double(ncid, varid_v, "valid_max", &validmax); ncw_inq_varid(ncid, "type", &varid_type); type = malloc(nprof * sizeof(int)); ncw_get_var_int(ncid, varid_type, type); ncw_close(ncid); strcpy(buf, fname); len = strlen(buf); buf[len - 3] = 0; /* .nc */ if (!str2int(&buf[len - 5], &day)) enkf_quit("CARS reader: could not convert file name \"%s\" to date", fname); buf[len - 17] = 0; if (!str2int(&buf[len - 19], &month)) enkf_quit("CARS reader: could not convert file name \"%s\" to date", fname); buf[len - 21] = 0; if (!str2int(&buf[len - 25], &year)) enkf_quit("CARS reader: could not convert file name \"%s\" to date", fname); snprintf(buf, MAXSTRLEN, "days since %4d-%02d-%02d", year, month, day); tunits_convert(buf, &tunits_multiple, &tunits_offset); for (p = 0; p < (int) nprof; ++p) { char inststr[MAXSTRLEN]; if (type[p] == 11) strcpy(inststr, "ARGO"); else if (type[p] == 12) strcpy(inststr, "TAO"); else if (type[p] == 61) strcpy(inststr, "PIRATA"); else if (type[p] == 7 || type[p] == 9 || type[p] == 13 || type[p] == 35 || type[p] == 41) strcpy(inststr, "CTD"); else if (type[p] == 8 || type[p] == 17) strcpy(inststr, "XBT"); else snprintf(inststr, MAXSTRLEN, "CARS%02u", type[p]); for (i = 0; i < (int) nz; ++i) { observation* o; obstype* ot; if (fabs(v[p][i] - missval) < EPS || v[p][i] < validmin || v[p][i] > validmax) continue; if (z[p][i] < 0.0) continue; obs_checkalloc(obs); o = &obs->data[obs->nobs]; o->product = st_findindexbystring(obs->products, meta->product); assert(o->product >= 0); o->type = obstype_getid(obs->nobstypes, obs->obstypes, meta->type, 1); ot = &obs->obstypes[o->type]; o->instrument = st_add_ifabsent(obs->instruments, inststr, -1); o->id = obs->nobs; o->fid = fid; o->batch = p; o->value = v[p][i]; o->std = 0.0; o->lon = lon[p]; o->lat = lat[p]; o->depth = z[p][i]; o->status = grid_xy2fij(g, o->lon, o->lat, &o->fi, &o->fj); if (!obs->allobs && o->status == STATUS_OUTSIDEGRID) break; if (o->status == STATUS_OK) o->status = grid_z2fk(g, o->fi, o->fj, o->depth, &o->fk); else o->fk = NAN; if ((o->status == STATUS_OK) && (o->lon <= ot->xmin || o->lon >= ot->xmax || o->lat <= ot->ymin || o->lat >= ot->ymax || o->depth <= ot->zmin || o->depth >= ot->zmax)) o->status = STATUS_OUTSIDEOBSDOMAIN; o->model_depth = NAN; /* set in obs_add() */ o->date = tunits_offset + 0.5; o->aux = -1; obs->nobs++; } } free(lon); free(lat); free(v); free(z); free(type); }
void reader_jplmur_gridded(char* fname, int fid, obsmeta* meta, grid* g, observations* obs) { int ksurf = grid_getsurflayerid(g); char* varname = "analysed_sst"; char* lonname = "lon"; char* latname = "lat"; char* npointsname = NULL; char* stdname = "analysis_error"; char* estdname = NULL; char* timename = "time"; int ncid; int ndim_var, ndim_xy; size_t dimlen_var[3], dimlen_xy[2]; float varshift = -273.15; double mindepth = 0.0; char instrument[MAXSTRLEN]; int iscurv = -1; size_t ni = 0, nj = 0, n = 0, n_var = 0; int varid_lon = -1, varid_lat = -1; double* lon = NULL; double* lat = NULL; int varid_var = -1, varid_npoints = -1, varid_std = -1, varid_estd = -1, varid_time = -1; float* var = NULL; float var_fill_value = NAN; float var_add_offset = NAN, var_scale_factor = NAN; double var_estd = NAN; short* npoints = NULL; float* std = NULL; float std_add_offset = NAN, std_scale_factor = NAN; float std_fill_value = NAN; float* estd = NULL; float estd_add_offset = NAN, estd_scale_factor = NAN; float estd_fill_value = NAN; int have_time = 1; int singletime = -1; float* time = NULL; float time_add_offset = NAN, time_scale_factor = NAN; float time_fill_value = NAN; char tunits[MAXSTRLEN]; double tunits_multiple = NAN, tunits_offset = NAN; int i, nobs_read; strcpy(instrument, meta->product); for (i = 0; i < meta->npars; ++i) { if (strcasecmp(meta->pars[i].name, "VARNAME") == 0) varname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "TIMENAME") == 0) timename = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "NPOINTSNAME") == 0) npointsname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "LONNAME") == 0) lonname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "LATNAME") == 0) latname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "STDNAME") == 0) stdname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "ESTDNAME") == 0) estdname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "VARSHIFT") == 0) { if (!str2float(meta->pars[i].value, &varshift)) enkf_quit("observation prm file: can not convert VARSHIFT = \"%s\" to float\n", meta->pars[i].value); enkf_printf(" VARSHIFT = %s\n", meta->pars[i].value); } else if (strcasecmp(meta->pars[i].name, "MINDEPTH") == 0) { if (!str2double(meta->pars[i].value, &mindepth)) enkf_quit("observation prm file: can not convert MINDEPTH = \"%s\" to double\n", meta->pars[i].value); enkf_printf(" MINDEPTH = %f\n", mindepth); } else if (strcasecmp(meta->pars[i].name, "INSTRUMENT") == 0) { strncpy(instrument, meta->pars[i].value, MAXSTRLEN); } else enkf_quit("unknown PARAMETER \"%s\"\n", meta->pars[i].name); } // if (varname == NULL) // enkf_quit("reader_xy_gridded(): %s variable name not specified", fname); ncw_open(fname, NC_NOWRITE, &ncid); ncw_inq_varid(ncid, varname, &varid_var); ncw_inq_vardims(ncid, varid_var, 3, &ndim_var, dimlen_var); if (ndim_var == 3) { int dimid[3]; size_t nr; ncw_inq_vardimid(ncid, varid_var, dimid); ncw_inq_dimlen(ncid, dimid[0], &nr); if (nr != 1) enkf_quit("reader_xy_gridded(): %d records (currently only one is allowed)", nr); n_var = dimlen_var[1] * dimlen_var[2]; } else if (ndim_var == 2) { if (nc_hasunlimdim(ncid)) enkf_quit("reader_xy_gridded(): %s: %s: not enough spatial dimensions (must be 2)", fname, varname); n_var = dimlen_var[0] * dimlen_var[1]; } else if (ndim_var != 2) enkf_quit("reader_xy_gridded(): %s: # dimensions = %d (must be 2 or 3 with only one record)", fname, ndim_var); if (lonname != NULL) ncw_inq_varid(ncid, lonname, &varid_lon); else if (ncw_var_exists(ncid, "lon")) ncw_inq_varid(ncid, "lon", &varid_lon); else if (ncw_var_exists(ncid, "longitude")) ncw_inq_varid(ncid, "longitude", &varid_lon); else enkf_quit("reader_xy_gridded(): %s: could not find longitude variable", fname); ncw_inq_vardims(ncid, varid_lon, 2, &ndim_xy, dimlen_xy); if (ndim_xy == 1) { iscurv = 0; ni = dimlen_xy[0]; } else if (ndim_xy == 2) { iscurv = 1; ni = dimlen_xy[1]; nj = dimlen_xy[0]; } else enkf_quit("reader_xy_gridded(): %s: coordinate variable \"%s\" has neither 1 or 2 dimensions", fname, lonname); if (latname != NULL) ncw_inq_varid(ncid, latname, &varid_lat); else if (ncw_var_exists(ncid, "lat")) ncw_inq_varid(ncid, "lat", &varid_lat); else if (ncw_var_exists(ncid, "latitude")) ncw_inq_varid(ncid, "latitude", &varid_lat); else enkf_quit("reader_xy_gridded(): %s: could not find latitude variable", fname); if (iscurv == 0) { ncw_check_varndims(ncid, varid_lat, 1); ncw_inq_vardims(ncid, varid_lat, 1, NULL, &nj); } else ncw_check_vardims(ncid, varid_lat, 2, dimlen_xy); enkf_printf(" (ni, nj) = (%u, %u)\n", ni, nj); n = ni * nj; if (n != n_var) enkf_quit("reader_xy_gridded(): %s: dimensions of variable \"%s\" do not match coordinate dimensions", fname, varname); if (dimlen_var[ndim_var - 1] != ni) enkf_quit("reader_xy_gridded(): %s: %s: longitude must be the inner coordinate", fname, varname); if (iscurv == 0) { lon = malloc(ni * sizeof(double)); lat = malloc(nj * sizeof(double)); } else { lon = malloc(n * sizeof(double)); lat = malloc(n * sizeof(double)); } ncw_get_var_double(ncid, varid_lon, lon); ncw_get_var_double(ncid, varid_lat, lat); var = malloc(n * sizeof(float)); ncw_get_var_float(ncid, varid_var, var); if (ncw_att_exists(ncid, varid_var, "add_offset")) { ncw_get_att_float(ncid, varid_var, "add_offset", &var_add_offset); ncw_get_att_float(ncid, varid_var, "scale_factor", &var_scale_factor); } if (ncw_att_exists(ncid, varid_var, "_FillValue")) ncw_get_att_float(ncid, varid_var, "_FillValue", &var_fill_value); if (npointsname != NULL) ncw_inq_varid(ncid, npointsname, &varid_npoints); else if (ncw_var_exists(ncid, "npoints")) ncw_inq_varid(ncid, "npoints", &varid_npoints); if (varid_npoints >= 0) { npoints = malloc(n * sizeof(short)); ncw_get_var_short(ncid, varid_npoints, npoints); } if (stdname != NULL) ncw_inq_varid(ncid, stdname, &varid_std); else if (ncw_var_exists(ncid, "std")) ncw_inq_varid(ncid, "std", &varid_std); if (varid_std >= 0) { std = malloc(n * sizeof(float)); ncw_get_var_float(ncid, varid_std, std); if (ncw_att_exists(ncid, varid_std, "_FillValue")) ncw_get_att_float(ncid, varid_std, "_FillValue", &std_fill_value); if (ncw_att_exists(ncid, varid_std, "add_offset")) { ncw_get_att_float(ncid, varid_std, "add_offset", &std_add_offset); ncw_get_att_float(ncid, varid_std, "scale_factor", &std_scale_factor); } } if (estdname != NULL) ncw_inq_varid(ncid, estdname, &varid_estd); else if (ncw_var_exists(ncid, "error_std")) ncw_inq_varid(ncid, "error_std", &varid_estd); if (varid_estd >= 0) { estd = malloc(n * sizeof(float)); ncw_get_var_float(ncid, varid_estd, estd); if (ncw_att_exists(ncid, varid_estd, "_FillValue")) ncw_get_att_float(ncid, varid_estd, "_FillValue", &estd_fill_value); if (ncw_att_exists(ncid, varid_estd, "add_offset")) { ncw_get_att_float(ncid, varid_estd, "add_offset", &estd_add_offset); ncw_get_att_float(ncid, varid_estd, "scale_factor", &estd_scale_factor); } } if (std == NULL && estd == NULL) { if (ncw_att_exists(ncid, varid_var, "error_std")) { ncw_check_attlen(ncid, varid_var, "error_std", 1); ncw_get_att_double(ncid, varid_var, "error_std", &var_estd); } } if (timename != NULL) ncw_inq_varid(ncid, timename, &varid_time); else if (ncw_var_exists(ncid, "time")) ncw_inq_varid(ncid, "time", &varid_time); else { enkf_printf(" reader_xy_gridded(): %s: no TIME variable\n", fname); have_time = 0; } if (have_time) { int timendims; int timedimids[NC_MAX_DIMS]; size_t timelen = 1; ncw_inq_varndims(ncid, varid_time, &timendims); ncw_inq_vardimid(ncid, varid_time, timedimids); for (i = 0; i < timendims; ++i) { size_t dimlen; ncw_inq_dimlen(ncid, timedimids[i], &dimlen); timelen *= dimlen; } if (timelen == 1) { singletime = 1; time = malloc(sizeof(float)); } else { singletime = 0; assert(timelen == n); time = malloc(n * sizeof(float)); } ncw_get_var_float(ncid, varid_time, time); if (ncw_att_exists(ncid, varid_time, "_FillValue")) ncw_get_att_float(ncid, varid_time, "_FillValue", &time_fill_value); if (ncw_att_exists(ncid, varid_time, "add_offset")) { ncw_get_att_float(ncid, varid_time, "add_offset", &time_add_offset); ncw_get_att_float(ncid, varid_time, "scale_factor", &time_scale_factor); } ncw_get_att_text(ncid, varid_time, "units", tunits); tunits_convert(tunits, &tunits_multiple, &tunits_offset); } ncw_close(ncid); nobs_read = 0; for (i = 0; i < (int) n; ++i) { observation* o; obstype* ot; if ((npoints != NULL && npoints[i] == 0) || var[i] == var_fill_value || isnan(var[i]) || (std != NULL && (std[i] == std_fill_value || isnan(std[i]))) || (estd != NULL && (estd[i] == estd_fill_value || isnan(estd[i]))) || (have_time && !singletime && (time[i] == time_fill_value || isnan(time[i])))) continue; nobs_read++; obs_checkalloc(obs); o = &obs->data[obs->nobs]; o->product = st_findindexbystring(obs->products, meta->product); assert(o->product >= 0); o->type = obstype_getid(obs->nobstypes, obs->obstypes, meta->type, 1); ot = &obs->obstypes[o->type]; o->instrument = st_add_ifabsent(obs->instruments, instrument, -1); o->id = obs->nobs; o->fid = fid; o->batch = 0; if (!isnan(var_add_offset)) o->value = (double) (var[i] * var_scale_factor + var_add_offset + varshift); else o->value = (double) (var[i] + varshift); if (!isnan(var_estd)) { o->std = var_estd; } else { if (!isnan(std_add_offset)) o->std = (double) (std[i] * std_scale_factor + std_add_offset); else o->std = (double) std[i]; if (!isnan(estd_add_offset)) { double std2 = (double) (estd[i] * estd_scale_factor + estd_add_offset); o->std = (o->std > std2) ? o->std : std2; } } if (iscurv == 0) { o->lon = lon[i % ni]; o->lat = lat[i / ni]; } else { o->lon = lon[i]; o->lat = lat[i]; } o->depth = 0.0; o->fk = (double) ksurf; o->status = grid_xy2fij(g, o->lon, o->lat, &o->fi, &o->fj); if (!obs->allobs && o->status == STATUS_OUTSIDEGRID) continue; if ((o->status == STATUS_OK) && (o->lon <= ot->xmin || o->lon >= ot->xmax || o->lat <= ot->ymin || o->lat >= ot->ymax)) o->status = STATUS_OUTSIDEOBSDOMAIN; o->model_depth = NAN; /* set in obs_add() */ if (have_time) { float t = (singletime) ? time[0] : time[i]; if (!isnan(time_add_offset)) o->date = (double) (t * time_scale_factor + time_add_offset) * tunits_multiple + tunits_offset; else o->date = (double) t* tunits_multiple + tunits_offset; } else o->date = NAN; o->aux = -1; obs->nobs++; } enkf_printf(" nobs = %d\n", nobs_read); }
grid* grid_create(void* p, int id) { gridprm* prm = (gridprm*) p; grid* g = calloc(1, sizeof(grid)); char* fname = prm->fname; int ncid; int dimid_x, dimid_y, dimid_z; int varid_x, varid_y, varid_z; int ndims_x, ndims_y, ndims_z; size_t nx, ny, nz; int varid_depth, varid_numlevels; g->name = strdup(prm->name); g->id = id; g->vtype = gridprm_getvtype(prm); g->sfactor = prm->sfactor; #if !defined(NO_GRIDUTILS) #if !defined(GRIDMAP_TYPE_DEF) #error("GRIDMAP_TYPE_DEF not defined; please update gridutils-c"); #endif if (prm->maptype == 'b' || prm->maptype == 'B') g->maptype = GRIDMAP_TYPE_BINARY; else if (prm->maptype == 'k' || prm->maptype == 'K') g->maptype = GRIDMAP_TYPE_KDTREE; else enkf_quit("unknown grid map type \"%c\"", prm->maptype); #endif ncw_open(fname, NC_NOWRITE, &ncid); ncw_inq_dimid(ncid, prm->xdimname, &dimid_x); ncw_inq_dimid(ncid, prm->ydimname, &dimid_y); ncw_inq_dimid(ncid, prm->zdimname, &dimid_z); ncw_inq_dimlen(ncid, dimid_x, &nx); ncw_inq_dimlen(ncid, dimid_y, &ny); ncw_inq_dimlen(ncid, dimid_z, &nz); ncw_inq_varid(ncid, prm->xvarname, &varid_x); ncw_inq_varid(ncid, prm->yvarname, &varid_y); ncw_inq_varid(ncid, prm->zvarname, &varid_z); ncw_inq_varndims(ncid, varid_x, &ndims_x); ncw_inq_varndims(ncid, varid_y, &ndims_y); ncw_inq_varndims(ncid, varid_z, &ndims_z); if (ndims_x == 1 && ndims_y == 1) { double* x; double* y; double* z; x = malloc(nx * sizeof(double)); y = malloc(ny * sizeof(double)); z = malloc(nz * sizeof(double)); ncw_get_var_double(ncid, varid_x, x); ncw_get_var_double(ncid, varid_y, y); ncw_get_var_double(ncid, varid_z, z); grid_setcoords(g, GRIDHTYPE_LATLON, NT_NONE, nx, ny, nz, x, y, z); } #if !defined(NO_GRIDUTILS) else if (ndims_x == 2 && ndims_y == 2) { double** x; double** y; double* z; x = gu_alloc2d(ny, nx, sizeof(double)); y = gu_alloc2d(ny, nx, sizeof(double)); z = malloc(nz * sizeof(double)); ncw_get_var_double(ncid, varid_x, x[0]); ncw_get_var_double(ncid, varid_y, y[0]); ncw_get_var_double(ncid, varid_z, z); grid_setcoords(g, GRIDHTYPE_CURVILINEAR, NT_COR, nx, ny, nz, x, y, z); } #endif else enkf_quit("%s: could not determine the grid type", fname); if (prm->depthvarname != NULL) { float** depth = alloc2d(ny, nx, sizeof(float)); ncw_inq_varid(ncid, prm->depthvarname, &varid_depth); ncw_get_var_float(ncid, varid_depth, depth[0]); g->depth = depth; } if (prm->levelvarname != NULL) { g->numlevels = alloc2d(ny, nx, sizeof(int)); ncw_inq_varid(ncid, prm->levelvarname, &varid_numlevels); ncw_get_var_int(ncid, varid_numlevels, g->numlevels[0]); if (g->vtype == GRIDVTYPE_SIGMA) { int i, j; for (j = 0; j < ny; ++j) for (i = 0; i < nx; ++i) g->numlevels[j][i] *= nz; } } ncw_close(ncid); if (g->numlevels == NULL) { g->numlevels = alloc2d(ny, nx, sizeof(int)); if (g->vtype == GRIDVTYPE_SIGMA) { int i, j; for (j = 0; j < ny; ++j) for (i = 0; i < nx; ++i) if (g->depth == NULL || g->depth[j][i] > 0.0) g->numlevels[j][i] = nz; } else { int i, j; assert(g->depth != NULL); for (j = 0; j < ny; ++j) { for (i = 0; i < nx; ++i) { double depth = g->depth[j][i]; double fk = NaN; if (depth > 0.0) { z2fk(g, j, i, depth, &fk); g->numlevels[j][i] = ceil(fk + 0.5); } } } } } gridprm_print(prm, " "); grid_print(g, " "); return g; }
void das_getHE(dasystem* das) { observations* obs = das->obs; model* m = das->m; ENSOBSTYPE* Hx = NULL; int i, e; das->s_mode = S_MODE_HE_f; if (obs->nobs == 0) return; if (das->nmem <= 0) das_setnmem(das); enkf_printf(" ensemble size = %d\n", das->nmem); assert(das->nmem > 0); distribute_iterations(0, das->nmem - 1, nprocesses, rank, " "); /* * ensemble observation array to be filled */ assert(das->S == NULL); das->S = alloc2d(das->nmem, obs->nobs, sizeof(ENSOBSTYPE)); if (das->mode == MODE_ENOI) Hx = calloc(obs->nobs, sizeof(ENSOBSTYPE)); for (i = 0; i < obs->nobstypes; ++i) { obstype* ot = &obs->obstypes[i]; float*** vvv = NULL; float** vv = NULL; H_fn H = NULL; int mvid; int ni, nj, nk; int nobs; int* obsids; char fname[MAXSTRLEN]; enkf_printf(" %s ", ot->name); fflush(stdout); mvid = model_getvarid(m, obs->obstypes[i].varnames[0], 1); if (ot->issurface) { model_getvardims(m, mvid, &ni, &nj, NULL); vv = alloc2d(nj, ni, sizeof(float)); } else { model_getvardims(m, mvid, &ni, &nj, &nk); vvv = alloc3d(nk, nj, ni, sizeof(float)); } /* * set H */ H = getH(ot->name, ot->hfunction); if (ot->isasync) { int t1 = get_tshift(ot->date_min, ot->async_tstep); int t2 = get_tshift(ot->date_max, ot->async_tstep); int t; for (t = t1; t <= t2; ++t) { enkf_printf("|"); obs_find_bytypeandtime(obs, i, t, &nobs, &obsids); if (nobs == 0) continue; /* * for EnOI it is essential sometimes (e.g. in some bias * correction cases) that the background is interpolated first */ if (das->mode == MODE_ENOI) { if (enkf_obstype == OBSTYPE_VALUE) { int success = model_getbgfname_async(m, das->bgdir, ot->varnames[0], ot->name, t, fname); H(das, nobs, obsids, fname, -1, t, (ot->issurface) ? (void*) vv : (void*) vvv, Hx); enkf_printf((success) ? "A" : "S"); fflush(stdout); } else if (enkf_obstype == OBSTYPE_INNOVATION) { Hx[0] = 0; enkf_printf("-"); fflush(stdout); } } if (das->mode == MODE_ENKF || !enkf_fstatsonly) { for (e = my_first_iteration; e <= my_last_iteration; ++e) { int success = model_getmemberfname_async(m, das->ensdir, ot->varnames[0], ot->name, e + 1, t, fname); H(das, nobs, obsids, fname, e + 1, t, (ot->issurface) ? (void*) vv : (void*) vvv, das->S[e]); enkf_printf((success) ? "a" : "s"); fflush(stdout); } } free(obsids); } } else { obs_find_bytype(obs, i, &nobs, &obsids); if (nobs == 0) goto next; /* * for EnOI it is essential sometimes (e.g. in some bias correction * cases) that the background is interpolated first */ if (das->mode == MODE_ENOI) { if (enkf_obstype == OBSTYPE_VALUE) { model_getbgfname(m, das->bgdir, ot->varnames[0], fname); H(das, nobs, obsids, fname, -1, INT_MAX, (ot->issurface) ? (void*) vv : (void*) vvv, Hx); enkf_printf("+"); fflush(stdout); } else if (enkf_obstype == OBSTYPE_INNOVATION) { Hx[0] = 0; enkf_printf("-"); fflush(stdout); } } if (das->mode == MODE_ENKF || !enkf_fstatsonly) { for (e = my_first_iteration; e <= my_last_iteration; ++e) { model_getmemberfname(m, das->ensdir, ot->varnames[0], e + 1, fname); H(das, nobs, obsids, fname, e + 1, INT_MAX, (ot->issurface) ? (void*) vv : (void*) vvv, das->S[e]); enkf_printf("."); fflush(stdout); } } free(obsids); } next: if (ot->issurface) free(vv); else free(vvv); enkf_printf("\n"); } /* for i (over obstypes) */ #if defined(MPI) if (das->mode == MODE_ENKF || !enkf_fstatsonly) { #if !defined(HE_VIAFILE) /* * communicate HE via MPI */ int ierror, sendcount, *recvcounts, *displs; recvcounts = malloc(nprocesses * sizeof(int)); displs = malloc(nprocesses * sizeof(int)); sendcount = my_number_of_iterations * obs->nobs; for (i = 0; i < nprocesses; ++i) { recvcounts[i] = number_of_iterations[i] * obs->nobs; displs[i] = first_iteration[i] * obs->nobs; } ierror = MPI_Allgatherv(das->S[my_first_iteration], sendcount, MPIENSOBSTYPE, das->S[0], recvcounts, displs, MPIENSOBSTYPE, MPI_COMM_WORLD); assert(ierror == MPI_SUCCESS); free(recvcounts); free(displs); #else /* * communicate HE via file */ { int ncid; int varid; size_t start[2], count[2]; if (rank == 0) { int dimids[2]; ncw_create(FNAME_HE, NC_CLOBBER | NETCDF_FORMAT, &ncid); ncw_def_dim(FNAME_HE, ncid, "m", das->nmem, &dimids[0]); ncw_def_dim(FNAME_HE, ncid, "p", obs->nobs, &dimids[1]); ncw_def_var(FNAME_HE, ncid, "HE", NC_FLOAT, 2, dimids, &varid); ncw_close(FNAME_HE, ncid); } MPI_Barrier(MPI_COMM_WORLD); ncw_open(FNAME_HE, NC_WRITE, &ncid); ncw_inq_varid(FNAME_HE, ncid, "HE", &varid); start[0] = my_first_iteration; start[1] = 0; count[0] = my_last_iteration - my_first_iteration + 1; count[1] = obs->nobs; ncw_put_vara_float(FNAME_HE, ncid, varid, start, count, das->S[my_first_iteration]); ncw_close(FNAME_HE, ncid); MPI_Barrier(MPI_COMM_WORLD); ncw_open(FNAME_HE, NC_NOWRITE, &ncid); ncw_inq_varid(FNAME_HE, ncid, "HE", &varid); ncw_get_var_float(FNAME_HE, ncid, varid, das->S[0]); ncw_close(FNAME_HE, ncid); } #endif } #endif if (das->mode == MODE_ENOI) { /* * subtract ensemble mean; add background */ if (!enkf_fstatsonly) { double* ensmean = calloc(obs->nobs, sizeof(double)); for (e = 0; e < das->nmem; ++e) { ENSOBSTYPE* Se = das->S[e]; for (i = 0; i < obs->nobs; ++i) ensmean[i] += Se[i]; } for (i = 0; i < obs->nobs; ++i) ensmean[i] /= (double) das->nmem; for (e = 0; e < das->nmem; ++e) { ENSOBSTYPE* Se = das->S[e]; for (i = 0; i < obs->nobs; ++i) Se[i] += Hx[i] - ensmean[i]; } free(ensmean); } else { for (e = 0; e < das->nmem; ++e) { ENSOBSTYPE* Se = das->S[e]; for (i = 0; i < obs->nobs; ++i) Se[i] = Hx[i]; } } } if (das->mode == MODE_ENOI) free(Hx); }
grid* grid_create(void* p, int id) { gridprm* prm = (gridprm*) p; grid* g = calloc(1, sizeof(grid)); char* fname = prm->fname; int ncid; int dimid_x, dimid_y, dimid_z; int varid_x, varid_y, varid_z; int ndims_x, ndims_y, ndims_z; size_t nx, ny, nz; int varid_depth, varid_numlevels; g->name = strdup(prm->name); g->id = id; g->vtype = gridprm_getvtype(prm); ncw_open(fname, NC_NOWRITE, &ncid); ncw_inq_dimid(fname, ncid, prm->xdimname, &dimid_x); ncw_inq_dimid(fname, ncid, prm->ydimname, &dimid_y); ncw_inq_dimid(fname, ncid, prm->zdimname, &dimid_z); ncw_inq_dimlen(fname, ncid, dimid_x, &nx); ncw_inq_dimlen(fname, ncid, dimid_y, &ny); ncw_inq_dimlen(fname, ncid, dimid_z, &nz); ncw_inq_varid(fname, ncid, prm->xvarname, &varid_x); ncw_inq_varid(fname, ncid, prm->yvarname, &varid_y); ncw_inq_varid(fname, ncid, prm->zvarname, &varid_z); ncw_inq_varndims(fname, ncid, varid_x, &ndims_x); ncw_inq_varndims(fname, ncid, varid_y, &ndims_y); ncw_inq_varndims(fname, ncid, varid_z, &ndims_z); if (ndims_x == 1 && ndims_y == 1) { double* x; double* y; double* z; int i; double dx, dy; int periodic_x; x = malloc(nx * sizeof(double)); y = malloc(ny * sizeof(double)); z = malloc(nz * sizeof(double)); ncw_get_var_double(fname, ncid, varid_x, x); ncw_get_var_double(fname, ncid, varid_y, y); ncw_get_var_double(fname, ncid, varid_z, z); periodic_x = fabs(fmod(2.0 * x[nx - 1] - x[nx - 2], 360.0) - x[0]) < EPS_LON; dx = (x[nx - 1] - x[0]) / (double) (nx - 1); for (i = 1; i < (int) nx; ++i) if (fabs(x[i] - x[i - 1] - dx) / fabs(dx) > EPS_LON) break; if (i != (int) nx) grid_setcoords(g, GRIDHTYPE_LATLON_IRREGULAR, NT_NONE, periodic_x, 0, nx, ny, nz, x, y, z); else { dy = (y[ny - 1] - y[0]) / (double) (ny - 1); for (i = 1; i < (int) ny; ++i) if (fabs(y[i] - y[i - 1] - dy) / fabs(dy) > EPS_LON) break; if (i != (int) ny) grid_setcoords(g, GRIDHTYPE_LATLON_IRREGULAR, NT_NONE, periodic_x, 0, nx, ny, nz, x, y, z); else grid_setcoords(g, GRIDHTYPE_LATLON_REGULAR, NT_NONE, periodic_x, 0, nx, ny, nz, x, y, z); } } #if !defined(NO_GRIDUTILS) else if (ndims_x == 2 && ndims_y == 2) { double** x; double** y; double* z; x = alloc2d(ny, nx, sizeof(double)); y = alloc2d(ny, nx, sizeof(double)); z = malloc(nz * sizeof(double)); ncw_get_var_double(fname, ncid, varid_x, x[0]); ncw_get_var_double(fname, ncid, varid_y, y[0]); ncw_get_var_double(fname, ncid, varid_z, z); grid_setcoords(g, GRIDHTYPE_CURVILINEAR, NT_COR, 0, 0, nx, ny, nz, x, y, z); } #endif else enkf_quit("%s: could not determine the grid type", fname); if (prm->depthvarname != NULL) { float** depth = alloc2d(ny, nx, sizeof(float)); ncw_inq_varid(fname, ncid, prm->depthvarname, &varid_depth); ncw_get_var_float(fname, ncid, varid_depth, depth[0]); g->depth = depth; } if (prm->levelvarname != NULL) { g->numlevels = alloc2d(ny, nx, sizeof(int)); ncw_inq_varid(fname, ncid, prm->levelvarname, &varid_numlevels); ncw_get_var_int(fname, ncid, varid_numlevels, g->numlevels[0]); if (g->vtype == GRIDVTYPE_SIGMA) { int i, j; for (j = 0; j < ny; ++j) for (i = 0; i < nx; ++i) g->numlevels[j][i] *= nz; } } ncw_close(fname, ncid); if (g->numlevels == NULL && g->depth != NULL) { g->numlevels = alloc2d(ny, nx, sizeof(int)); if (g->vtype == GRIDVTYPE_SIGMA) { int i, j; for (j = 0; j < ny; ++j) for (i = 0; i < nx; ++i) if (g->depth[j][i] > 0.0) g->numlevels[j][i] = nz; } else { int i, j; for (j = 0; j < ny; ++j) { for (i = 0; i < nx; ++i) { double depth = g->depth[j][i]; double fk = NaN; if (depth > 0.0) { z2fk(g, j, i, depth, &fk); g->numlevels[j][i] = ceil(fk + 0.5); } } } } } gridprm_print(prm, " "); grid_print(g, " "); return g; }
void reader_navo_standard(char* fname, int fid, obsmeta* meta, model* m, observations* obs) { int addbias = ADDBIAS_DEF; int ncid; int dimid_nobs; size_t nobs_local; int varid_lon, varid_lat, varid_sst, varid_sstb, varid_error, varid_time; double* lon = NULL; double* lat = NULL; double* sst = NULL; double* sstb = NULL; double* error_std = NULL; double* time = NULL; int year, month, day; char tunits[MAXSTRLEN]; size_t tunits_len; double tunits_multiple, tunits_offset; char* basename; int model_vid; int k, i; for (i = 0; i < meta->npars; ++i) { if (strcasecmp(meta->pars[i].name, "ADDBIAS") == 0) addbias = (istrue(meta->pars[i].value)) ? 1 : 0; else enkf_quit("unknown PARAMETER \"%s\"\n", meta->pars[i].name); } enkf_printf(" ADDBIAS = %s\n", (addbias) ? "YES" : "NO"); basename = strrchr(fname, '/'); if (basename == NULL) basename = fname; else basename += 1; ncw_open(fname, NC_NOWRITE, &ncid); ncw_inq_dimid(fname, ncid, (ncw_dim_exists(ncid, "nobs")) ? "nobs" : "length", &dimid_nobs); ncw_inq_dimlen(fname, ncid, dimid_nobs, &nobs_local); enkf_printf(" nobs = %u\n", (unsigned int) nobs_local); if (nobs_local == 0) { ncw_close(fname, ncid); return; } ncw_inq_varid(fname, ncid, "lon", &varid_lon); lon = malloc(nobs_local * sizeof(double)); ncw_get_var_double(fname, ncid, varid_lon, lon); ncw_inq_varid(fname, ncid, "lat", &varid_lat); lat = malloc(nobs_local * sizeof(double)); ncw_get_var_double(fname, ncid, varid_lat, lat); ncw_inq_varid(fname, ncid, "sst", &varid_sst); sst = malloc(nobs_local * sizeof(double)); ncw_get_var_double(fname, ncid, varid_sst, sst); if (addbias) { ncw_inq_varid(fname, ncid, "SST_bias", &varid_sstb); sstb = malloc(nobs_local * sizeof(double)); ncw_get_var_double(fname, ncid, varid_sstb, sstb); } ncw_inq_varid(fname, ncid, "error", &varid_error); error_std = malloc(nobs_local * sizeof(double)); ncw_get_var_double(fname, ncid, varid_error, error_std); ncw_inq_varid(fname, ncid, "GMT_time", &varid_time); time = malloc(nobs_local * sizeof(double)); ncw_get_var_double(fname, ncid, varid_time, time); ncw_inq_attlen(fname, ncid, varid_time, "units", &tunits_len); ncw_get_att_text(fname, ncid, varid_time, "units", tunits); basename[13] = 0; if (!str2int(&basename[11], &day)) enkf_quit("NAVO reader: could not convert file name \"%s\" to date", fname); basename[11] = 0; if (!str2int(&basename[9], &month)) enkf_quit("NAVO reader: could not convert file name \"%s\" to date", fname); basename[9] = 0; if (!str2int(&basename[5], &year)) enkf_quit("NAVO reader: could not convert file name \"%s\" to date", fname); snprintf(&tunits[tunits_len], MAXSTRLEN - tunits_len, " since %4d-%02d-%02d", year, month, day); ncw_close(fname, ncid); tunits_convert(tunits, &tunits_multiple, &tunits_offset); model_vid = model_getvarid(m, obs->obstypes[obstype_getid(obs->nobstypes, obs->obstypes, meta->type)].varname, 1); k = grid_gettoplayerid(model_getvargrid(m, model_vid)); for (i = 0; i < (int) nobs_local; ++i) { observation* o; obstype* ot; obs_checkalloc(obs); o = &obs->data[obs->nobs]; o->product = st_findindexbystring(obs->products, meta->product); assert(o->product >= 0); o->type = obstype_getid(obs->nobstypes, obs->obstypes, meta->type); assert(o->type >= 0); ot = &obs->obstypes[o->type]; o->instrument = st_add_ifabscent(obs->instruments, "AVHRR", -1); o->id = obs->nobs; o->fid = fid; o->batch = 0; o->value = (addbias) ? sst[i] + sstb[i] : sst[i]; o->std = error_std[i]; o->lon = lon[i]; o->lat = lat[i]; o->depth = 0.0; o->status = model_xy2fij(m, model_vid, o->lon, o->lat, &o->fi, &o->fj); if (!obs->allobs && o->status == STATUS_OUTSIDEGRID) continue; if ((o->status == STATUS_OK) && (o->lon <= ot->xmin || o->lon >= ot->xmax || o->lat <= ot->ymin || o->lat >= ot->ymax || o->depth <= ot->zmin || o->depth >= ot->zmax)) o->status = STATUS_OUTSIDEOBSDOMAIN; o->fk = (double) k; o->date = time[i] * tunits_multiple + tunits_offset; o->aux = -1; obs->nobs++; } free(lon); free(lat); free(sst); if (addbias) free(sstb); free(error_std); free(time); }
void das_getHE(dasystem* das) { observations* obs = das->obs; model* m = das->m; ENSOBSTYPE* Hx = NULL; int i, e; das->s_mode = S_MODE_HE_f; if (obs->nobs == 0) return; if (das->nmem <= 0) das_getnmem(das); enkf_printf(" ensemble size = %d\n", das->nmem); assert(das->nmem > 0); distribute_iterations(0, das->nmem - 1, nprocesses, rank, " "); /* * ensemble observation array to be filled */ assert(das->S == NULL); das->S = alloc2d(das->nmem, obs->nobs, sizeof(ENSOBSTYPE)); if (das->mode == MODE_ENOI) Hx = calloc(obs->nobs, sizeof(ENSOBSTYPE)); for (i = 0; i < obs->nobstypes; ++i) { obstype* ot = &obs->obstypes[i]; float*** vvv = NULL; float** vv = NULL; H_fn H = NULL; int mvid; int ni, nj, nk; int nobs; int* obsids; char fname[MAXSTRLEN]; enkf_printf(" %s ", ot->name); fflush(stdout); mvid = model_getvarid(m, obs->obstypes[i].varname); if (mvid < 0) enkf_quit("variable \"%s\" required for observation type \"%s\" is not defined", obs->obstypes[i].varname, ot->name); if (ot->issurface) { model_getvardims(m, mvid, &ni, &nj, NULL); vv = alloc2d(nj, ni, sizeof(float)); } else { model_getvardims(m, mvid, &ni, &nj, &nk); vvv = alloc3d(nk, nj, ni, sizeof(float)); } /* * set H */ H = getH(ot->name, ot->hfunction); if (ot->isasync) { int t1 = get_tshift(ot->date_min, ot->async_tstep); int t2 = get_tshift(ot->date_max, ot->async_tstep); int t; for (t = t1; t <= t2; ++t) { enkf_printf("|"); obs_find_bytypeandtime(obs, i, t, &nobs, &obsids); if (nobs == 0) continue; if (das->mode == MODE_ENKF || !enkf_fstatsonly) { for (e = my_first_iteration; e <= my_last_iteration; ++e) { int success = model_getmemberfname_async(m, das->ensdir, ot->varname, ot->name, e + 1, t, fname); H(das, nobs, obsids, fname, e + 1, t, ot->varname, ot->varname2, (ot->issurface) ? (void*) vv : (void*) vvv, das->S[e]); enkf_printf((success) ? "a" : "s"); fflush(stdout); } } if (das->mode == MODE_ENOI) { if (enkf_obstype == OBSTYPE_VALUE) { int success = model_getbgfname_async(m, das->bgdir, ot->varname, ot->name, t, fname); H(das, nobs, obsids, fname, -1, t, ot->varname, ot->varname2, (ot->issurface) ? (void*) vv : (void*) vvv, Hx); enkf_printf((success) ? "A" : "S"); fflush(stdout); } else if (enkf_obstype == OBSTYPE_INNOVATION) { Hx[0] = 0; enkf_printf("-"); fflush(stdout); } } free(obsids); } } else { obs_find_bytype(obs, i, &nobs, &obsids); if (nobs == 0) goto next; if (das->mode == MODE_ENKF || !enkf_fstatsonly) { for (e = my_first_iteration; e <= my_last_iteration; ++e) { model_getmemberfname(m, das->ensdir, ot->varname, e + 1, fname); H(das, nobs, obsids, fname, e + 1, MAXINT, ot->varname, ot->varname2, (ot->issurface) ? (void*) vv : (void*) vvv, das->S[e]); enkf_printf("."); fflush(stdout); } } if (das->mode == MODE_ENOI) { if (enkf_obstype == OBSTYPE_VALUE) { model_getbgfname(m, das->bgdir, ot->varname, fname); H(das, nobs, obsids, fname, -1, MAXINT, ot->varname, ot->varname2, (ot->issurface) ? (void*) vv : (void*) vvv, Hx); enkf_printf("+"); fflush(stdout); } else if (enkf_obstype == OBSTYPE_INNOVATION) { Hx[0] = 0; enkf_printf("-"); fflush(stdout); } } free(obsids); } next: if (ot->issurface) free2d(vv); else free3d(vvv); enkf_printf("\n"); } /* for i (over obstypes) */ #if defined(MPI) if (das->mode == MODE_ENKF || !enkf_fstatsonly) { #if !defined(HE_VIAFILE) /* * communicate HE via MPI */ int ierror, count; /* * Blocking communications can create a bottleneck in instances with * large number of observations (e.g., 2e6 obs., 144 members, 48 * processes), but asynchronous send/receive seem to work well */ if (rank > 0) { MPI_Request request; /* * send ensemble observations to master */ count = (my_last_iteration - my_first_iteration + 1) * obs->nobs; ierror = MPI_Isend(das->S[my_first_iteration], count, MPIENSOBSTYPE, 0, rank, MPI_COMM_WORLD, &request); assert(ierror == MPI_SUCCESS); } else { int r; MPI_Request* requests = malloc((nprocesses - 1) * sizeof(MPI_Request)); /* * collect ensemble observations from slaves */ for (r = 1; r < nprocesses; ++r) { count = (last_iteration[r] - first_iteration[r] + 1) * obs->nobs; ierror = MPI_Irecv(das->S[first_iteration[r]], count, MPIENSOBSTYPE, r, r, MPI_COMM_WORLD, &requests[r - 1]); assert(ierror == MPI_SUCCESS); } ierror = MPI_Waitall(nprocesses - 1, requests, MPI_STATUS_IGNORE); assert(ierror == MPI_SUCCESS); free(requests); } /* * now send the full set of ensemble observations to slaves */ count = das->nmem * obs->nobs; ierror = MPI_Bcast(das->S[0], count, MPIENSOBSTYPE, 0, MPI_COMM_WORLD); assert(ierror == MPI_SUCCESS); #else /* * communicate HE via file */ { int ncid; int varid; size_t start[2], count[2]; if (rank == 0) { int dimids[2]; ncw_create(FNAME_HE, NC_CLOBBER | NC_64BIT_OFFSET, &ncid); ncw_def_dim(FNAME_HE, ncid, "m", das->nmem, &dimids[0]); ncw_def_dim(FNAME_HE, ncid, "p", obs->nobs, &dimids[1]); ncw_def_var(FNAME_HE, ncid, "HE", NC_FLOAT, 2, dimids, &varid); ncw_close(FNAME_HE, ncid); } MPI_Barrier(MPI_COMM_WORLD); ncw_open(FNAME_HE, NC_WRITE, &ncid); ncw_inq_varid(FNAME_HE, ncid, "HE", &varid); start[0] = my_first_iteration; start[1] = 0; count[0] = my_last_iteration - my_first_iteration + 1; count[1] = obs->nobs; ncw_put_vara_float(FNAME_HE, ncid, varid, start, count, das->S[my_first_iteration]); ncw_close(FNAME_HE, ncid); MPI_Barrier(MPI_COMM_WORLD); ncw_open(FNAME_HE, NC_NOWRITE, &ncid); ncw_inq_varid(FNAME_HE, ncid, "HE", &varid); ncw_get_var_float(FNAME_HE, ncid, varid, das->S[0]); ncw_close(FNAME_HE, ncid); } #endif } #endif if (das->mode == MODE_ENOI) { /* * subtract ensemble mean; add background */ if (!enkf_fstatsonly) { double* ensmean = calloc(obs->nobs, sizeof(double)); for (e = 0; e < das->nmem; ++e) { ENSOBSTYPE* Se = das->S[e]; for (i = 0; i < obs->nobs; ++i) ensmean[i] += Se[i]; } for (i = 0; i < obs->nobs; ++i) ensmean[i] /= (double) das->nmem; for (e = 0; e < das->nmem; ++e) { ENSOBSTYPE* Se = das->S[e]; for (i = 0; i < obs->nobs; ++i) Se[i] += Hx[i] - ensmean[i]; } free(ensmean); } else { for (e = 0; e < das->nmem; ++e) { ENSOBSTYPE* Se = das->S[e]; for (i = 0; i < obs->nobs; ++i) Se[i] = Hx[i]; } } } if (das->mode == MODE_ENOI) free(Hx); }
int main(int argc, char** argv) { int ndims = 0; char** dims = NULL; int nsrc = 0; char** src = NULL; char* dst = NULL; int i; int** dimids = NULL; int nvars = 0; int* varids = NULL; size_t* size = NULL; int nvars0; if (argc == 1) { usage(); description(); exit(0); } i = 1; while (i < argc) { if (argv[i][0] != '-') { usage(); exit(1); } if (argv[i][1] == 'd') { i++; while (i < argc && argv[i][0] != '-') { if (ndims % INC == 0) dims = realloc(dims, (ndims + INC) * sizeof(char*)); dims[ndims] = argv[i]; ndims++; i++; } } else if (argv[i][1] == 'i') { i++; while (i < argc && argv[i][0] != '-') { if (nsrc % INC == 0) src = realloc(src, (nsrc + INC) * sizeof(char*)); src[nsrc] = strdup(argv[i]); nsrc++; i++; } } else if (argv[i][1] == 'o') { i++; if (i < argc && argv[i][0] != '-') { dst = argv[i]; i++; } } else if (argv[i][1] == 'v') { verbose = 1; i++; } else { usage(); exit(1); } } if (argc == 2 && verbose) { printf(" ncw version %s\n", ncw_version); exit(1); } if (ndims == 0 || nsrc < 1 || dst == NULL) { usage(); exit(1); } printf_v(" src:\n"); for (i = 0; i < nsrc; ++i) printf_v(" \"%s\"\n", src[i]); printf_v(" dst = \"%s\"\n", dst); printf_v(" merged dimensions:\n"); for (i = 0; i < ndims; ++i) printf_v(" %s\n", dims[i]); dimids = alloc2d(nsrc, ndims, sizeof(int)); for (i = 0; i < nsrc; ++i) { int ncid, j; ncw_open(src[i], NC_NOWRITE, &ncid); for (j = 0; j < ndims; ++j) ncw_inq_dimid(ncid, dims[j], &dimids[i][j]); ncw_close(ncid); } { int ncid; ncw_open(src[0], NC_NOWRITE, &ncid); ncw_inq_nvars(ncid, &nvars0); varids = malloc(nvars0 * sizeof(int)); printf_v(" merged variables:\n"); for (i = 0; i < nvars0; ++i) { int dimids_now[NC_MAX_VAR_DIMS]; char varname[NC_MAX_NAME] = ""; int j; ncw_inq_vardimid(ncid, i, dimids_now); for (j = 0; j < ndims; ++j) { if (dimids_now[0] == dimids[0][j]) { varids[nvars] = i; nvars++; ncw_inq_varname(ncid, i, varname); printf_v(" %s\n", varname); break; } } } ncw_close(ncid); } printf_v(" creating dst:"); { int ncid_dst, ncid0; int ndims0; ncw_create(dst, NC_CLOBBER | NC_64BIT_OFFSET, &ncid_dst); ncw_open(src[0], NC_NOWRITE, &ncid0); ncw_inq_ndims(ncid0, &ndims0); for (i = 0; i < ndims0; ++i) { char dimname[NC_MAX_NAME]; size_t dimlen; int dimid; int j; ncw_inq_dim(ncid0, i, dimname, &dimlen); for (j = 0; j < ndims; ++j) { if (i == dimids[0][j]) { int ncid_now, dimid_now; size_t dimlen_now; int s; for (s = 1; s < nsrc; ++s) { ncw_open(src[s], NC_NOWRITE, &ncid_now); ncw_inq_dimid(ncid_now, dimname, &dimid_now); ncw_inq_dimlen(ncid_now, dimid_now, &dimlen_now); ncw_close(ncid_now); dimlen += dimlen_now; } break; } } ncw_def_dim(ncid_dst, dimname, dimlen, &dimid); } for (i = 0; i < nvars0; ++i) { nc_type type; int nvardims; char varname[NC_MAX_NAME]; int dimids0[NC_MAX_DIMS], dimids_dst[NC_MAX_DIMS]; int natts; int varid_dst; int j; ncw_inq_var(ncid0, i, varname, &type, &nvardims, dimids0, &natts); for (j = 0; j < nvardims; ++j) { char dimname[NC_MAX_NAME]; size_t dimlen; ncw_inq_dim(ncid0, dimids0[j], dimname, &dimlen); ncw_inq_dimid(ncid_dst, dimname, &dimids_dst[j]); } ncw_def_var(ncid_dst, varname, type, nvardims, dimids_dst, &varid_dst); ncw_copy_atts(ncid0, i, ncid_dst, varid_dst); } ncw_close(ncid_dst); ncw_close(ncid0); } printf_v("\n"); printf_v(" copying data:"); size = malloc(nsrc * sizeof(size_t)); { int ncid_dst; ncw_open(dst, NC_WRITE, &ncid_dst); for (i = 0; i < nvars0; ++i) { int j; for (j = 0; j < nvars; ++j) if (varids[j] == i) break; if (j == nvars) { int ncid0; ncw_open(src[0], NC_NOWRITE, &ncid0); ncw_copy_vardata(ncid0, i, ncid_dst); ncw_close(ncid0); } else { int ncid; char varname[NC_MAX_NAME]; int s; size_t size_total = 0; size_t nbytes; void* data = NULL; void* data_now; nc_type type; int varid_dst; ncw_open(src[0], NC_NOWRITE, &ncid); ncw_inq_varname(ncid, i, varname); ncw_close(ncid); size_total = 0; for (s = 0; s < nsrc; ++s) { int ncid; int varid; int ndims; int dimids[NC_MAX_DIMS]; size_t dimlens[NC_MAX_DIMS]; ncw_open(src[s], NC_NOWRITE, &ncid); ncw_inq_varid(ncid, varname, &varid); ncw_inq_var(ncid, varid, NULL, &type, &ndims, dimids, NULL); for (j = 0; j < ndims; ++j) ncw_inq_dimlen(ncid, dimids[j], &dimlens[j]); ncw_close(ncid); size[s] = 1; for (j = 0; j < ndims; ++j) size[s] *= dimlens[j]; size_total += size[s]; } nbytes = size_total * ncw_sizeof(type); if (nbytes > 4294967296) quit("sizeof(%s) = %zu exceeds 4GB", varname, nbytes); data = malloc(nbytes); if (data == NULL) quit("malloc(): could not allocate memory for variable \"%s\" (size = %zu)", varname, size_total * ncw_sizeof(type)); data_now = data; for (s = 0; s < nsrc; ++s) { int ncid; int varid; ncw_open(src[s], NC_NOWRITE, &ncid); ncw_inq_varid(ncid, varname, &varid); ncw_get_var(ncid, varid, data_now); ncw_close(ncid); data_now = &((char*) data_now)[size[s] * ncw_sizeof(type)]; } ncw_inq_varid(ncid_dst, varname, &varid_dst); ncw_put_var(ncid_dst, varid_dst, data); free(data); } printf_v("."); } ncw_close(ncid_dst); } printf_v("\n"); /* * clean up */ free(size); free(varids); free(dimids); for (i = 0; i < nsrc; ++i) free(src[i]); free(src); return 0; }
void reader_xy_gridded_hfradar(char* fname, int fid, obsmeta* meta, grid* g, observations* obs) { int ksurf = grid_getsurflayerid(g); int isperiodic_i = grid_isperiodic_i(g); int** numlevels = grid_getnumlevels(g); float** grid_angle = grid_getangle(g); int grid_ni = 0, grid_nj = 0; char* varname = NULL; char* u_varname = NULL; char* v_varname = NULL; char* u_stdvarname = NULL; char* v_stdvarname = NULL; char* lonname = NULL; char* latname = NULL; char* gdopname = NULL; char* npointsname_1 = NULL; char* npointsname_2 = NULL; char* stdname = NULL; char* estdname = NULL; char* timename = NULL; char* qcflagname = NULL; char* u_qcflagname = NULL; char* v_qcflagname = NULL; char* rotation_flag = NULL; int ncid; int ndim_var, ndim_xy; size_t dimlen_var[3], dimlen_xy[2]; uint32_t qcflagvals = 0; float varshift = 0.0; float u_varshift = 0.0; float v_varshift = 0.0; double mindepth = 0.0; char instrument[MAXSTRLEN]; int iscurv = -1; int need_rotation = -1; size_t ni = 0, nj = 0, n = 0, n_var = 0; int varid_lon = -1, varid_lat = -1; double* lon = NULL; double* lat = NULL; int varid_gdop = -1, varid_npoints_1 = -1, varid_npoints_2 = -1; int varid_var = -1, varid_std = -1, varid_estd = -1, varid_qcflag = -1, varid_time = -1; int varid_u = -1, varid_v =-1, varid_u_std = -1, varid_v_std = -1, varid_u_qcflag = -1, varid_v_qcflag = -1; float* var = NULL; float* u_var = NULL; float* v_var = NULL; float* u_std = NULL; float* v_std = NULL; float var_fill_value = NAN; float var_add_offset = NAN, var_scale_factor = NAN; float u_var_fill_value = NAN; float u_var_add_offset = NAN, u_var_scale_factor = NAN; float v_var_fill_value = NAN; float v_var_add_offset = NAN, v_var_scale_factor = NAN; float u_std_fill_value = NAN; float u_std_add_offset = NAN, u_std_scale_factor = NAN; float v_std_fill_value = NAN; float v_std_add_offset = NAN, v_std_scale_factor = NAN; double var_estd = NAN; float* gdop = NULL; short* npoints_1 = NULL; short* npoints_2 = NULL; float* std = NULL; float std_add_offset = NAN, std_scale_factor = NAN; float std_fill_value = NAN; float* estd = NULL; float estd_add_offset = NAN, estd_scale_factor = NAN; float estd_fill_value = NAN; int32_t* qcflag = NULL; int32_t* u_qcflag = NULL; int32_t* v_qcflag = NULL; int have_time = 1; int singletime = -1; float* time = NULL; float time_add_offset = NAN, time_scale_factor = NAN; float time_fill_value = NAN; char tunits[MAXSTRLEN]; double tunits_multiple = NAN, tunits_offset = NAN; int i, nobs_read; strcpy(instrument, meta->product); for (i = 0; i < meta->npars; ++i) { if (strcasecmp(meta->pars[i].name, "VARNAME") == 0) varname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "ROTATION") == 0) rotation_flag = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "U_VARNAME") == 0) u_varname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "V_VARNAME") == 0) v_varname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "U_STD") == 0) u_stdvarname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "V_STD") == 0) v_stdvarname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "TIMENAME") == 0) timename = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "GDOPNAME") == 0) gdopname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "NPOINTSNAME_1") == 0) npointsname_1 = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "NPOINTSNAME_2") == 0) npointsname_2 = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "LONNAME") == 0) lonname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "LATNAME") == 0) latname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "STDNAME") == 0) stdname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "ESTDNAME") == 0) estdname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "QCFLAGNAME") == 0) qcflagname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "U_QCFLAGNAME") == 0) u_qcflagname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "V_QCFLAGNAME") == 0) v_qcflagname = meta->pars[i].value; else if (strcasecmp(meta->pars[i].name, "QCFLAGVALS") == 0) { char* pline = meta->pars[i].value; int linelen = sizeof(pline); char lineval[linelen]; char* line = strcpy(lineval,pline); char seps[] = " ,"; char* token; int val; qcflagvals = 0; while ((token = strtok(line, seps)) != NULL) { if (!str2int(token, &val)) enkf_quit("%s: could not convert QCFLAGVALS entry \"%s\" to integer", meta->prmfname, token); if (val < 0 || val > 31) enkf_quit("%s: QCFLAGVALS entry = %d (supposed to be in [0,31] interval", meta->prmfname, val); qcflagvals |= 1 << val; line = NULL; } if (qcflagvals == 0) enkf_quit("%s: no valid flag entries found after QCFLAGVALS\n", meta->prmfname); } else if (strcasecmp(meta->pars[i].name, "VARSHIFT") == 0) { if (!str2float(meta->pars[i].value, &varshift)) enkf_quit("%s: can not convert VARSHIFT = \"%s\" to float\n", meta->prmfname, meta->pars[i].value); enkf_printf(" VARSHIFT = %s\n", meta->pars[i].value); } else if (strcasecmp(meta->pars[i].name, "U_VARSHIFT") == 0) { if (!str2float(meta->pars[i].value, &u_varshift)) enkf_quit("%s: can not convert U_VARSHIFT = \"%s\" to float\n", meta->prmfname, meta->pars[i].value); enkf_printf(" U_VARSHIFT = %s\n", meta->pars[i].value); } else if (strcasecmp(meta->pars[i].name, "V_VARSHIFT") == 0) { if (!str2float(meta->pars[i].value, &v_varshift)) enkf_quit("%s: can not convert V_VARSHIFT = \"%s\" to float\n", meta->prmfname, meta->pars[i].value); enkf_printf(" V_VARSHIFT = %s\n", meta->pars[i].value); } else if (strcasecmp(meta->pars[i].name, "MINDEPTH") == 0) { if (!str2double(meta->pars[i].value, &mindepth)) enkf_quit("%s: can not convert MINDEPTH = \"%s\" to double\n", meta->prmfname, meta->pars[i].value); enkf_printf(" MINDEPTH = %f\n", mindepth); } else if (strcasecmp(meta->pars[i].name, "INSTRUMENT") == 0) { strncpy(instrument, meta->pars[i].value, MAXSTRLEN); } else enkf_quit("unknown PARAMETER \"%s\"\n", meta->pars[i].name); } if (varname == NULL) enkf_quit("reader_xy_gridded(): %s variable name not specified", fname); if (rotation_flag != NULL) { int bool_rotation_flag, valid_rotation_flag; bool_rotation_flag = atoi(rotation_flag); valid_rotation_flag = (bool_rotation_flag == 0 || bool_rotation_flag == 1); if (valid_rotation_flag) { need_rotation = bool_rotation_flag == 1; grid_getdims(g, &grid_ni, &grid_nj, NULL); if (need_rotation == 1 && grid_angle == NULL) enkf_quit("reader_xy_gridded_hfradar(): %s cannot rotate vectors without ANGLE parameter defined within grid prm file",fname); enkf_printf("\t#Rotation of vectors enabled\n"); } else enkf_quit("reader_xy_gridded_hfradar(): %s invalid ROTATION parameter. Need to be a boolean digit"); } ncw_open(fname, NC_NOWRITE, &ncid); ncw_inq_varid(ncid, varname, &varid_var); ncw_inq_vardims(ncid, varid_var, 3, &ndim_var, dimlen_var); if (ndim_var == 3) { int dimid[3]; size_t nr; ncw_inq_vardimid(ncid, varid_var, dimid); ncw_inq_dimlen(ncid, dimid[0], &nr); if (nr != 1) enkf_quit("reader_xy_gridded(): %d records (currently only one is allowed)", nr); n_var = dimlen_var[1] * dimlen_var[2]; } else if (ndim_var == 2) { if (nc_hasunlimdim(ncid)) enkf_quit("reader_xy_gridded(): %s: %s: not enough spatial dimensions (must be 2)", fname, varname); n_var = dimlen_var[0] * dimlen_var[1]; } else if (ndim_var != 2) enkf_quit("reader_xy_gridded(): %s: # dimensions = %d (must be 2 or 3 with only one record)", fname, ndim_var); if (lonname != NULL) ncw_inq_varid(ncid, lonname, &varid_lon); else if (ncw_var_exists(ncid, "lon")) ncw_inq_varid(ncid, "lon", &varid_lon); else if (ncw_var_exists(ncid, "longitude")) ncw_inq_varid(ncid, "longitude", &varid_lon); else if (ncw_var_exists(ncid, "LONGITUDE")) ncw_inq_varid(ncid, "LONGITUDE", &varid_lon); else enkf_quit("reader_xy_gridded(): %s: could not find longitude variable", fname); ncw_inq_vardims(ncid, varid_lon, 2, &ndim_xy, dimlen_xy); if (ndim_xy == 1) { iscurv = 0; ni = dimlen_xy[0]; } else if (ndim_xy == 2) { iscurv = 1; ni = dimlen_xy[1]; nj = dimlen_xy[0]; } else enkf_quit("reader_xy_gridded(): %s: coordinate variable \"%s\" has neither 1 or 2 dimensions", fname, lonname); if (latname != NULL) ncw_inq_varid(ncid, latname, &varid_lat); else if (ncw_var_exists(ncid, "lat")) ncw_inq_varid(ncid, "lat", &varid_lat); else if (ncw_var_exists(ncid, "latitude")) ncw_inq_varid(ncid, "latitude", &varid_lat); else if (ncw_var_exists(ncid, "LATITUDE")) ncw_inq_varid(ncid, "LATITUDE", &varid_lat); else enkf_quit("reader_xy_gridded(): %s: could not find latitude variable", fname); if (iscurv == 0) { ncw_check_varndims(ncid, varid_lat, 1); ncw_inq_vardims(ncid, varid_lat, 1, NULL, &nj); } else ncw_check_vardims(ncid, varid_lat, 2, dimlen_xy); enkf_printf(" (ni, nj) = (%u, %u)\n", ni, nj); n = ni * nj; if (n != n_var) enkf_quit("reader_xy_gridded(): %s: dimensions of variable \"%s\" do not match coordinate dimensions", fname, varname); if (dimlen_var[ndim_var - 1] != ni) enkf_quit("reader_xy_gridded(): %s: %s: longitude must be the inner coordinate", fname, varname); if (iscurv == 0) { lon = malloc(ni * sizeof(double)); lat = malloc(nj * sizeof(double)); } else { lon = malloc(n * sizeof(double)); lat = malloc(n * sizeof(double)); } ncw_get_var_double(ncid, varid_lon, lon); ncw_get_var_double(ncid, varid_lat, lat); var = malloc(n * sizeof(float)); ncw_get_var_float(ncid, varid_var, var); if (ncw_att_exists(ncid, varid_var, "add_offset")) { ncw_get_att_float(ncid, varid_var, "add_offset", &var_add_offset); ncw_get_att_float(ncid, varid_var, "scale_factor", &var_scale_factor); } if (ncw_att_exists(ncid, varid_var, "_FillValue")) ncw_get_att_float(ncid, varid_var, "_FillValue", &var_fill_value); if (gdopname != NULL) ncw_inq_varid(ncid, gdopname, &varid_gdop); else if (ncw_var_exists(ncid, "GDOP")) ncw_inq_varid(ncid, "GDOP", &varid_gdop); if (varid_gdop >= 0) { gdop = malloc(n * sizeof(float)); ncw_get_var_float(ncid, varid_gdop, gdop); float gdop_fill_value, gdop_add_offset, gdop_scale_factor; if (ncw_att_exists(ncid, varid_gdop, "_FillValue")) ncw_get_att_float(ncid, varid_gdop, "_FillValue", &gdop_fill_value); if (ncw_att_exists(ncid, varid_gdop, "add_offset")) { ncw_get_att_float(ncid, varid_gdop, "add_offset", &gdop_add_offset); ncw_get_att_float(ncid, varid_gdop, "scale_factor", &gdop_scale_factor); } } if (npointsname_1 != NULL) ncw_inq_varid(ncid, npointsname_1, &varid_npoints_1); else if (ncw_var_exists(ncid, "NOBS1")) ncw_inq_varid(ncid, "NOBS1", &varid_npoints_1); if (varid_npoints_1 >= 0) { npoints_1 = malloc(n * sizeof(short)); ncw_get_var_short(ncid, varid_npoints_1, npoints_1); } if (npointsname_2 != NULL) ncw_inq_varid(ncid, npointsname_2, &varid_npoints_2); else if (ncw_var_exists(ncid, "NOBS2")) ncw_inq_varid(ncid, "NOBS2", &varid_npoints_2); if (varid_npoints_2 >= 0) { npoints_2 = malloc(n * sizeof(short)); ncw_get_var_short(ncid, varid_npoints_2, npoints_2); } if (need_rotation == 1) { if (u_varname != NULL ) ncw_inq_varid(ncid, u_varname, &varid_u); else if (ncw_var_exists(ncid, "UCUR")) { ncw_inq_varid(ncid, "UCUR", &varid_u); u_varname = "UCUR"; } if (varid_u >= 0) { u_var = malloc(n * sizeof(float)); ncw_get_var_float(ncid,varid_u,u_var); if (ncw_att_exists(ncid,varid_u, "_FillValue")) ncw_get_att_float(ncid, varid_u, "_FillValue", &u_var_fill_value); if (ncw_att_exists(ncid,varid_u,"add_offset")) { ncw_get_att_float(ncid, varid_u, "add_offset", &u_var_add_offset); ncw_get_att_float(ncid, varid_u, "scale_factor", &u_var_scale_factor); } } else enkf_quit("reader_xy_gridded(): %s: Variable %s not found.",fname, u_varname); if (v_varname != NULL) ncw_inq_varid(ncid, v_varname, &varid_v); else if (ncw_var_exists(ncid, "VCUR")) { ncw_inq_varid(ncid, "VCUR", &varid_v); v_varname = "VCUR"; } if (varid_v >= 0) { v_var = malloc(n * sizeof(float)); ncw_get_var_float(ncid,varid_v,v_var); if (ncw_att_exists(ncid,varid_v, "_FillValue")) ncw_get_att_float(ncid,varid_v, "_FillValue", &v_var_fill_value); if (ncw_att_exists(ncid,varid_v,"add_offset")) { ncw_get_att_float(ncid, varid_v, "add_offset", &v_var_add_offset); ncw_get_att_float(ncid, varid_v, "scale_factor", &v_var_scale_factor); } } else enkf_quit("reader_xy_gridded(): %s: Variable %s not found.",fname, v_varname); } if (stdname != NULL) ncw_inq_varid(ncid, stdname, &varid_std); else if (ncw_var_exists(ncid, "std")) ncw_inq_varid(ncid, "std", &varid_std); if (varid_std >= 0) { std = malloc(n * sizeof(float)); ncw_get_var_float(ncid, varid_std, std); if (ncw_att_exists(ncid, varid_std, "_FillValue")) ncw_get_att_float(ncid, varid_std, "_FillValue", &std_fill_value); if (ncw_att_exists(ncid, varid_std, "add_offset")) { ncw_get_att_float(ncid, varid_std, "add_offset", &std_add_offset); ncw_get_att_float(ncid, varid_std, "scale_factor", &std_scale_factor); } } if (estdname != NULL) ncw_inq_varid(ncid, estdname, &varid_estd); else if (ncw_var_exists(ncid, "error_std")) ncw_inq_varid(ncid, "error_std", &varid_estd); if (varid_estd >= 0) { estd = malloc(n * sizeof(float)); ncw_get_var_float(ncid, varid_estd, estd); if (ncw_att_exists(ncid, varid_estd, "_FillValue")) ncw_get_att_float(ncid, varid_estd, "_FillValue", &estd_fill_value); if (ncw_att_exists(ncid, varid_estd, "add_offset")) { ncw_get_att_float(ncid, varid_estd, "add_offset", &estd_add_offset); ncw_get_att_float(ncid, varid_estd, "scale_factor", &estd_scale_factor); } } if (std == NULL && estd == NULL) if (ncw_att_exists(ncid, varid_var, "error_std")) { ncw_check_attlen(ncid, varid_var, "error_std", 1); ncw_get_att_double(ncid, varid_var, "error_std", &var_estd); } if (u_stdvarname != NULL) ncw_inq_varid(ncid, u_stdvarname, &varid_u_std); else if (ncw_var_exists(ncid, "UCUR_sd")) ncw_inq_varid(ncid, "UCUR_sd", &varid_u_std); if (varid_u_std >= 0) { u_std = malloc(n * sizeof(float)); ncw_get_var_float(ncid, varid_u_std, u_std); if (ncw_att_exists(ncid, varid_u_std, "_FillValue")) ncw_get_att_float(ncid, varid_u_std, "_FillValue", &u_std_fill_value); if (ncw_att_exists(ncid, varid_u_std, "add_offset")) { ncw_get_att_float(ncid, varid_u_std, "add_offset", &u_std_add_offset); ncw_get_att_float(ncid, varid_u_std, "scale_factor", &u_std_scale_factor); } } if (v_stdvarname != NULL) ncw_inq_varid(ncid, v_stdvarname, &varid_v_std); else if (ncw_var_exists(ncid, "vcur_sd")) ncw_inq_varid(ncid, "vcur_sd", &varid_v_std); if (varid_v_std >= 0) { v_std = malloc(n * sizeof(float)); ncw_get_var_float(ncid, varid_v_std, v_std); if (ncw_att_exists(ncid, varid_v_std, "_FillValue")) ncw_get_att_float(ncid, varid_v_std, "_FillValue", &v_std_fill_value); if (ncw_att_exists(ncid, varid_v_std, "add_offset")) { ncw_get_att_float(ncid, varid_v_std, "add_offset", &v_std_add_offset); ncw_get_att_float(ncid, varid_v_std, "scale_factor", &v_std_scale_factor); } } if (qcflagname != NULL) { ncw_inq_varid(ncid, qcflagname, &varid_qcflag); qcflag = malloc(n * sizeof(int32_t)); ncw_get_var_int(ncid, varid_qcflag, qcflag); } if (u_qcflagname != NULL) ncw_inq_varid(ncid, u_qcflagname, &varid_u_qcflag); else if (ncw_var_exists(ncid, "UCUR_quality_control")) ncw_inq_varid(ncid, "UCUR_quality_control", &varid_u_qcflag); if (varid_u_qcflag >= 0) { u_qcflag = malloc(n * sizeof(int32_t)); ncw_get_var_int(ncid, varid_u_qcflag, u_qcflag); } if (v_qcflagname != NULL) ncw_inq_varid(ncid, v_qcflagname, &varid_v_qcflag); else if (ncw_var_exists(ncid, "VCUR_quality_control")) ncw_inq_varid(ncid, "VCUR_quality_control", &varid_v_qcflag); if (varid_v_qcflag >= 0) { v_qcflag = malloc(n * sizeof(int32_t)); ncw_get_var_int(ncid, varid_v_qcflag, v_qcflag); } if (timename != NULL) ncw_inq_varid(ncid, timename, &varid_time); else if (ncw_var_exists(ncid, "time")) ncw_inq_varid(ncid, "time", &varid_time); else if (ncw_var_exists(ncid, "TIME")) ncw_inq_varid(ncid, "TIME", &varid_time); else { enkf_printf(" reader_xy_gridded(): %s: no TIME variable\n", fname); have_time = 0; } if (have_time) { int timendims; int timedimids[NC_MAX_DIMS]; size_t timelen = 1; ncw_inq_varndims(ncid, varid_time, &timendims); ncw_inq_vardimid(ncid, varid_time, timedimids); for (i = 0; i < timendims; ++i) { size_t dimlen; ncw_inq_dimlen(ncid, timedimids[i], &dimlen); timelen *= dimlen; } if (timelen == 1) { singletime = 1; time = malloc(sizeof(float)); } else { singletime = 0; assert(timelen == n); time = malloc(n * sizeof(float)); } ncw_get_var_float(ncid, varid_time, time); if (ncw_att_exists(ncid, varid_time, "_FillValue")) ncw_get_att_float(ncid, varid_time, "_FillValue", &time_fill_value); if (ncw_att_exists(ncid, varid_time, "add_offset")) { ncw_get_att_float(ncid, varid_time, "add_offset", &time_add_offset); ncw_get_att_float(ncid, varid_time, "scale_factor", &time_scale_factor); } ncw_get_att_text(ncid, varid_time, "units", tunits); tunits_convert(tunits, &tunits_multiple, &tunits_offset); } ncw_close(ncid); nobs_read = 0; for (i = 0; i < (int) n; ++i) { observation* o; obstype* ot; int invalid_gdop, invalid_npoints1, invalid_npoints2, invalid_var, invalid_std, invalid_estd, invalid_u_var, invalid_v_var, invalid_time; invalid_gdop = (gdop != NULL && (gdop[i] > 180.0 || gdop[i] < 0.0)); invalid_npoints1 = (npoints_1 != NULL && (npoints_1[i] == 0 || npoints_1[i]< 0)); invalid_npoints2 = (npoints_2 != NULL && (npoints_2[i] == 0 || npoints_2[i] < 0)); invalid_var = var[i] == var_fill_value || isnan(var[i]); invalid_std = (std != NULL && (std[i] == std_fill_value || isnan(std[i]))); invalid_estd = (estd != NULL && (estd[i] == estd_fill_value || isnan(estd[i]))); invalid_u_var = (u_var != NULL && (u_var[i] == u_var_fill_value || isnan(u_var[i]))); invalid_v_var = (v_var != NULL && (v_var[i] == v_var_fill_value || isnan(v_var[i]))); invalid_time = (have_time && !singletime && (time[i] == time_fill_value || isnan(time[i]))); if (invalid_gdop || invalid_npoints1 || invalid_npoints2 || invalid_var || invalid_std || invalid_estd || invalid_u_var || invalid_v_var || invalid_time) continue; if (qcflag != NULL) { /* general qcflags has precedence in discarding obs*/ if ( (qcflagvals != (qcflagvals | 1<<qcflag[i])) || (u_qcflag != NULL && (qcflagvals != (qcflagvals | 1<<u_qcflag[i]))) || (v_qcflag != NULL && (qcflagvals != (qcflagvals | 1<<v_qcflag[i]))) ) continue; } /* [u,v]_qcflags has precedence in values. */ if (u_qcflagname != NULL && v_qcflagname != NULL) { if ( (u_qcflag != NULL && (qcflagvals != (qcflagvals | 1<<u_qcflag[i]))) || (v_qcflag != NULL && (qcflagvals != (qcflagvals | 1<<v_qcflag[i]))) ) continue; } else if (u_qcflagname != NULL) { if (u_qcflag != NULL && (qcflagvals != (qcflagvals | 1<<u_qcflag[i]))) continue; } else if (v_qcflagname != NULL) { if (v_qcflag != NULL && (qcflagvals != (qcflagvals | 1<<v_qcflag[i]))) continue; } nobs_read++; obs_checkalloc(obs); o = &obs->data[obs->nobs]; o->product = st_findindexbystring(obs->products, meta->product); assert(o->product >= 0); o->type = obstype_getid(obs->nobstypes, obs->obstypes, meta->type, 1); ot = &obs->obstypes[o->type]; o->instrument = st_add_ifabsent(obs->instruments, instrument, -1); o->id = obs->nobs; o->fid = fid; o->batch = 0; /* Shifted the reading order for HF-Radar to obtain indexes */ if (iscurv == 0) { o->lon = lon[i % ni]; o->lat = lat[i / ni]; } else { o->lon = lon[i]; o->lat = lat[i]; } o->depth = 0.0; o->fk = (double) ksurf; o->model_depth = NAN; /* set in obs_add() */ o->status = grid_xy2fij(g, o->lon, o->lat, &o->fi, &o->fj); if (!obs->allobs && o->status == STATUS_OUTSIDEGRID) continue; if ((o->status == STATUS_OK) && (o->lon <= ot->xmin || o->lon >= ot->xmax || o->lat <= ot->ymin || o->lat >= ot->ymax)) o->status = STATUS_OUTSIDEOBSDOMAIN; if (need_rotation == 1) { double zonal, meridional, oangle; if (!isnan(u_var_add_offset)) zonal = u_var[i] * u_var_scale_factor + u_var_add_offset + varshift + u_varshift; else zonal = u_var[i]; if (!isnan(v_var_add_offset)) meridional = v_var[i] * v_var_scale_factor + v_var_add_offset + varshift + u_varshift; else meridional = v_var[i]; oangle = interpolate2d(o->fi, o-> fj, grid_ni, grid_nj, grid_angle, numlevels, isperiodic_i); if (strcmp(varname,u_varname) == 0) o->value = zonal*cos(oangle) - meridional*sin(oangle); if (strcmp(varname,v_varname) == 0) o->value = zonal*sin(oangle) + meridional*cos(oangle); } else { if (!isnan(var_add_offset)) o->value = (double) (var[i] * var_scale_factor + var_add_offset + varshift); else o->value = (double) (var[i] + varshift); } if (estd == NULL && std == NULL){ if (!isnan(var_estd)) o->std = var_estd; } else { if (std == NULL) o->std = 0.0; else { if (!isnan(std_add_offset)) o->std = (double) (std[i] * std_scale_factor + std_add_offset); else o->std = (double) std[i]; } if (estd != NULL) { if (!isnan(estd_add_offset)) { double std2 = (double) (estd[i] * estd_scale_factor + estd_add_offset); o->std = (o->std > std2) ? o->std : std2; } else o->std = (o->std > estd[i]) ? o->std : estd[i]; } } if (have_time) { float t = (singletime) ? time[0] : time[i]; if (!isnan(time_add_offset)) o->date = (double) (t * time_scale_factor + time_add_offset) * tunits_multiple + tunits_offset; else o->date = (double) t* tunits_multiple + tunits_offset; } else o->date = NAN; o->aux = -1; obs->nobs++; } enkf_printf(" nobs = %d\n", nobs_read); free(lon); free(lat); free(var); if (gdop != NULL) free(gdop); if (npoints_1 != NULL) free(npoints_1); if (npoints_2 != NULL) free(npoints_2); if (u_var != NULL) free(u_var); if (v_var != NULL) free(v_var); if (std != NULL) free(std); if (estd != NULL) free(estd); if (u_std != NULL) free(u_std); if (v_std != NULL) free(v_std); if (qcflag != NULL) free(qcflag); if (u_qcflag != NULL) free(u_qcflag); if (v_qcflag != NULL) free(v_qcflag); if (time != NULL) free(time); }
/** Updates ensemble observations by applying X5 */ static void update_HE(dasystem* das) { model* m = das->m; int ngrid = model_getngrid(m); int gid; observations* obs = das->obs; int e, o; float* HEi_f; float* HEi_a; char do_T = 'T'; float alpha = 1.0f; float beta = 0.0f; int inc = 1; enkf_printf(" updating HE:\n"); assert(das->s_mode == S_MODE_HE_f); HEi_f = malloc(das->nmem * sizeof(ENSOBSTYPE)); HEi_a = malloc(das->nmem * sizeof(ENSOBSTYPE)); /* * the following code for interpolation of X5 essentially coincides with * that in das_updatefields() */ for (gid = 0, o = 0; gid < ngrid && o < obs->nobs; ++gid) { void* grid = model_getgridbyid(m, gid); int periodic_i = grid_isperiodic_x(grid); int periodic_j = grid_isperiodic_y(grid); char fname_X5[MAXSTRLEN]; int ncid; int varid; int dimids[3]; size_t dimlens[3]; size_t start[3], count[3]; float** X5j = NULL; float** X5jj = NULL; float** X5jj1 = NULL; float** X5jj2 = NULL; int mni, mnj; int* iiter; int* jiter; int i, j, ni, nj; int jj, stepj, ii, stepi; assert(obs->obstypes[obs->data[o].type].gridid == gid); das_getfname_X5(das, grid, fname_X5); ncw_open(fname_X5, NC_NOWRITE, &ncid); ncw_inq_varid(fname_X5, ncid, "X5", &varid); ncw_inq_vardimid(fname_X5, ncid, varid, dimids); for (i = 0; i < 3; ++i) ncw_inq_dimlen(fname_X5, ncid, dimids[i], &dimlens[i]); ni = dimlens[1]; nj = dimlens[0]; assert((int) dimlens[2] == das->nmem * das->nmem); jiter = malloc((nj + 1) * sizeof(int)); /* "+ 1" to handle periodic * grids */ iiter = malloc((ni + 1) * sizeof(int)); for (j = 0, i = 0; j < nj; ++j, i += das->stride) jiter[j] = i; if (periodic_j) jiter[nj] = jiter[nj - 1] + das->stride; for (i = 0, j = 0; i < ni; ++i, j += das->stride) iiter[i] = j; if (periodic_i) iiter[ni] = iiter[ni - 1] + das->stride; grid_getdims(grid, &mni, &mnj, NULL); start[0] = 0; start[1] = 0; start[2] = 0; count[0] = 1; count[1] = ni; count[2] = das->nmem * das->nmem; X5j = alloc2d(mni, das->nmem * das->nmem, sizeof(float)); if (das->stride > 1) { X5jj = alloc2d(ni, das->nmem * das->nmem, sizeof(float)); X5jj1 = alloc2d(ni, das->nmem * das->nmem, sizeof(float)); X5jj2 = alloc2d(ni, das->nmem * das->nmem, sizeof(float)); ncw_get_vara_float(fname_X5, ncid, varid, start, count, X5jj2[0]); } /* * jj, ii are the indices of the subsampled grid; i, j are the indices * of the model grid */ for (jj = 0, j = 0; jj < nj; ++jj) { for (stepj = 0; stepj < das->stride && j < mnj; ++stepj, ++j) { if (das->stride == 1) { /* * no interpolation necessary; simply read the ETMs for the * j-th row from disk */ start[0] = j; ncw_get_vara_float(fname_X5, ncid, varid, start, count, X5j[0]); } else { /* * the following code interpolates the ETM back to the * original grid, first by j, and then by i */ if (stepj == 0) { memcpy(X5jj[0], X5jj2[0], ni * das->nmem * das->nmem * sizeof(float)); memcpy(X5jj1[0], X5jj2[0], ni * das->nmem * das->nmem * sizeof(float)); if (jj < nj - 1 || periodic_j) { start[0] = (jj + 1) % nj; ncw_get_vara_float(fname_X5, ncid, varid, start, count, X5jj2[0]); } } else { float weight2 = (float) stepj / das->stride; float weight1 = (float) 1.0 - weight2; for (ii = 0; ii < ni; ++ii) { float* X5jjii = X5jj[ii]; float* X5jj1ii = X5jj1[ii]; float* X5jj2ii = X5jj2[ii]; for (e = 0; e < das->nmem * das->nmem; ++e) X5jjii[e] = X5jj1ii[e] * weight1 + X5jj2ii[e] * weight2; } } for (ii = 0, i = 0; ii < ni; ++ii) { for (stepi = 0; stepi < das->stride && i < mni; ++stepi, ++i) { if (stepi == 0) memcpy(X5j[i], X5jj[ii], das->nmem * das->nmem * sizeof(float)); else { float weight2 = (float) stepi / das->stride; float weight1 = (float) 1.0 - weight2; float* X5jjii1 = X5jj[ii]; float* X5ji = X5j[i]; float* X5jjii2; if (ii < ni - 1) X5jjii2 = X5jj[ii + 1]; else X5jjii2 = X5jj[(periodic_i) ? (ii + 1) % ni : ii]; for (e = 0; e < das->nmem * das->nmem; ++e) X5ji[e] = X5jjii1[e] * weight1 + X5jjii2[e] * weight2; } } } } /* stride != 1 */ /* * (at this stage X5j should contain the array of X5 matrices * for the j-th row of the grid) */ if (o >= obs->nobs) break; if ((int) (obs->data[o].fj) > j) continue; for (; o < obs->nobs && (int) (obs->data[o].fj) == j; ++o) { float inflation = model_getvarinflation(m, obs->obstypes[obs->data[o].type].vid); /* * HE(i, :) = HE(i, :) * X5 */ i = (int) (obs->data[o].fi); for (e = 0; e < das->nmem; ++e) HEi_f[e] = das->S[e][o]; sgemv_(&do_T, &das->nmem, &das->nmem, &alpha, X5j[i], &das->nmem, HEi_f, &inc, &beta, HEi_a, &inc); /* * applying inflation: */ if (fabsf(inflation - 1.0f) > EPSF) { float v_av = 0.0f; for (e = 0; e < das->nmem; ++e) v_av += HEi_a[e]; v_av /= (float) das->nmem; for (e = 0; e < das->nmem; ++e) HEi_a[e] = (HEi_a[e] - v_av) * inflation + v_av; } for (e = 0; e < das->nmem; ++e) das->S[e][o] = HEi_a[e]; } } /* for stepj */ } /* for jj */ ncw_close(fname_X5, ncid); free(iiter); free(jiter); free2d(X5j); if (das->stride > 1) { free2d(X5jj); free2d(X5jj1); free2d(X5jj2); } } /* for gid */ free(HEi_a); free(HEi_f); das->s_mode = S_MODE_HE_a; } /* update_HE() */
/** For files of the form y<yyyy>/m<mm>/??_d<dd>.nc with no "time" variable. */ void reader_rads_standard2(char* fname, int fid, obsmeta* meta, model* m, observations* obs) { int ncid; int dimid_nobs; size_t nobs_local; int varid_lon, varid_lat, varid_pass, varid_sla, varid_flag; double* lon; double* lat; int* pass; double* sla; int* flag; double error_std; char buf[MAXSTRLEN]; int len; int year, month, day; double tunits_multiple, tunits_offset; char* basename; char instname[3]; int mvid; float** depth; int i; ncw_open(fname, NC_NOWRITE, &ncid); ncw_inq_dimid(fname, ncid, "nobs", &dimid_nobs); ncw_inq_dimlen(fname, ncid, dimid_nobs, &nobs_local); enkf_printf(" nobs = %u\n", (unsigned int) nobs_local); if (nobs_local == 0) return; ncw_inq_varid(fname, ncid, "lon", &varid_lon); lon = malloc(nobs_local * sizeof(double)); ncw_get_var_double(fname, ncid, varid_lon, lon); ncw_inq_varid(fname, ncid, "lat", &varid_lat); lat = malloc(nobs_local * sizeof(double)); ncw_get_var_double(fname, ncid, varid_lat, lat); ncw_inq_varid(fname, ncid, "pass", &varid_pass); pass = malloc(nobs_local * sizeof(int)); ncw_get_var_int(fname, ncid, varid_pass, pass); ncw_inq_varid(fname, ncid, "sla", &varid_sla); sla = malloc(nobs_local * sizeof(double)); ncw_get_var_double(fname, ncid, varid_sla, sla); ncw_get_att_double(fname, ncid, varid_sla, "error_std", &error_std); enkf_printf(" error_std = %3g\n", error_std); ncw_inq_varid(fname, ncid, "local_flag", &varid_flag); flag = malloc(nobs_local * sizeof(int)); ncw_get_var_int(fname, ncid, varid_flag, flag); ncw_close(fname, ncid); strcpy(buf, fname); len = strlen(buf); buf[len - 3] = 0; /* .nc */ if (!str2int(&buf[len - 5], &day)) enkf_quit("RADS reader: could not convert file name \"%s\" to date", fname); buf[len - 10] = 0; if (!str2int(&buf[len - 12], &month)) enkf_quit("RADS reader: could not convert file name \"%s\" to date", fname); buf[len - 14] = 0; if (!str2int(&buf[len - 18], &year)) enkf_quit("RADS reader: could not convert file name \"%s\" to date", fname); snprintf(buf, MAXSTRLEN, "days since %4d-%02d-%02d", year, month, day); tunits_convert(buf, &tunits_multiple, &tunits_offset); basename = strrchr(fname, '/'); if (basename == NULL) basename = fname; else basename += 1; strncpy(instname, basename, 2); instname[2] = 0; mvid = model_getvarid(m, obs->obstypes[obstype_getid(obs->nobstypes, obs->obstypes, meta->type)].varname, 1); depth = model_getdepth(m, mvid); for (i = 0; i < (int) nobs_local; ++i) { observation* o; obstype* ot; if (flag[i] != 0) continue; obs_checkalloc(obs); o = &obs->data[obs->nobs]; o->product = st_findindexbystring(obs->products, meta->product); assert(o->product >= 0); o->type = obstype_getid(obs->nobstypes, obs->obstypes, meta->type); assert(o->type >= 0); ot = &obs->obstypes[o->type]; o->instrument = st_add_ifabscent(obs->instruments, instname, -1); o->id = obs->nobs; o->fid = fid; o->batch = pass[i]; o->value = sla[i]; o->std = error_std; o->lon = lon[i]; o->lat = lat[i]; o->depth = 0.0; o->status = model_xy2fij(m, mvid, o->lon, o->lat, &o->fi, &o->fj); if (!obs->allobs && o->status == STATUS_OUTSIDEGRID) continue; o->fk = 0.0; o->date = tunits_offset + 0.5; if (o->status == STATUS_OK && depth[(int) floor(o->fj + 0.5)][(int) floor(o->fi + 0.5)] < MINDEPTH) o->status = STATUS_SHALLOW; if ((o->status == STATUS_OK) && (o->lon <= ot->xmin || o->lon >= ot->xmax || o->lat <= ot->ymin || o->lat >= ot->ymax || o->depth <= ot->zmin || o->depth >= ot->zmax)) o->status = STATUS_OUTSIDEOBSDOMAIN; o->aux = -1; obs->nobs++; } free(lon); free(lat); free(pass); free(sla); free(flag); }