예제 #1
0
int main(int argc, char **argv)
{

  char c;

  int i,l,aa;
  double sigma2, sigma2_dB=0,SNR,snr0=-2.0,snr1;

  int **txdata;
  double s_re[2][30720*2],s_im[2][30720*2],r_re[2][30720*2],r_im[2][30720*2];
  double iqim=0.0;
  //  int subframe_offset;
  uint8_t subframe=0;
#ifdef XFORMS
  FD_lte_phy_scope_ue *form_ue;
  char title[255];
#endif
  int trial, n_errors_common=0,n_errors_ul=0,n_errors_dl=0,n_errors_cfi=0,n_errors_hi=0;
  unsigned char eNb_id = 0;

  uint8_t awgn_flag=0;
  int n_frames=1;
  channel_desc_t *eNB2UE;
  uint32_t nsymb,tx_lev,tx_lev_dB=0,num_pdcch_symbols=3;
  uint8_t extended_prefix_flag=0,transmission_mode=1,n_tx=1,n_rx=1;
  uint16_t Nid_cell=0;
  //  int8_t interf1=-128,interf2=-128;
  uint8_t dci_cnt=0;
  LTE_DL_FRAME_PARMS *frame_parms;
  uint8_t log2L=2, log2Lcommon=2;
  DCI_format_t format_selector[MAX_NUM_DCI];
  uint8_t num_dci=0;
  uint8_t numCCE,common_active=0,ul_active=0,dl_active=0;

  uint32_t n_trials_common=0,n_trials_ul=0,n_trials_dl=0,false_detection_cnt=0;
  uint8_t common_rx,ul_rx,dl_rx;
  uint8_t tdd_config=3;

  FILE *input_fd=NULL;
  char input_val_str[50],input_val_str2[50];
  uint16_t n_rnti=0x1234;
  uint8_t osf=1,N_RB_DL=25;

  SCM_t channel_model=Rayleigh1_anticorr;

  DCI_ALLOC_t dci_alloc_rx[8];

  int ret;

  uint8_t harq_pid;
  uint8_t phich_ACK;

  uint8_t num_phich_interf = 0;
  lte_frame_type_t frame_type=TDD;
  //  int re_offset;
  //  uint32_t *txptr;
  int aarx;
  int k;
  uint32_t perfect_ce = 0;
  int CCE_table[800];

  number_of_cards = 1;

  cpuf = get_cpu_freq_GHz();

  logInit();


  while ((c = getopt (argc, argv, "hapFg:R:c:n:s:x:y:z:L:M:N:I:f:i:S:P:Y")) != -1) {
    switch (c) {
    case 'a':
      printf("Running AWGN simulation\n");
      awgn_flag = 1;
      break;

    case 'R':
      N_RB_DL = atoi(optarg);
      break;

    case 'F':
      frame_type = FDD;
      break;

    case 'c':
      tdd_config=atoi(optarg);

      if (tdd_config>6) {
        printf("Illegal tdd_config %d (should be 0-6)\n",tdd_config);
        exit(-1);
      }

      break;

    case 'g':
      switch((char)*optarg) {
      case 'A':
        channel_model=SCM_A;
        break;

      case 'B':
        channel_model=SCM_B;
        break;

      case 'C':
        channel_model=SCM_C;
        break;

      case 'D':
        channel_model=SCM_D;
        break;

      case 'E':
        channel_model=EPA;
        break;

      case 'F':
        channel_model=EVA;
        break;

      case 'G':
        channel_model=ETU;
        break;

      default:
        printf("Unsupported channel model!\n");
        exit(-1);
      }

      break;

      /*
          case 'i':
      interf1=atoi(optarg);
      break;
          case 'j':
      interf2=atoi(optarg);
      break;
      */
    case 'n':
      n_frames = atoi(optarg);
      break;

    case 's':
      snr0 = atoi(optarg);
      break;

    case 'p':
      extended_prefix_flag=1;
      break;

    case 'x':
      transmission_mode=atoi(optarg);

      if ((transmission_mode!=1) &&
          (transmission_mode!=2) &&
          (transmission_mode!=6)) {
        printf("Unsupported transmission mode %d\n",transmission_mode);
        exit(-1);
      }

      break;

    case 'y':
      n_tx=atoi(optarg);

      if ((n_tx==0) || (n_tx>2)) {
        printf("Unsupported number of tx antennas %d\n",n_tx);
        exit(-1);
      }

      break;

    case 'z':
      n_rx=atoi(optarg);

      if ((n_rx==0) || (n_rx>2)) {
        printf("Unsupported number of rx antennas %d\n",n_rx);
        exit(-1);
      }

      break;

    case 'S':
      subframe=atoi(optarg);
      break;

    case 'L':
      log2L=atoi(optarg);

      if ((log2L!=0)&&
          (log2L!=1)&&
          (log2L!=2)&&
          (log2L!=3)) {
        printf("Unsupported DCI aggregation level %d (should be 0,1,2,3)\n",log2L);
        exit(-1);
      }

      break;

    case 'M':
      log2Lcommon=atoi(optarg);

      if ((log2Lcommon!=2)&&
          (log2Lcommon!=3)) {
        printf("Unsupported Common DCI aggregation level %d (should be 2 or 3)\n",log2Lcommon);
        exit(-1);
      }

      break;

    case 'N':
      format_selector[num_dci] = (DCI_format_t) atoi(optarg);
      if ((format_selector[num_dci]<format0) || (format_selector[num_dci] > format1A)) {
	printf("only formats 0, 1, and 1A supported for the moment\n");
	exit(-1);
      }
      if (format_selector[num_dci]==format0) ul_active=1;
      if (format_selector[num_dci]==format1A) common_active=1;
      if (format_selector[num_dci]==format1) dl_active=1;
      num_dci++;
      break;

    case 'O':
      osf = atoi(optarg);
      break;

    case 'I':
      Nid_cell = atoi(optarg);
      break;

    case 'f':
      input_fd = fopen(optarg,"r");

      if (input_fd==NULL) {
        printf("Problem with filename %s\n",optarg);
        exit(-1);
      }

      break;

    case 'i':
      n_rnti=atoi(optarg);
      break;

    case 'P':
      num_phich_interf=atoi(optarg);
      break;

    case 'Y':
      perfect_ce = 1;
      break;

    case 'h':
      printf("%s -h(elp) -a(wgn on) -c tdd_config -n n_frames -r RiceanFactor -s snr0 -t Delayspread -x transmission mode (1,2,6) -y TXant -z RXant -L AggregLevelUEspec -M AggregLevelCommonDCI -N DCIFormat\n\n",
             argv[0]);
      printf("-h This message\n");
      printf("-a Use AWGN channel and not multipath\n");
      printf("-c TDD config\n");
      printf("-S Subframe number (0..9)\n");
      printf("-R N_RB_DL\n");
      printf("-F use FDD frame\n");
      printf("-p Use extended prefix mode\n");
      printf("-n Number of frames to simulate\n");
      printf("-r Ricean factor (dB, 0 means Rayleigh, 100 is almost AWGN\n");
      printf("-s Starting SNR, runs from SNR to SNR + 5 dB.  If n_frames is 1 then just SNR is simulated\n");
      printf("-t Delay spread for multipath channel\n");
      printf("-x Transmission mode (1,2,6 for the moment)\n");
      printf("-y Number of TX antennas used in eNB\n");
      printf("-z Number of RX antennas used in UE\n");
      printf("-P Number of interfering PHICH\n");
      printf("-L log2 of Aggregation level for UE Specific DCI (0,1,2,3)\n");
      printf("-M log2 Aggregation level for Common DCI (4,8)\n");
      printf("-N Format for UE Spec DCI (0 - format0,\n");
      printf("                           1 - format1,\n");
      printf("                           2 - format1A,\n");
      printf("                           3 - format1B_2A,\n");
      printf("                           4 - format1B_4A,\n");
      printf("                           5 - format1C,\n");
      printf("                           6 - format1D_2A,\n");
      printf("                           7 - format1D_4A,\n");
      printf("                           8 - format2A_2A_L10PRB,\n");
      printf("                           9 - format2A_2A_M10PRB,\n");
      printf("                          10 - format2A_4A_L10PRB,\n");
      printf("                          11 - format2A_4A_M10PRB,\n");
      printf("                          12 - format2_2A_L10PRB,\n");
      printf("                          13 - format2_2A_M10PRB,\n");
      printf("                          14 - format2_4A_L10PRB,\n");
      printf("                          15 - format2_4A_M10PRB\n");
      printf("                          16 - format2_2D_M10PRB\n");
      printf("                          17 - format2_2D_L10PRB\n");
      printf("   can be called multiple times to add more than one DCI\n");
      printf("-O Oversampling factor\n");
      printf("-I Cell Id\n");
      printf("-F Input sample stream\n");
      exit(1);
      break;
    }
  }

  if ((transmission_mode>1) && (n_tx==1))
    n_tx=2;

  lte_param_init(n_tx,
                 n_tx,
                 n_rx,
                 transmission_mode,
                 extended_prefix_flag,
		 frame_type,
                 Nid_cell,
                 tdd_config,
                 N_RB_DL,
		 0,
                 osf,
                 perfect_ce);

#ifdef XFORMS
  fl_initialize (&argc, argv, NULL, 0, 0);
  form_ue = create_lte_phy_scope_ue();
  sprintf (title, "LTE PHY SCOPE UE");
  fl_show_form (form_ue->lte_phy_scope_ue, FL_PLACE_HOTSPOT, FL_FULLBORDER, title);
#endif


  mac_xface->computeRIV = computeRIV;
  mac_xface->frame_parms = &eNB->frame_parms;
  //  init_transport_channels(transmission_mode);

  if (n_frames==1)
    snr1 = snr0+.1;
  else
    snr1 = snr0+8.0;

  printf("SNR0 %f, SNR1 %f\n",snr0,snr1);

  frame_parms = &eNB->frame_parms;
  printf("Getting %d dcis\n",num_dci);

  get_dci(frame_parms, log2L, log2Lcommon, format_selector, num_dci, n_rnti);

  txdata = eNB->common_vars.txdata[eNb_id];

  nsymb = (eNB->frame_parms.Ncp == 0) ? 14 : 12;

  printf("Subframe %d, FFT Size %d, Extended Prefix %d, Samples per subframe %d, Symbols per subframe %d\n",
         subframe,NUMBER_OF_OFDM_CARRIERS,
         eNB->frame_parms.Ncp,eNB->frame_parms.samples_per_tti,nsymb);

  eNB2UE = new_channel_desc_scm(eNB->frame_parms.nb_antennas_tx,
                                UE->frame_parms.nb_antennas_rx,
                                channel_model,
				N_RB2sampling_rate(eNB->frame_parms.N_RB_DL),
				N_RB2channel_bandwidth(eNB->frame_parms.N_RB_DL),
                                0,
                                0,
                                0);

  eNB_rxtx_proc_t *proc_rxtx = &eNB->proc.proc_rxtx[subframe&1];

  eNB->ulsch[0] = new_eNB_ulsch(MAX_TURBO_ITERATIONS,N_RB_DL,0);
  UE->ulsch[0]   = new_ue_ulsch(N_RB_DL,0);


  proc_rxtx->frame_tx    = 0;
  proc_rxtx->subframe_tx = subframe;

  if (input_fd==NULL) {
    printf("No input file, so starting TX\n");
  } else {
    i=0;

    while (!feof(input_fd)) {
      ret=fscanf(input_fd,"%s %s",input_val_str,input_val_str2);//&input_val1,&input_val2);

      if (ret != 2) {
        printf("%s:%d:%s: fscanf error, exiting\n", __FILE__, __LINE__, __FUNCTION__);
        exit(1);
      }

      if ((i%4)==0) {
        ((short*)txdata[0])[i/2] = (short)((1<<15)*strtod(input_val_str,NULL));
        ((short*)txdata[0])[(i/2)+1] = (short)((1<<15)*strtod(input_val_str2,NULL));

        if ((i/4)<100)
          printf("sample %d => %e + j%e (%d +j%d)\n",i/4,strtod(input_val_str,NULL),strtod(input_val_str2,NULL),((short*)txdata[0])[i/4],((short*)txdata[0])[(i/4)+1]);//1,input_val2,);
      }

      i++;

      if (i>(4*FRAME_LENGTH_SAMPLES))
        break;
    }

    printf("Read in %d samples\n",i/4);
    write_output("txsig0.m","txs0", txdata[0],FRAME_LENGTH_COMPLEX_SAMPLES,1,1);
    //    write_output("txsig1.m","txs1", txdata[1],FRAME_LENGTH_COMPLEX_SAMPLES,1,1);
    tx_lev = signal_energy(&txdata[0][0],
                           OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES);
    tx_lev_dB = (unsigned int) dB_fixed(tx_lev);
  }


  UE->UE_mode[0] = PUSCH;

  //  nCCE_max = get_nCCE(3,&eNB->frame_parms,get_mi(&eNB->frame_parms,0));
  //printf("nCCE_max %d\n",nCCE_max);

  //printf("num_phich interferers %d\n",num_phich_interf);
  for (SNR=snr0; SNR<snr1; SNR+=0.2) {


    n_errors_common = 0;
    n_errors_ul     = 0;
    n_errors_dl     = 0;
    n_errors_cfi    = 0;
    n_errors_hi     = 0;
    n_trials_common=0;
    n_trials_ul=0;
    n_trials_dl=0;

    for (trial=0; trial<n_frames; trial++) {
      
      //    printf("DCI (SF %d): txdataF %p (0 %p)\n",subframe,&eNB->common_vars.txdataF[eNb_id][aa][512*14*subframe],&eNB->common_vars.txdataF[eNb_id][aa][0]);
      for (aa=0; aa<eNB->frame_parms.nb_antennas_tx; aa++) {
        memset(&eNB->common_vars.txdataF[eNb_id][aa][0],0,FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX*sizeof(int32_t));

      }


      generate_pilots_slot(eNB,
                           eNB->common_vars.txdataF[eNb_id],
                           AMP,    //1024,
                           (subframe*2),
                           0);
      generate_pilots_slot(eNB,
                           eNB->common_vars.txdataF[eNb_id],
                           AMP,    //1024,
                           (subframe*2)+1,
                           0);


      if (input_fd == NULL) {
        numCCE=0;
        n_trials_common++;
        common_active = 1;
	if (eNB->frame_parms.N_RB_DL >= 50) { 
	  if (ul_active==1) { 
	    n_trials_ul++;
	  }
	}
        if (eNB->frame_parms.N_RB_DL >= 25) { 
	  if (dl_active==1) { 
	    n_trials_dl++;
	  }
	}
        num_pdcch_symbols = get_num_pdcch_symbols(DCI_pdu.Num_dci,
                            DCI_pdu.dci_alloc, frame_parms, subframe);
	numCCE = get_nCCE(num_pdcch_symbols,&eNB->frame_parms,get_mi(&eNB->frame_parms,subframe));

        if (n_frames==1) {
          printf("num_dci %d, num_pddch_symbols %d, nCCE %d\n",
                 DCI_pdu.Num_dci,
                 num_pdcch_symbols,numCCE);
        }

        // apply RNTI-based nCCE allocation
	memset(CCE_table,0,800*sizeof(int));

        for (i = 0; i < DCI_pdu.Num_dci; i++) {
          // SI RNTI
          if (DCI_pdu.dci_alloc[i].rnti == SI_RNTI) {
            DCI_pdu.dci_alloc[i].firstCCE = get_nCCE_offset_l1(CCE_table,
							       1<<DCI_pdu.dci_alloc[i].L,
							       numCCE,
							       1,
							       SI_RNTI,
							       subframe);
          }
          // RA RNTI
          else if (DCI_pdu.dci_alloc[i].ra_flag == 1) {
            DCI_pdu.dci_alloc[i].firstCCE = get_nCCE_offset_l1(CCE_table,
							       1<<DCI_pdu.dci_alloc[i].L,
							       numCCE,
							       1,
							       DCI_pdu.dci_alloc[i].rnti,
							       subframe);
          }
          // C RNTI
          else {
            DCI_pdu.dci_alloc[i].firstCCE = get_nCCE_offset_l1(CCE_table,
							       1<<DCI_pdu.dci_alloc[i].L,
							       numCCE,
							       0,
							       DCI_pdu.dci_alloc[i].rnti,
							       subframe);
          }

          if (n_frames==1)
            printf("dci %d: rnti 0x%x, format %d, L %d (aggreg %d), nCCE %d/%d dci_length %d\n",i,DCI_pdu.dci_alloc[i].rnti, DCI_pdu.dci_alloc[i].format,
                   DCI_pdu.dci_alloc[i].L, 1<<DCI_pdu.dci_alloc[i].L, DCI_pdu.dci_alloc[i].firstCCE, numCCE, DCI_pdu.dci_alloc[i].dci_length);

          if (DCI_pdu.dci_alloc[i].firstCCE==-1)
            exit(-1);
        }

        num_pdcch_symbols = generate_dci_top(DCI_pdu.Num_dci,
                                             DCI_pdu.dci_alloc,
                                             0,
                                             AMP,
                                             &eNB->frame_parms,
                                             eNB->common_vars.txdataF[eNb_id],
                                             subframe);

        if (n_frames==1)
          printf("num_pdcch_symbols at TX %d\n",num_pdcch_symbols);

        if (is_phich_subframe(&eNB->frame_parms,subframe)) {
          if (n_frames==1)
            printf("generating PHICH\n");

          harq_pid = phich_subframe_to_harq_pid(&eNB->frame_parms, proc_rxtx->frame_tx, subframe);

          phich_ACK = taus()&1;
          eNB->ulsch[0]->harq_processes[harq_pid]->phich_active = 1;
          eNB->ulsch[0]->harq_processes[harq_pid]->first_rb     = 0;
          eNB->ulsch[0]->harq_processes[harq_pid]->n_DMRS       = 0;
          eNB->ulsch[0]->harq_processes[harq_pid]->phich_ACK    = phich_ACK;
          eNB->ulsch[0]->harq_processes[harq_pid]->dci_alloc    = 1;

          UE->ulsch[0]->harq_processes[harq_pid]->first_rb       = 0;
          UE->ulsch[0]->harq_processes[harq_pid]->n_DMRS         = 0;

          generate_phich_top(eNB,proc_rxtx,AMP,0);
          
          // generate 3 interfering PHICH
          if (num_phich_interf>0) {
            eNB->ulsch[0]->harq_processes[harq_pid]->first_rb = 4;
            generate_phich_top(eNB,proc_rxtx,1024,0);
          }

          if (num_phich_interf>1) {
            eNB->ulsch[0]->harq_processes[harq_pid]->first_rb = 8;
            eNB->ulsch[0]->harq_processes[harq_pid]->n_DMRS = 1;
            generate_phich_top(eNB,proc_rxtx,1024,0);
          }
          if (num_phich_interf>2) {
            eNB->ulsch[0]->harq_processes[harq_pid]->first_rb = 12;
            eNB->ulsch[0]->harq_processes[harq_pid]->n_DMRS = 1;
            generate_phich_top(eNB,proc_rxtx,1024,0);

          }

          eNB->ulsch[0]->harq_processes[harq_pid]->first_rb = 0;
          
        }

        //  write_output("pilotsF.m","rsF",txdataF[0],lte_eNB->frame_parms.ofdm_symbol_size,1,1);

        if (n_frames==1) {
          write_output("txsigF0.m","txsF0", eNB->common_vars.txdataF[eNb_id][0],4*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES_NO_PREFIX,1,1);

          if (eNB->frame_parms.nb_antenna_ports_eNB > 1)
            write_output("txsigF1.m","txsF1", eNB->common_vars.txdataF[eNb_id][1],4*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES_NO_PREFIX,1,1);
        }

        tx_lev = 0;


        for (aa=0; aa<eNB->frame_parms.nb_antenna_ports_eNB; aa++) {
          if (eNB->frame_parms.Ncp == 1)
            PHY_ofdm_mod(&eNB->common_vars.txdataF[eNb_id][aa][subframe*nsymb*eNB->frame_parms.ofdm_symbol_size],        // input,
                         &txdata[aa][subframe*eNB->frame_parms.samples_per_tti],         // output
                         eNB->frame_parms.ofdm_symbol_size,
                         2*nsymb,                 // number of symbols
                         eNB->frame_parms.nb_prefix_samples,               // number of prefix samples
                         CYCLIC_PREFIX);
          else {
            normal_prefix_mod(&eNB->common_vars.txdataF[eNb_id][aa][subframe*nsymb*eNB->frame_parms.ofdm_symbol_size],
                              &txdata[aa][subframe*eNB->frame_parms.samples_per_tti],
                              2*nsymb,
                              frame_parms);
          }

          tx_lev += signal_energy(&txdata[aa][subframe*eNB->frame_parms.samples_per_tti],
                                  eNB->frame_parms.ofdm_symbol_size);
        }

        tx_lev_dB = (unsigned int) dB_fixed(tx_lev);
      }

      for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
        for (aa=0; aa<eNB->frame_parms.nb_antenna_ports_eNB; aa++) {
          if (awgn_flag == 0) {
            s_re[aa][i] = ((double)(((short *)txdata[aa]))[(2*subframe*UE->frame_parms.samples_per_tti) + (i<<1)]);
            s_im[aa][i] = ((double)(((short *)txdata[aa]))[(2*subframe*UE->frame_parms.samples_per_tti) + (i<<1)+1]);
          } else {
            for (aarx=0; aarx<UE->frame_parms.nb_antennas_rx; aarx++) {
              if (aa==0) {
                r_re[aarx][i] = ((double)(((short *)txdata[aa]))[(2*subframe*UE->frame_parms.samples_per_tti) + (i<<1)]);
                r_im[aarx][i] = ((double)(((short *)txdata[aa]))[(2*subframe*UE->frame_parms.samples_per_tti) + (i<<1)+1]);
              } else {
                r_re[aarx][i] += ((double)(((short *)txdata[aa]))[(2*subframe*UE->frame_parms.samples_per_tti) + (i<<1)]);
                r_im[aarx][i] += ((double)(((short *)txdata[aa]))[(2*subframe*UE->frame_parms.samples_per_tti) + (i<<1)+1]);
              }
            }
          }
        }
      }



      if (awgn_flag == 0) {
        multipath_channel(eNB2UE,s_re,s_im,r_re,r_im,
                          2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,0);
      }

      //write_output("channel0.m","chan0",ch[0],channel_length,1,8);

      // scale by path_loss = NOW - P_noise
      //sigma2       = pow(10,sigma2_dB/10);
      //N0W          = -95.87;
      sigma2_dB = (double)tx_lev_dB +10*log10((double)eNB->frame_parms.ofdm_symbol_size/(double)(12*eNB->frame_parms.N_RB_DL)) - SNR;

      if (n_frames==1)
        printf("sigma2_dB %f (SNR %f dB) tx_lev_dB %d\n",sigma2_dB,SNR,tx_lev_dB);

      //AWGN
      sigma2 = pow(10,sigma2_dB/10);

      //  printf("Sigma2 %f (sigma2_dB %f)\n",sigma2,sigma2_dB);
      for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
        for (aa=0; aa<UE->frame_parms.nb_antennas_rx; aa++) {

          ((short*) UE->common_vars.rxdata[aa])[(2*subframe*UE->frame_parms.samples_per_tti) + 2*i] = (short) (.667*(r_re[aa][i] + sqrt(sigma2/2)*gaussdouble(0.0,1.0)));
          ((short*) UE->common_vars.rxdata[aa])[(2*subframe*UE->frame_parms.samples_per_tti) + 2*i+1] = (short) (.667*(r_im[aa][i] + (iqim*r_re[aa][i]) + sqrt(sigma2/2)*gaussdouble(
                0.0,1.0)));
          /*
          ((short*)UE->common_vars.rxdata[aa])[(2*subframe*UE->frame_parms.samples_per_tti) + 2*i] =
            ((short*)txdata[aa])[(2*subframe*UE->frame_parms.samples_per_tti) + 2*i];
          ((short*)UE->common_vars.rxdata[aa])[(2*subframe*UE->frame_parms.samples_per_tti) + 2*i+1] =
            ((short*)txdata[aa])[(2*subframe*UE->frame_parms.samples_per_tti) + 2*i+1];
          */
        }
      }

      // UE receiver
      for (l=0; l<eNB->frame_parms.symbols_per_tti; l++) {

        //  subframe_offset = (l/eNB->frame_parms.symbols_per_tti)*eNB->frame_parms.samples_per_tti;
        //      printf("subframe_offset = %d\n",subframe_offset);

        slot_fep(UE,
                 l%(eNB->frame_parms.symbols_per_tti/2),
                 (2*subframe)+(l/(eNB->frame_parms.symbols_per_tti/2)),
                 0,
                 0,
		 0);

        if (UE->perfect_ce == 1) {
          if (awgn_flag==0) {
            // fill in perfect channel estimates
            freq_channel(eNB2UE,UE->frame_parms.N_RB_DL,12*UE->frame_parms.N_RB_DL + 1);

            //write_output("channel.m","ch",desc1->ch[0],desc1->channel_length,1,8);
            //write_output("channelF.m","chF",desc1->chF[0],nb_samples,1,8);
            for(k=0; k<NUMBER_OF_eNB_MAX; k++) {
              for(aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
                for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
                  for (i=0; i<frame_parms->N_RB_DL*12; i++) {
                    ((int16_t *) UE->common_vars.common_vars_rx_data_per_thread[subframe&0x1].dl_ch_estimates[k][(aa<<1)+aarx])[2*i+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(
                          eNB2UE->chF[aarx+(aa*frame_parms->nb_antennas_rx)][i].x*AMP);
                    ((int16_t *) UE->common_vars.common_vars_rx_data_per_thread[subframe&0x1].dl_ch_estimates[k][(aa<<1)+aarx])[2*i+1+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(
                          eNB2UE->chF[aarx+(aa*frame_parms->nb_antennas_rx)][i].y*AMP);
                  }
                }
              }
            }
          } else {
            for(aa=0; aa<frame_parms->nb_antenna_ports_eNB; aa++) {
              for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
                for (i=0; i<frame_parms->N_RB_DL*12; i++) {
                  ((int16_t *) UE->common_vars.common_vars_rx_data_per_thread[subframe&0x1].dl_ch_estimates[0][(aa<<1)+aarx])[2*i+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(short)(AMP);
                  ((int16_t *) UE->common_vars.common_vars_rx_data_per_thread[subframe&0x1].dl_ch_estimates[0][(aa<<1)+aarx])[2*i+1+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=0/2;
                }
              }
            }
          }
        }

        if (l==((eNB->frame_parms.Ncp==0)?4:3)) {

          //      write_output("H00.m","h00",&(UE->common_vars.dl_ch_estimates[0][0][0]),((frame_parms->Ncp==0)?7:6)*(eNB->frame_parms.ofdm_symbol_size),1,1);

          // do PDCCH procedures here
          UE->pdcch_vars[0][0]->crnti = n_rnti;

          //    printf("Doing RX : num_pdcch_symbols at TX %d\n",num_pdcch_symbols);
          rx_pdcch(UE,
                   trial,
                   subframe,
                   0,
                   (UE->frame_parms.mode1_flag == 1) ? SISO : ALAMOUTI,
                   UE->high_speed_flag,
                   UE->is_secondary_ue);

          if (is_phich_subframe(&UE->frame_parms,subframe)) {
            UE->ulsch[0]->harq_processes[phich_subframe_to_harq_pid(&UE->frame_parms,0,subframe)]->status = ACTIVE;
            //UE->ulsch[0]->harq_processes[phich_subframe_to_harq_pid(&UE->frame_parms,0,subframe)]->Ndi = 1;
            rx_phich(UE,
		     &UE->proc.proc_rxtx[subframe&1],
                     subframe,
                     0);
          }

          //    if (UE->pdcch_vars[0]->num_pdcch_symbols != num_pdcch_symbols)
          //      break;
          dci_cnt = dci_decoding_procedure(UE,
                                           dci_alloc_rx,1,
                                           0,subframe);

          common_rx=0;
          ul_rx=0;
          dl_rx=0;

          if (n_frames==1)  {
            numCCE = get_nCCE(UE->pdcch_vars[0][0]->num_pdcch_symbols, &UE->frame_parms, get_mi(&UE->frame_parms,subframe));

            for (i = 0; i < dci_cnt; i++)
              printf("dci %d: rnti 0x%x, format %d, L %d, nCCE %d/%d dci_length %d\n",i, dci_alloc_rx[i].rnti, dci_alloc_rx[i].format,
                     dci_alloc_rx[i].L, dci_alloc_rx[i].firstCCE, numCCE, dci_alloc_rx[i].dci_length);
          }

          for (i=0; i<dci_cnt; i++) {
            if (dci_alloc_rx[i].rnti == SI_RNTI) {
              if (n_frames==1)
                dump_dci(&UE->frame_parms, &dci_alloc_rx[i]);

              common_rx=1;
            }

            if ((dci_alloc_rx[i].rnti == n_rnti) && (dci_alloc_rx[i].format == format0)) {
              if (n_frames==1)
                dump_dci(&UE->frame_parms, &dci_alloc_rx[i]);

              ul_rx=1;
            }

            if ((dci_alloc_rx[i].rnti == n_rnti) && ((dci_alloc_rx[i].format == format1))) {
              if (n_frames==1)
                dump_dci(&UE->frame_parms, &dci_alloc_rx[i]);

              dl_rx=1;
            }

            if ((dci_alloc_rx[i].rnti != n_rnti) && (dci_alloc_rx[i].rnti != SI_RNTI))
              false_detection_cnt++;
          }

          if (n_frames==1)
            printf("RX DCI Num %d (Common DCI %d, DL DCI %d, UL DCI %d)\n", dci_cnt, common_rx, dl_rx, ul_rx);

          if ((common_rx==0)&&(common_active==1))
            n_errors_common++;

          if ((ul_rx==0)&&(ul_active==1)) {
            n_errors_ul++;
            //     exit(-1);
          }

          if ((dl_rx==0)&&(dl_active==1)) {
            n_errors_dl++;
            //   exit(-1);
          }

          if (UE->pdcch_vars[0][0]->num_pdcch_symbols != num_pdcch_symbols)
            n_errors_cfi++;

          /*
           if (is_phich_subframe(&UE->frame_parms,subframe))
             if (UE->ulsch[0]->harq_processes[phich_subframe_to_harq_pid(&UE->frame_parms, UE->frame, subframe)]->Ndi != phich_ACK)
               n_errors_hi++;
          */

          if (n_errors_cfi > 10)
            break;
        }

      } // symbol loop

      if (n_errors_cfi > 100)
        break;

      if ((n_errors_ul>1000) && (n_errors_dl>1000) && (n_errors_common>1000))
        break;

#ifdef XFORMS
      phy_scope_UE(form_ue,
                   UE,
                   eNb_id,0,subframe);
#endif

    } //trials
    
    if (common_active) printf("SNR %f : n_errors_common = %d/%d (%e)\n", SNR,n_errors_common,n_trials_common,(double)n_errors_common/n_trials_common);
    if (ul_active==1) printf("SNR %f : n_errors_ul = %d/%d (%e)\n", SNR,n_errors_ul,n_trials_ul,(double)n_errors_ul/n_trials_ul);
    if (dl_active==1) printf("SNR %f : n_errors_dl = %d/%d (%e)\n", SNR,n_errors_dl,n_trials_dl,(double)n_errors_dl/n_trials_dl);
    printf("SNR %f : n_errors_cfi = %d/%d (%e)\n", SNR,n_errors_cfi,trial,(double)n_errors_cfi/trial);
    printf("SNR %f : n_errors_hi = %d/%d (%e)\n", SNR,n_errors_hi,trial,(double)n_errors_hi/trial);
    
  } // SNR
 

  if (n_frames==1) {
    write_output("txsig0.m","txs0", txdata[0],FRAME_LENGTH_COMPLEX_SAMPLES,1,1);

    if (n_tx>1)
      write_output("txsig1.m","txs1", txdata[1],FRAME_LENGTH_COMPLEX_SAMPLES,1,1);

    write_output("rxsig0.m","rxs0", UE->common_vars.rxdata[0],10*frame_parms->samples_per_tti,1,1);
    write_output("rxsigF0.m","rxsF0", UE->common_vars.common_vars_rx_data_per_thread[subframe&0x1].rxdataF[0],NUMBER_OF_OFDM_CARRIERS*2*((frame_parms->Ncp==0)?14:12),2,1);

    if (n_rx>1) {
      write_output("rxsig1.m","rxs1", UE->common_vars.rxdata[1],10*frame_parms->samples_per_tti,1,1);
      write_output("rxsigF1.m","rxsF1", UE->common_vars.common_vars_rx_data_per_thread[subframe&0x1].rxdataF[1],NUMBER_OF_OFDM_CARRIERS*2*((frame_parms->Ncp==0)?14:12),2,1);
    }

    write_output("H00.m","h00",&(UE->common_vars.common_vars_rx_data_per_thread[subframe&0x1].dl_ch_estimates[0][0][0]),((frame_parms->Ncp==0)?7:6)*(eNB->frame_parms.ofdm_symbol_size),1,1);

    if (n_tx==2)
      write_output("H10.m","h10",&(UE->common_vars.common_vars_rx_data_per_thread[subframe&0x1].dl_ch_estimates[0][2][0]),((frame_parms->Ncp==0)?7:6)*(eNB->frame_parms.ofdm_symbol_size),1,1);

    write_output("pdcch_rxF_ext0.m","pdcch_rxF_ext0",UE->pdcch_vars[0][eNb_id]->rxdataF_ext[0],3*12*UE->frame_parms.N_RB_DL,1,1);
    write_output("pdcch_rxF_comp0.m","pdcch0_rxF_comp0",UE->pdcch_vars[0][eNb_id]->rxdataF_comp[0],4*12*UE->frame_parms.N_RB_DL,1,1);
    write_output("pdcch_rxF_llr.m","pdcch_llr",UE->pdcch_vars[0][eNb_id]->llr,2400,1,4);
  }

  lte_sync_time_free();

  return(n_errors_ul);

  }
예제 #2
0
PHY_VARS_eNB* init_lte_eNB(LTE_DL_FRAME_PARMS *frame_parms,
                           uint8_t eNB_id,
                           uint8_t Nid_cell,
                           uint8_t cooperation_flag,
                           uint8_t transmission_mode,
                           uint8_t abstraction_flag)
{

  int i,j;
  PHY_VARS_eNB* PHY_vars_eNB = malloc(sizeof(PHY_VARS_eNB));
  memset(PHY_vars_eNB,0,sizeof(PHY_VARS_eNB));
  PHY_vars_eNB->Mod_id=eNB_id;
  PHY_vars_eNB->cooperation_flag=cooperation_flag;
  memcpy(&(PHY_vars_eNB->lte_frame_parms), frame_parms, sizeof(LTE_DL_FRAME_PARMS));
  PHY_vars_eNB->lte_frame_parms.Nid_cell = ((Nid_cell/3)*3)+((eNB_id+Nid_cell)%3);
  PHY_vars_eNB->lte_frame_parms.nushift = PHY_vars_eNB->lte_frame_parms.Nid_cell%6;
  phy_init_lte_eNB(PHY_vars_eNB,0,cooperation_flag,abstraction_flag);

  LOG_I(PHY,"init eNB: Nid_cell %d\n", frame_parms->Nid_cell);
  LOG_I(PHY,"init eNB: frame_type %d,tdd_config %d\n", frame_parms->frame_type,frame_parms->tdd_config);
  LOG_I(PHY,"init eNB: number of ue max %d number of enb max %d number of harq pid max %d\n",
        NUMBER_OF_UE_MAX, NUMBER_OF_eNB_MAX, NUMBER_OF_HARQ_PID_MAX);
  LOG_I(PHY,"init eNB: N_RB_DL %d\n", frame_parms->N_RB_DL);
  LOG_I(PHY,"init eNB: Transmission mode %d\n", transmission_mode);

  for (i=0; i<NUMBER_OF_UE_MAX; i++) {
    for (j=0; j<2; j++) {
      PHY_vars_eNB->dlsch_eNB[i][j] = new_eNB_dlsch(1,NUMBER_OF_HARQ_PID_MAX,frame_parms->N_RB_DL,abstraction_flag);

      if (!PHY_vars_eNB->dlsch_eNB[i][j]) {
        LOG_E(PHY,"Can't get eNB dlsch structures for UE %d \n", i);
        exit(-1);
      } else {
        LOG_D(PHY,"dlsch_eNB[%d][%d] => %p\n",i,j,PHY_vars_eNB->dlsch_eNB[i][j]);
        PHY_vars_eNB->dlsch_eNB[i][j]->rnti=0;
      }
    }

    PHY_vars_eNB->ulsch_eNB[1+i] = new_eNB_ulsch(NUMBER_OF_HARQ_PID_MAX,MAX_TURBO_ITERATIONS, frame_parms->N_RB_UL, abstraction_flag);

    if (!PHY_vars_eNB->ulsch_eNB[1+i]) {
      LOG_E(PHY,"Can't get eNB ulsch structures\n");
      exit(-1);
    }

    // this is the transmission mode for the signalling channels
    // this will be overwritten with the real transmission mode by the RRC once the UE is connected
    PHY_vars_eNB->transmission_mode[i] = transmission_mode;
#ifdef LOCALIZATION
    PHY_vars_eNB->ulsch_eNB[1+i]->aggregation_period_ms = 5000; // 5000 milliseconds // could be given as an argument (TBD))
    struct timeval ts;
    gettimeofday(&ts, NULL);
    PHY_vars_eNB->ulsch_eNB[1+i]->reference_timestamp_ms = ts.tv_sec * 1000 + ts.tv_usec / 1000;
    int j;

    for (j=0; j<10; j++) {
      initialize(&PHY_vars_eNB->ulsch_eNB[1+i]->loc_rss_list[j]);
      initialize(&PHY_vars_eNB->ulsch_eNB[1+i]->loc_rssi_list[j]);
      initialize(&PHY_vars_eNB->ulsch_eNB[1+i]->loc_subcarrier_rss_list[j]);
      initialize(&PHY_vars_eNB->ulsch_eNB[1+i]->loc_timing_advance_list[j]);
      initialize(&PHY_vars_eNB->ulsch_eNB[1+i]->loc_timing_update_list[j]);
    }

    initialize(&PHY_vars_eNB->ulsch_eNB[1+i]->tot_loc_rss_list);
    initialize(&PHY_vars_eNB->ulsch_eNB[1+i]->tot_loc_rssi_list);
    initialize(&PHY_vars_eNB->ulsch_eNB[1+i]->tot_loc_subcarrier_rss_list);
    initialize(&PHY_vars_eNB->ulsch_eNB[1+i]->tot_loc_timing_advance_list);
    initialize(&PHY_vars_eNB->ulsch_eNB[1+i]->tot_loc_timing_update_list);
#endif
  }

  // ULSCH for RA
  PHY_vars_eNB->ulsch_eNB[0] = new_eNB_ulsch(NUMBER_OF_HARQ_PID_MAX,MAX_TURBO_ITERATIONS, frame_parms->N_RB_UL, abstraction_flag);

  if (!PHY_vars_eNB->ulsch_eNB[0]) {
    LOG_E(PHY,"Can't get eNB ulsch structures\n");
    exit(-1);
  }

  PHY_vars_eNB->dlsch_eNB_SI  = new_eNB_dlsch(1,1,frame_parms->N_RB_DL, abstraction_flag);
  LOG_D(PHY,"eNB %d : SI %p\n",eNB_id,PHY_vars_eNB->dlsch_eNB_SI);
  PHY_vars_eNB->dlsch_eNB_ra  = new_eNB_dlsch(1,1,frame_parms->N_RB_DL, abstraction_flag);
  LOG_D(PHY,"eNB %d : RA %p\n",eNB_id,PHY_vars_eNB->dlsch_eNB_ra);
  PHY_vars_eNB->dlsch_eNB_MCH = new_eNB_dlsch(1,NUMBER_OF_HARQ_PID_MAX,frame_parms->N_RB_DL, 0);
  LOG_D(PHY,"eNB %d : MCH %p\n",eNB_id,PHY_vars_eNB->dlsch_eNB_MCH);


  PHY_vars_eNB->rx_total_gain_eNB_dB=130;

  for(i=0; i<NUMBER_OF_UE_MAX; i++)
    PHY_vars_eNB->mu_mimo_mode[i].dl_pow_off = 2;

  PHY_vars_eNB->check_for_total_transmissions = 0;

  PHY_vars_eNB->check_for_MUMIMO_transmissions = 0;

  PHY_vars_eNB->FULL_MUMIMO_transmissions = 0;

  PHY_vars_eNB->check_for_SUMIMO_transmissions = 0;

  PHY_vars_eNB->lte_frame_parms.pucch_config_common.deltaPUCCH_Shift = 1;

  return (PHY_vars_eNB);
}
예제 #3
0
파일: gd_rx.c 프로젝트: gkchai/garud
void configure(int argc, char **argv, int trials, short* iqr, short* iqi, int mmcs, int nrx, int num_bss){

    mcs = mmcs;
    /**************************************************************************/
    char c;
    int i, j,u;
    double snr0=-2.0,snr1,rate;
    double input_snr_step=.2,snr_int=30;
    double forgetting_factor=0.0; //in [0,1] 0 means a new channel every time, 1 means keep the same channel
    uint8_t extended_prefix_flag=0;
    int eNB_id = 0;
    int chMod = 0 ;
    int UE_id = 0;
    unsigned char l;
    int **txdata;
    unsigned char awgn_flag = 0 ;
    SCM_t channel_model=Rice1;
    unsigned int coded_bits_per_codeword,nsymb;
    uint8_t transmission_mode=1,n_tx=1;
    n_rx = nrx;
    FILE *input_fdUL=NULL;
    short input_val_str, input_val_str2;
    int n_frames=1000;
    int n_ch_rlz = 1;
    int abstx = 0;
    channel_desc_t *UE2eNB;
    int delay = 0;
    double maxDoppler = 0.0;
    uint8_t srs_flag = 0;
    uint8_t N_RB_DL=50,osf=1;
    uint8_t beta_ACK=0,beta_RI=0,beta_CQI=2;
    uint8_t tdd_config=3,frame_type=FDD;
    uint8_t N0=30;
    double tx_gain=1.0;
    double cpu_freq_GHz;
    int s;
    int dump_perf=0;
    int test_perf=0;
    int dump_table =0;
    double effective_rate=0.0;
    char channel_model_input[10];
    uint8_t max_turbo_iterations=4;
    int nb_rb_set = 0;
    int sf;
  /***************************************************************************/

  logInit();

  while ((c = getopt (argc, argv, "hapZbm:n:Y:X:x:s:w:e:q:d:D:O:c:r:i:f:y:c:oA:C:R:g:N:l:S:T:QB:PI:L")) != -1) {
    switch (c) {
    case 'a':
      channel_model = AWGN;
      chMod = 1;
      break;

    case 'b':
      bundling_flag = 0;
      break;

    case 'd':
      delay = atoi(optarg);
      break;

    case 'D':
      maxDoppler = atoi(optarg);
      break;

    case 'm':
      mcs = atoi(optarg);
      break;

    case 'n':
      n_frames = atoi(optarg);
      break;

    case 'Y':
      n_ch_rlz = atoi(optarg);
      break;

    case 'X':
      abstx= atoi(optarg);
      break;

    case 'g':
      sprintf(channel_model_input,optarg,10);

      switch((char)*optarg) {
      case 'A':
        channel_model=SCM_A;
        chMod = 2;
        break;

      case 'B':
        channel_model=SCM_B;
        chMod = 3;
        break;

      case 'C':
        channel_model=SCM_C;
        chMod = 4;
        break;

      case 'D':
        channel_model=SCM_D;
        chMod = 5;
        break;

      case 'E':
        channel_model=EPA;
        chMod = 6;
        break;

      case 'F':
        channel_model=EVA;
        chMod = 7;
        break;

      case 'G':
        channel_model=ETU;
        chMod = 8;
        break;

      case 'H':
        channel_model=Rayleigh8;
        chMod = 9;
        break;

      case 'I':
        channel_model=Rayleigh1;
        chMod = 10;
        break;

      case 'J':
        channel_model=Rayleigh1_corr;
        chMod = 11;
        break;

      case 'K':
        channel_model=Rayleigh1_anticorr;
        chMod = 12;
        break;

      case 'L':
        channel_model=Rice8;
        chMod = 13;
        break;

      case 'M':
        channel_model=Rice1;
        chMod = 14;
        break;

      case 'N':
        channel_model=AWGN;
        chMod = 1;
        break;

      default:
        msg("Unsupported channel model!\n");
        exit(-1);
        break;
      }

      break;

    case 's':
      snr0 = atof(optarg);
      break;

    case 'w':
      snr_int = atof(optarg);
      break;

    case 'e':
      input_snr_step= atof(optarg);
      break;

    case 'x':
      transmission_mode=atoi(optarg);

      if ((transmission_mode!=1) &&
          (transmission_mode!=2)) {
        msg("Unsupported transmission mode %d\n",transmission_mode);
        exit(-1);
      }

      if (transmission_mode>1) {
        n_tx = 1;
      }

      break;

    case 'y':
      n_rx = atoi(optarg);
      break;

    case 'S':
      subframe = atoi(optarg);
      break;

    case 'T':
      tdd_config=atoi(optarg);
      frame_type=TDD;
      break;

    case 'p':
      extended_prefix_flag=1;
      break;

    case 'r':
      nb_rb = atoi(optarg);
      nb_rb_set = 1;
      break;

    case 'f':
      first_rb = atoi(optarg);
      break;

    case 'c':
      cyclic_shift = atoi(optarg);
      break;

    case 'N':
      N0 = atoi(optarg);
      break;

    case 'o':
      srs_flag = 1;
      break;

    case 'i':
      input_fdUL = fopen(optarg,"r");
      printf("Reading in %s (%p)\n",optarg,input_fdUL);

      if (input_fdUL == (FILE*)NULL) {
        printf("Unknown file %s\n",optarg);
        exit(-1);
      }

      //      input_file=1;
      break;

    case 'A':
      beta_ACK = atoi(optarg);

      if (beta_ACK>15) {
        printf("beta_ack must be in (0..15)\n");
        exit(-1);
      }

      break;

    case 'C':
      beta_CQI = atoi(optarg);

      if ((beta_CQI>15)||(beta_CQI<2)) {
        printf("beta_cqi must be in (2..15)\n");
        exit(-1);
      }

      break;

    case 'R':
      beta_RI = atoi(optarg);

      if ((beta_RI>15)||(beta_RI<2)) {
        printf("beta_ri must be in (0..13)\n");
        exit(-1);
      }

      break;

    case 'Q':
      cqi_flag=1;
      break;

    case 'B':
      N_RB_DL=atoi(optarg);
      break;

    case 'P':
      dump_perf=1;
      opp_enabled=1;
      break;

    case 'O':
      test_perf=atoi(optarg);
      //print_perf =1;
      break;

    case 'L':
      llr8_flag=1;
      break;

    case 'I':
      max_turbo_iterations=atoi(optarg);
      break;

    case 'Z':
      dump_table = 1;
      break;

    case 'h':
    default:
      printf("%s -h(elp) -a(wgn on) -m mcs -n n_frames -s snr0 -t delay_spread -p (extended prefix on) -r nb_rb -f first_rb -c cyclic_shift -o (srs on) -g channel_model [A:M] Use 3GPP 25.814 SCM-A/B/C/D('A','B','C','D') or 36-101 EPA('E'), EVA ('F'),ETU('G') models (ignores delay spread and Ricean factor), Rayghleigh8 ('H'), Rayleigh1('I'), Rayleigh1_corr('J'), Rayleigh1_anticorr ('K'), Rice8('L'), Rice1('M'), -d Channel delay, -D maximum Doppler shift \n",
             argv[0]);
      exit(1);
      break;
    }
  }

  lte_param_init(1,n_rx,1,extended_prefix_flag,N_RB_DL,frame_type,tdd_config,osf, num_bss);

  int loop = 0;

  for (loop = 0; loop < num_bss; loop++){




                  if (nb_rb_set == 0){
                    nb_rb = PHY_vars_eNB[loop]->lte_frame_parms.N_RB_UL;
                    }


                  // frame_parms = &PHY_vars_eNB[loop]->lte_frame_parms;
                  txdata = PHY_vars_UE[loop]->lte_ue_common_vars.txdata;

                  nsymb = (PHY_vars_eNB[loop]->lte_frame_parms.Ncp == 0) ? 14 : 12;
                  coded_bits_per_codeword = nb_rb * (12 * get_Qm(mcs)) * nsymb;
                  rate = (double)2*dlsch_tbs25[get_I_TBS(mcs)][25-1]/(coded_bits_per_codeword);

                  PHY_vars_UE[loop]->lte_ue_pdcch_vars[0]->crnti = 14;

                  PHY_vars_UE[loop]->lte_frame_parms.soundingrs_ul_config_common.srs_BandwidthConfig = 2;
                  PHY_vars_UE[loop]->lte_frame_parms.soundingrs_ul_config_common.srs_SubframeConfig = 7;
                  PHY_vars_UE[loop]->soundingrs_ul_config_dedicated[eNB_id].srs_Bandwidth = 0;
                  PHY_vars_UE[loop]->soundingrs_ul_config_dedicated[eNB_id].transmissionComb = 0;
                  PHY_vars_UE[loop]->soundingrs_ul_config_dedicated[eNB_id].freqDomainPosition = 0;

                  PHY_vars_eNB[loop]->lte_frame_parms.soundingrs_ul_config_common.srs_BandwidthConfig = 2;
                  PHY_vars_eNB[loop]->lte_frame_parms.soundingrs_ul_config_common.srs_SubframeConfig = 7;

                  PHY_vars_eNB[loop]->soundingrs_ul_config_dedicated[UE_id].srs_ConfigIndex = 1;
                  PHY_vars_eNB[loop]->soundingrs_ul_config_dedicated[UE_id].srs_Bandwidth = 0;
                  PHY_vars_eNB[loop]->soundingrs_ul_config_dedicated[UE_id].transmissionComb = 0;
                  PHY_vars_eNB[loop]->soundingrs_ul_config_dedicated[UE_id].freqDomainPosition = 0;
                  PHY_vars_eNB[loop]->cooperation_flag = cooperation_flag;
                  //  PHY_vars_eNB[loop]->eNB_UE_stats[0].SRS_parameters = PHY_vars_UE[loop]->SRS_parameters;

                  PHY_vars_eNB[loop]->pusch_config_dedicated[UE_id].betaOffset_ACK_Index = beta_ACK;
                  PHY_vars_eNB[loop]->pusch_config_dedicated[UE_id].betaOffset_RI_Index  = beta_RI;
                  PHY_vars_eNB[loop]->pusch_config_dedicated[UE_id].betaOffset_CQI_Index = beta_CQI;
                  PHY_vars_UE[loop]->pusch_config_dedicated[eNB_id].betaOffset_ACK_Index = beta_ACK;
                  PHY_vars_UE[loop]->pusch_config_dedicated[eNB_id].betaOffset_RI_Index  = beta_RI;
                  PHY_vars_UE[loop]->pusch_config_dedicated[eNB_id].betaOffset_CQI_Index = beta_CQI;

                  PHY_vars_UE[loop]->ul_power_control_dedicated[eNB_id].deltaMCS_Enabled = 1;


                  UE2eNB = new_channel_desc_scm(PHY_vars_eNB[loop]->lte_frame_parms.nb_antennas_tx,
                                                PHY_vars_UE[loop]->lte_frame_parms.nb_antennas_rx,
                                                channel_model,
                                                BW,
                                                forgetting_factor,
                                                delay,
                                                0);
                  // set Doppler
                  UE2eNB->max_Doppler = maxDoppler;

                  // NN: N_RB_UL has to be defined in ulsim
                  PHY_vars_eNB[loop]->ulsch_eNB[0] = new_eNB_ulsch(8,max_turbo_iterations,N_RB_DL,0);
                  PHY_vars_UE[loop]->ulsch_ue[0]   = new_ue_ulsch(8,N_RB_DL,0);

                  // Create transport channel structures for 2 transport blocks (MIMO)
                  for (i=0; i<2; i++) {
                    PHY_vars_eNB[loop]->dlsch_eNB[0][i] = new_eNB_dlsch(1,8,N_RB_DL,0);
                    PHY_vars_UE[loop]->dlsch_ue[0][i]  = new_ue_dlsch(1,8,MAX_TURBO_ITERATIONS,N_RB_DL,0);

                    if (!PHY_vars_eNB[loop]->dlsch_eNB[0][i]) {
                      printf("Can't get eNB dlsch structures\n");
                      exit(-1);
                    }

                    if (!PHY_vars_UE[loop]->dlsch_ue[0][i]) {
                      printf("Can't get ue dlsch structures\n");
                      exit(-1);
                    }

                    PHY_vars_eNB[loop]->dlsch_eNB[0][i]->rnti = 14;
                    PHY_vars_UE[loop]->dlsch_ue[0][i]->rnti   = 14;

                  }


                  switch (PHY_vars_eNB[loop]->lte_frame_parms.N_RB_UL) {
                  case 6:
                    break;

                  case 50:
                    if (PHY_vars_eNB[loop]->lte_frame_parms.frame_type == TDD) {
                      ((DCI0_10MHz_TDD_1_6_t*)&UL_alloc_pdu)->type    = 0;
                      ((DCI0_10MHz_TDD_1_6_t*)&UL_alloc_pdu)->rballoc = computeRIV(PHY_vars_eNB[loop]->lte_frame_parms.N_RB_UL,first_rb,nb_rb);// 12 RBs from position 8
                      printf("nb_rb %d/%d, rballoc %d (dci %x)\n",nb_rb,PHY_vars_eNB[loop]->lte_frame_parms.N_RB_UL,((DCI0_10MHz_TDD_1_6_t*)&UL_alloc_pdu)->rballoc,*(uint32_t *)&UL_alloc_pdu);
                      ((DCI0_10MHz_TDD_1_6_t*)&UL_alloc_pdu)->mcs     = mcs;
                      ((DCI0_10MHz_TDD_1_6_t*)&UL_alloc_pdu)->ndi     = 1;
                      ((DCI0_10MHz_TDD_1_6_t*)&UL_alloc_pdu)->TPC     = 0;
                      ((DCI0_10MHz_TDD_1_6_t*)&UL_alloc_pdu)->cqi_req = cqi_flag&1;
                      ((DCI0_10MHz_TDD_1_6_t*)&UL_alloc_pdu)->cshift  = 0;
                      ((DCI0_10MHz_TDD_1_6_t*)&UL_alloc_pdu)->dai     = 1;
                    } else {
                      ((DCI0_10MHz_FDD_t*)&UL_alloc_pdu)->type    = 0;
                      ((DCI0_10MHz_FDD_t*)&UL_alloc_pdu)->rballoc = computeRIV(PHY_vars_eNB[loop]->lte_frame_parms.N_RB_UL,first_rb,nb_rb);// 12 RBs from position 8
                      printf("nb_rb %d/%d, rballoc %d (dci %x)\n",nb_rb,PHY_vars_eNB[loop]->lte_frame_parms.N_RB_UL,((DCI0_10MHz_FDD_t*)&UL_alloc_pdu)->rballoc,*(uint32_t *)&UL_alloc_pdu);
                      ((DCI0_10MHz_FDD_t*)&UL_alloc_pdu)->mcs     = mcs;
                      ((DCI0_10MHz_FDD_t*)&UL_alloc_pdu)->ndi     = 1;
                      ((DCI0_10MHz_FDD_t*)&UL_alloc_pdu)->TPC     = 0;
                      ((DCI0_10MHz_FDD_t*)&UL_alloc_pdu)->cqi_req = cqi_flag&1;
                      ((DCI0_10MHz_FDD_t*)&UL_alloc_pdu)->cshift  = 0;
                    }

                    break;


                  default:
                    break;
                  }


                  PHY_vars_UE[loop]->PHY_measurements.rank[0] = 0;
                  PHY_vars_UE[loop]->transmission_mode[0] = 2;
                  PHY_vars_UE[loop]->pucch_config_dedicated[0].tdd_AckNackFeedbackMode = bundling_flag == 1 ? bundling : multiplexing;
                  PHY_vars_eNB[loop]->transmission_mode[0] = 2;
                  PHY_vars_eNB[loop]->pucch_config_dedicated[0].tdd_AckNackFeedbackMode = bundling_flag == 1 ? bundling : multiplexing;
                  PHY_vars_UE[loop]->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.groupHoppingEnabled = 1;
                  PHY_vars_eNB[loop]->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.groupHoppingEnabled = 1;
                  PHY_vars_UE[loop]->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.sequenceHoppingEnabled = 0;
                  PHY_vars_eNB[loop]->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.sequenceHoppingEnabled = 0;
                  PHY_vars_UE[loop]->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.groupAssignmentPUSCH = 0;
                  PHY_vars_eNB[loop]->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.groupAssignmentPUSCH = 0;
                  PHY_vars_UE[loop]->frame_tx=1;

                  for (sf=0; sf<10; sf++) {
                    PHY_vars_eNB[loop]->proc[sf].frame_tx=1;
                    PHY_vars_eNB[loop]->proc[sf].subframe_tx=sf;
                    PHY_vars_eNB[loop]->proc[sf].frame_rx=1;
                    PHY_vars_eNB[loop]->proc[sf].subframe_rx=sf;
                  }

                  msg("Init UL hopping UE\n");
                  init_ul_hopping(&PHY_vars_UE[loop]->lte_frame_parms);
                  msg("Init UL hopping eNB\n");
                  init_ul_hopping(&PHY_vars_eNB[loop]->lte_frame_parms);

                  PHY_vars_eNB[loop]->proc[subframe].frame_rx = PHY_vars_UE[loop]->frame_tx;

                  if (ul_subframe2pdcch_alloc_subframe(&PHY_vars_eNB[loop]->lte_frame_parms,subframe) > subframe) // allocation was in previous frame
                    PHY_vars_eNB[loop]->proc[ul_subframe2pdcch_alloc_subframe(&PHY_vars_eNB[loop]->lte_frame_parms,subframe)].frame_tx = (PHY_vars_UE[loop]->frame_tx-1)&1023;

                  PHY_vars_UE[loop]->dlsch_ue[0][0]->harq_ack[ul_subframe2pdcch_alloc_subframe(&PHY_vars_eNB[loop]->lte_frame_parms,subframe)].send_harq_status = 1;

                  PHY_vars_UE[loop]->frame_tx = (PHY_vars_UE[loop]->frame_tx-1)&1023;
                  printf("**********************here=1**************************\n");
                  generate_ue_ulsch_params_from_dci((void *)&UL_alloc_pdu,
                                                    14,
                                                    ul_subframe2pdcch_alloc_subframe(&PHY_vars_UE[loop]->lte_frame_parms,subframe),
                                                    format0,
                                                    PHY_vars_UE[loop],
                                                    SI_RNTI,
                                                    0,
                                                    P_RNTI,
                                                    CBA_RNTI,
                                                    0,
                                                    srs_flag);

                 if (PHY_vars_eNB[loop]->ulsch_eNB[0] != NULL)
                  generate_eNB_ulsch_params_from_dci((void *)&UL_alloc_pdu,
                                                     14,
                                                     ul_subframe2pdcch_alloc_subframe(&PHY_vars_eNB[loop]->lte_frame_parms,subframe),
                                                     format0,
                                                     0,
                                                     PHY_vars_eNB[loop],
                                                     SI_RNTI,
                                                     0,
                                                     P_RNTI,
                                                     CBA_RNTI,
                                                     srs_flag);

                  PHY_vars_UE[loop]->frame_tx = (PHY_vars_UE[loop]->frame_tx+1)&1023;
                  printf("**********************here=2**************************\n");

                    int round = 0;

                    harq_pid = subframe2harq_pid(&PHY_vars_UE[loop]->lte_frame_parms,PHY_vars_UE[loop]->frame_tx,subframe);
                    // fflush(stdout);

                    PHY_vars_eNB[loop]->ulsch_eNB[0]->harq_processes[harq_pid]->round=round;
                    PHY_vars_UE[loop]->ulsch_ue[0]->harq_processes[harq_pid]->round=round;
                    PHY_vars_eNB[loop]->ulsch_eNB[0]->harq_processes[harq_pid]->rvidx = round>>1;
                    PHY_vars_UE[loop]->ulsch_ue[0]->harq_processes[harq_pid]->rvidx = round>>1;


                    /////////////////////
                    int aa = 0; int ii=0;
                    for(ii=0; ii< PHY_vars_eNB[loop]->lte_frame_parms.samples_per_tti; ii++){

                        for (aa=0; aa < n_rx; aa++){

                        ((short*) &PHY_vars_eNB[loop]->lte_eNB_common_vars.rxdata[0][aa][PHY_vars_eNB[loop]->lte_frame_parms.samples_per_tti*subframe])[2*ii] = iqr[ii];
                        ((short*) &PHY_vars_eNB[loop]->lte_eNB_common_vars.rxdata[0][aa][PHY_vars_eNB[loop]->lte_frame_parms.samples_per_tti*subframe])[2*ii +1] = iqi[ii];
                        }
                    }

                        printf("Loaded %d IQ samples\n", PHY_vars_eNB[loop]->lte_frame_parms.samples_per_tti);

                      lte_eNB_I0_measurements(PHY_vars_eNB[loop], 0, 1);
                      PHY_vars_eNB[loop]->ulsch_eNB[0]->cyclicShift = cyclic_shift;// cyclic shift for DMRS

                      remove_7_5_kHz(PHY_vars_eNB[loop],subframe<<1);
                      remove_7_5_kHz(PHY_vars_eNB[loop],1+(subframe<<1));


        }


}