void confidence_weighted::update( const common::sfv_t& sfv, float step_width, const string& pos_label, const string& neg_label) { util::concurrent::scoped_wlock lk(storage_->get_lock()); for (common::sfv_t::const_iterator it = sfv.begin(); it != sfv.end(); ++it) { const string& feature = it->first; float val = it->second; storage::feature_val2_t val2; storage_->get2_nolock(feature, val2); storage::val2_t pos_val(0.f, 1.f); storage::val2_t neg_val(0.f, 1.f); ClassifierUtil::get_two(val2, pos_label, neg_label, pos_val, neg_val); const float C = config_.regularization_weight; float covar_pos_step = 2.f * step_width * val * val * C; float covar_neg_step = 2.f * step_width * val * val * C; storage_->set2_nolock( feature, pos_label, storage::val2_t(pos_val.v1 + step_width * pos_val.v2 * val, 1.f / (1.f / pos_val.v2 + covar_pos_step))); if (neg_label != "") { storage_->set2_nolock( feature, neg_label, storage::val2_t(neg_val.v1 - step_width * neg_val.v2 * val, 1.f / (1.f / neg_val.v2 + covar_neg_step))); } } touch(pos_label); }
void arow::update( const common::sfv_t& sfv, float alpha, float beta, const std::string& pos_label, const std::string& neg_label) { storage::storage_base* sto = get_storage(); for (common::sfv_t::const_iterator it = sfv.begin(); it != sfv.end(); ++it) { const string& feature = it->first; float val = it->second; storage::feature_val2_t ret; sto->get2(feature, ret); storage::val2_t pos_val(0.f, 1.f); storage::val2_t neg_val(0.f, 1.f); ClassifierUtil::get_two(ret, pos_label, neg_label, pos_val, neg_val); sto->set2( feature, pos_label, storage::val2_t( pos_val.v1 + alpha * pos_val.v2 * val, pos_val.v2 - beta * pos_val.v2 * pos_val.v2 * val * val)); if (neg_label != "") { sto->set2( feature, neg_label, storage::val2_t( neg_val.v1 - alpha * neg_val.v2 * val, neg_val.v2 - beta * neg_val.v2 * neg_val.v2 * val * val)); } } }
void normal_herd::update( const common::sfv_t& sfv, float margin, float variance, const string& pos_label, const string& neg_label) { storage::storage_base* sto = get_storage(); for (common::sfv_t::const_iterator it = sfv.begin(); it != sfv.end(); ++it) { const string& feature = it->first; float val = it->second; storage::feature_val2_t ret; sto->get2(feature, ret); storage::val2_t pos_val(0.f, 1.f); storage::val2_t neg_val(0.f, 1.f); ClassifierUtil::get_two(ret, pos_label, neg_label, pos_val, neg_val); float val_covariance_pos = val * pos_val.v2; float val_covariance_neg = val * neg_val.v2; const float C = config_.C; sto->set2( feature, pos_label, storage::val2_t( pos_val.v1 + (1.f - margin) * val_covariance_pos / (val_covariance_pos * val + 1.f / C), 1.f / ((1.f / pos_val.v2) + (2 * C + C * C * variance) * val * val))); if (neg_label != "") { sto->set2( feature, neg_label, storage::val2_t( neg_val.v1 - (1.f - margin) * val_covariance_neg / (val_covariance_neg * val + 1.f / C), 1.f / ((1.f / neg_val.v2) + (2 * C + C * C * variance) * val * val))); } } }
void CW::update(const sfv_t& sfv, float step_width, const string& pos_label, const string& neg_label){ for (sfv_t::const_iterator it = sfv.begin(); it != sfv.end(); ++it){ const string& feature = it->first; float val = it->second; storage::feature_val2_t val2; storage_->get2(feature, val2); storage::val2_t pos_val(0.f, 1.f); storage::val2_t neg_val(0.f, 1.f); ClassifierUtil::get_two(val2, pos_label, neg_label, pos_val, neg_val); const float C = config.C; float covar_pos_step = 2.f * step_width * pos_val.v2 * val * val * C; float covar_neg_step = 2.f * step_width * neg_val.v2 * val * val * C; storage_->set2(feature, pos_label, storage::val2_t(pos_val.v1 + step_width * pos_val.v2 * val, 1.f / (1.f / pos_val.v2 + covar_pos_step))); if (neg_label != "") storage_->set2(feature, neg_label, storage::val2_t(neg_val.v1 - step_width * neg_val.v2 * val, 1.f / (1.f / neg_val.v2 + covar_neg_step))); } }
void NHERD::update(const sfv_t& sfv, float margin, float variance, const string& pos_label, const string& neg_label){ for (sfv_t::const_iterator it = sfv.begin(); it != sfv.end(); ++it){ const string& feature = it->first; float val = it->second; storage::feature_val2_t ret; storage_->get2(feature, ret); storage::val2_t pos_val(0.f, 1.f); storage::val2_t neg_val(0.f, 1.f); ClassifierUtil::get_two(ret, pos_label, neg_label, pos_val, neg_val); float val_covariance_pos = val * pos_val.v2; float val_covariance_neg = val * neg_val.v2; storage_->set2(feature, pos_label, storage::val2_t(pos_val.v1 + (1.f - margin) * val_covariance_pos / (val_covariance_pos * val + 1.f / C_), 1.f / ((1.f / pos_val.v2) + (2 * C_ + C_ * C_ * variance) * val * val))); if (neg_label != "") storage_->set2(feature, neg_label, storage::val2_t(neg_val.v1 - (1.f - margin) * val_covariance_neg / (val_covariance_neg * val + 1.f / C_), 1.f / ((1.f / neg_val.v2) + (2 * C_ + C_ * C_ * variance) * val * val))); } }