예제 #1
0
void confidence_weighted::update(
    const common::sfv_t& sfv,
    float step_width,
    const string& pos_label,
    const string& neg_label) {
  util::concurrent::scoped_wlock lk(storage_->get_lock());
  for (common::sfv_t::const_iterator it = sfv.begin(); it != sfv.end(); ++it) {
    const string& feature = it->first;
    float val = it->second;
    storage::feature_val2_t val2;
    storage_->get2_nolock(feature, val2);

    storage::val2_t pos_val(0.f, 1.f);
    storage::val2_t neg_val(0.f, 1.f);
    ClassifierUtil::get_two(val2, pos_label, neg_label, pos_val, neg_val);

    const float C = config_.regularization_weight;
    float covar_pos_step = 2.f * step_width * val * val * C;
    float covar_neg_step = 2.f * step_width * val * val * C;

    storage_->set2_nolock(
        feature,
        pos_label,
        storage::val2_t(pos_val.v1 + step_width * pos_val.v2 * val,
                        1.f / (1.f / pos_val.v2 + covar_pos_step)));
    if (neg_label != "") {
      storage_->set2_nolock(
          feature,
          neg_label,
          storage::val2_t(neg_val.v1 - step_width * neg_val.v2 * val,
                          1.f / (1.f / neg_val.v2 + covar_neg_step)));
    }
  }
  touch(pos_label);
}
예제 #2
0
void arow::update(
    const common::sfv_t& sfv,
    float alpha,
    float beta,
    const std::string& pos_label,
    const std::string& neg_label) {
  storage::storage_base* sto = get_storage();
  for (common::sfv_t::const_iterator it = sfv.begin(); it != sfv.end(); ++it) {
    const string& feature = it->first;
    float val = it->second;
    storage::feature_val2_t ret;
    sto->get2(feature, ret);

    storage::val2_t pos_val(0.f, 1.f);
    storage::val2_t neg_val(0.f, 1.f);
    ClassifierUtil::get_two(ret, pos_label, neg_label, pos_val, neg_val);

    sto->set2(
        feature,
        pos_label,
        storage::val2_t(
            pos_val.v1 + alpha * pos_val.v2 * val,
            pos_val.v2 - beta * pos_val.v2 * pos_val.v2 * val * val));
    if (neg_label != "") {
      sto->set2(
          feature,
          neg_label,
          storage::val2_t(
              neg_val.v1 - alpha * neg_val.v2 * val,
              neg_val.v2 - beta * neg_val.v2 * neg_val.v2 * val * val));
    }
  }
}
예제 #3
0
void normal_herd::update(
    const common::sfv_t& sfv,
    float margin,
    float variance,
    const string& pos_label,
    const string& neg_label) {
  storage::storage_base* sto = get_storage();
  for (common::sfv_t::const_iterator it = sfv.begin(); it != sfv.end(); ++it) {
    const string& feature = it->first;
    float val = it->second;
    storage::feature_val2_t ret;
    sto->get2(feature, ret);

    storage::val2_t pos_val(0.f, 1.f);
    storage::val2_t neg_val(0.f, 1.f);
    ClassifierUtil::get_two(ret, pos_label, neg_label, pos_val, neg_val);

    float val_covariance_pos = val * pos_val.v2;
    float val_covariance_neg = val * neg_val.v2;

    const float C = config_.C;
    sto->set2(
        feature,
        pos_label,
        storage::val2_t(
            pos_val.v1
                + (1.f - margin) * val_covariance_pos
                    / (val_covariance_pos * val + 1.f / C),
            1.f
                / ((1.f / pos_val.v2) + (2 * C + C * C * variance)
                    * val * val)));
    if (neg_label != "") {
      sto->set2(
          feature,
          neg_label,
          storage::val2_t(
              neg_val.v1
                  - (1.f - margin) * val_covariance_neg
                      / (val_covariance_neg * val + 1.f / C),
              1.f
                  / ((1.f / neg_val.v2) + (2 * C + C * C * variance)
                      * val * val)));
    }
  }
}
예제 #4
0
파일: cw.cpp 프로젝트: manosetro/jubatus
void CW::update(const sfv_t& sfv, float step_width, const string& pos_label, const string& neg_label){
  for (sfv_t::const_iterator it = sfv.begin(); it != sfv.end(); ++it){
    const string& feature = it->first;
    float val = it->second;
    storage::feature_val2_t val2;
    storage_->get2(feature, val2);

    storage::val2_t pos_val(0.f, 1.f);
    storage::val2_t neg_val(0.f, 1.f);
    ClassifierUtil::get_two(val2, pos_label, neg_label, pos_val, neg_val);

    const float C = config.C;
    float covar_pos_step = 2.f * step_width * pos_val.v2 * val * val * C;
    float covar_neg_step = 2.f * step_width * neg_val.v2 * val * val * C;

   storage_->set2(feature, pos_label, 
                  storage::val2_t(pos_val.v1 + step_width * pos_val.v2 * val,
                                  1.f / (1.f / pos_val.v2 + covar_pos_step)));
   if (neg_label != "")
     storage_->set2(feature, neg_label, 
                    storage::val2_t(neg_val.v1 - step_width * neg_val.v2 * val,
                                    1.f / (1.f / neg_val.v2 + covar_neg_step)));
  }
}
예제 #5
0
파일: nherd.cpp 프로젝트: PKConsul/jubatus
void NHERD::update(const sfv_t& sfv, float margin, float variance, 
		   const string& pos_label, const string& neg_label){
  for (sfv_t::const_iterator it = sfv.begin(); it != sfv.end(); ++it){
    const string& feature = it->first;
    float val = it->second;
    storage::feature_val2_t ret;
    storage_->get2(feature, ret);

    storage::val2_t pos_val(0.f, 1.f);
    storage::val2_t neg_val(0.f, 1.f);
    ClassifierUtil::get_two(ret, pos_label, neg_label, pos_val, neg_val);

    float val_covariance_pos = val * pos_val.v2;
    float val_covariance_neg = val * neg_val.v2;

    storage_->set2(feature, pos_label, 
                   storage::val2_t(pos_val.v1 + (1.f - margin) * val_covariance_pos / (val_covariance_pos * val + 1.f / C_),
                                   1.f / ((1.f / pos_val.v2) + (2 * C_ + C_ * C_ *  variance) * val * val)));
    if (neg_label != "")
      storage_->set2(feature, neg_label, 
                     storage::val2_t(neg_val.v1 - (1.f - margin) * val_covariance_neg / (val_covariance_neg * val + 1.f / C_),
                                     1.f / ((1.f / neg_val.v2) + (2 * C_ + C_ * C_ *  variance) * val * val)));
  }
}