int nfs4_get_rootfh(struct nfs_server *server, struct nfs_fh *mntfh) { struct nfs_fsinfo fsinfo; int ret = -ENOMEM; dprintk("--> nfs4_get_rootfh()\n"); fsinfo.fattr = nfs_alloc_fattr(); if (fsinfo.fattr == NULL) goto out; /* Start by getting the root filehandle from the server */ ret = server->nfs_client->rpc_ops->getroot(server, mntfh, &fsinfo); if (ret < 0) { dprintk("nfs4_get_rootfh: getroot error = %d\n", -ret); goto out; } if (!(fsinfo.fattr->valid & NFS_ATTR_FATTR_TYPE) || !S_ISDIR(fsinfo.fattr->mode)) { printk(KERN_ERR "nfs4_get_rootfh:" " getroot encountered non-directory\n"); ret = -ENOTDIR; goto out; } if (fsinfo.fattr->valid & NFS_ATTR_FATTR_V4_REFERRAL) { printk(KERN_ERR "nfs4_get_rootfh:" " getroot obtained referral\n"); ret = -EREMOTE; goto out; } memcpy(&server->fsid, &fsinfo.fattr->fsid, sizeof(server->fsid)); out: nfs_free_fattr(fsinfo.fattr); dprintk("<-- nfs4_get_rootfh() = %d\n", ret); return ret; }
static int nfs_proc_link(struct inode *inode, struct inode *dir, struct qstr *name) { struct nfs_linkargs arg = { .fromfh = NFS_FH(inode), .tofh = NFS_FH(dir), .toname = name->name, .tolen = name->len }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_LINK], .rpc_argp = &arg, }; int status; dprintk("NFS call link %s\n", name->name); status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); nfs_mark_for_revalidate(inode); nfs_mark_for_revalidate(dir); dprintk("NFS reply link: %d\n", status); return status; } static int nfs_proc_symlink(struct inode *dir, struct dentry *dentry, struct page *page, unsigned int len, struct iattr *sattr) { struct nfs_fh *fh; struct nfs_fattr *fattr; struct nfs_symlinkargs arg = { .fromfh = NFS_FH(dir), .fromname = dentry->d_name.name, .fromlen = dentry->d_name.len, .pages = &page, .pathlen = len, .sattr = sattr }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_SYMLINK], .rpc_argp = &arg, }; int status = -ENAMETOOLONG; dprintk("NFS call symlink %s\n", dentry->d_name.name); if (len > NFS2_MAXPATHLEN) goto out; fh = nfs_alloc_fhandle(); fattr = nfs_alloc_fattr(); status = -ENOMEM; if (fh == NULL || fattr == NULL) goto out_free; status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_mark_for_revalidate(dir); /* * V2 SYMLINK requests don't return any attributes. Setting the * filehandle size to zero indicates to nfs_instantiate that it * should fill in the data with a LOOKUP call on the wire. */ if (status == 0) status = nfs_instantiate(dentry, fh, fattr, NULL); out_free: nfs_free_fattr(fattr); nfs_free_fhandle(fh); out: dprintk("NFS reply symlink: %d\n", status); return status; } static int nfs_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr) { struct nfs_createdata *data; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_MKDIR], }; int status = -ENOMEM; dprintk("NFS call mkdir %s\n", dentry->d_name.name); data = nfs_alloc_createdata(dir, dentry, sattr); if (data == NULL) goto out; msg.rpc_argp = &data->arg; msg.rpc_resp = &data->res; status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_mark_for_revalidate(dir); if (status == 0) status = nfs_instantiate(dentry, data->res.fh, data->res.fattr, NULL); nfs_free_createdata(data); out: dprintk("NFS reply mkdir: %d\n", status); return status; } static int nfs_proc_rmdir(struct inode *dir, struct qstr *name) { struct nfs_diropargs arg = { .fh = NFS_FH(dir), .name = name->name, .len = name->len }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_RMDIR], .rpc_argp = &arg, }; int status; dprintk("NFS call rmdir %s\n", name->name); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_mark_for_revalidate(dir); dprintk("NFS reply rmdir: %d\n", status); return status; } /* * The READDIR implementation is somewhat hackish - we pass a temporary * buffer to the encode function, which installs it in the receive * the receive iovec. The decode function just parses the reply to make * sure it is syntactically correct; the entries itself are decoded * from nfs_readdir by calling the decode_entry function directly. */ static int nfs_proc_readdir(struct dentry *dentry, struct rpc_cred *cred, u64 cookie, struct page **pages, unsigned int count, int plus) { struct inode *dir = dentry->d_inode; struct nfs_readdirargs arg = { .fh = NFS_FH(dir), .cookie = cookie, .count = count, .pages = pages, }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_READDIR], .rpc_argp = &arg, .rpc_cred = cred, }; int status; dprintk("NFS call readdir %d\n", (unsigned int)cookie); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_invalidate_atime(dir); dprintk("NFS reply readdir: %d\n", status); return status; } static int nfs_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *stat) { struct nfs2_fsstat fsinfo; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_STATFS], .rpc_argp = fhandle, .rpc_resp = &fsinfo, }; int status; dprintk("NFS call statfs\n"); nfs_fattr_init(stat->fattr); status = rpc_call_sync(server->client, &msg, 0); dprintk("NFS reply statfs: %d\n", status); if (status) goto out; stat->tbytes = (u64)fsinfo.blocks * fsinfo.bsize; stat->fbytes = (u64)fsinfo.bfree * fsinfo.bsize; stat->abytes = (u64)fsinfo.bavail * fsinfo.bsize; stat->tfiles = 0; stat->ffiles = 0; stat->afiles = 0; out: return status; } static int nfs_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { struct nfs2_fsstat fsinfo; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_STATFS], .rpc_argp = fhandle, .rpc_resp = &fsinfo, }; int status; dprintk("NFS call fsinfo\n"); nfs_fattr_init(info->fattr); status = rpc_call_sync(server->client, &msg, 0); dprintk("NFS reply fsinfo: %d\n", status); if (status) goto out; info->rtmax = NFS_MAXDATA; info->rtpref = fsinfo.tsize; info->rtmult = fsinfo.bsize; info->wtmax = NFS_MAXDATA; info->wtpref = fsinfo.tsize; info->wtmult = fsinfo.bsize; info->dtpref = fsinfo.tsize; info->maxfilesize = 0x7FFFFFFF; info->lease_time = 0; out: return status; } static int nfs_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_pathconf *info) { info->max_link = 0; info->max_namelen = NFS2_MAXNAMLEN; return 0; } static int nfs_read_done(struct rpc_task *task, struct nfs_read_data *data) { struct inode *inode = data->header->inode; nfs_invalidate_atime(inode); if (task->tk_status >= 0) { nfs_refresh_inode(inode, data->res.fattr); /* Emulate the eof flag, which isn't normally needed in NFSv2 * as it is guaranteed to always return the file attributes */ if (data->args.offset + data->res.count >= data->res.fattr->size) data->res.eof = 1; } return 0; } static void nfs_proc_read_setup(struct nfs_read_data *data, struct rpc_message *msg) { msg->rpc_proc = &nfs_procedures[NFSPROC_READ]; } static void nfs_proc_read_rpc_prepare(struct rpc_task *task, struct nfs_read_data *data) { rpc_call_start(task); } static int nfs_write_done(struct rpc_task *task, struct nfs_write_data *data) { struct inode *inode = data->header->inode; if (task->tk_status >= 0) nfs_post_op_update_inode_force_wcc(inode, data->res.fattr); return 0; } static void nfs_proc_write_setup(struct nfs_write_data *data, struct rpc_message *msg) { /* Note: NFSv2 ignores @stable and always uses NFS_FILE_SYNC */ data->args.stable = NFS_FILE_SYNC; msg->rpc_proc = &nfs_procedures[NFSPROC_WRITE]; }
static int nfs3_proc_link(struct inode *inode, struct inode *dir, struct qstr *name) { struct nfs3_linkargs arg = { .fromfh = NFS_FH(inode), .tofh = NFS_FH(dir), .toname = name->name, .tolen = name->len }; struct nfs3_linkres res; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_LINK], .rpc_argp = &arg, .rpc_resp = &res, }; int status = -ENOMEM; dprintk("NFS call link %s\n", name->name); res.fattr = nfs_alloc_fattr(); res.dir_attr = nfs_alloc_fattr(); if (res.fattr == NULL || res.dir_attr == NULL) goto out; zql_control_test(NFS_SERVER(inode)); status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); nfs_post_op_update_inode(dir, res.dir_attr); nfs_post_op_update_inode(inode, res.fattr); out: nfs_free_fattr(res.dir_attr); nfs_free_fattr(res.fattr); dprintk("NFS reply link: %d\n", status); return status; } static int nfs3_proc_symlink(struct inode *dir, struct dentry *dentry, struct page *page, unsigned int len, struct iattr *sattr) { struct nfs3_createdata *data; int status = -ENOMEM; if (len > NFS3_MAXPATHLEN) return -ENAMETOOLONG; dprintk("NFS call symlink %pd\n", dentry); data = nfs3_alloc_createdata(); if (data == NULL) goto out; data->msg.rpc_proc = &nfs3_procedures[NFS3PROC_SYMLINK]; data->arg.symlink.fromfh = NFS_FH(dir); data->arg.symlink.fromname = dentry->d_name.name; data->arg.symlink.fromlen = dentry->d_name.len; data->arg.symlink.pages = &page; data->arg.symlink.pathlen = len; data->arg.symlink.sattr = sattr; zql_control_test(NFS_SERVER(dir)); status = nfs3_do_create(dir, dentry, data); nfs3_free_createdata(data); out: dprintk("NFS reply symlink: %d\n", status); return status; } static int nfs3_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr) { struct posix_acl *default_acl, *acl; struct nfs3_createdata *data; int status = -ENOMEM; dprintk("NFS call mkdir %pd\n", dentry); data = nfs3_alloc_createdata(); if (data == NULL) goto out; status = posix_acl_create(dir, &sattr->ia_mode, &default_acl, &acl); if (status) goto out; data->msg.rpc_proc = &nfs3_procedures[NFS3PROC_MKDIR]; data->arg.mkdir.fh = NFS_FH(dir); data->arg.mkdir.name = dentry->d_name.name; data->arg.mkdir.len = dentry->d_name.len; data->arg.mkdir.sattr = sattr; zql_control_test(NFS_SERVER(dir)); status = nfs3_do_create(dir, dentry, data); if (status != 0) goto out_release_acls; status = nfs3_proc_setacls(dentry->d_inode, acl, default_acl); out_release_acls: posix_acl_release(acl); posix_acl_release(default_acl); out: nfs3_free_createdata(data); dprintk("NFS reply mkdir: %d\n", status); return status; } static int nfs3_proc_rmdir(struct inode *dir, struct qstr *name) { struct nfs_fattr *dir_attr; struct nfs3_diropargs arg = { .fh = NFS_FH(dir), .name = name->name, .len = name->len }; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_RMDIR], .rpc_argp = &arg, }; int status = -ENOMEM; dprintk("NFS call rmdir %s\n", name->name); dir_attr = nfs_alloc_fattr(); if (dir_attr == NULL) goto out; msg.rpc_resp = dir_attr; zql_control_test(NFS_SERVER(dir)); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_post_op_update_inode(dir, dir_attr); nfs_free_fattr(dir_attr); out: dprintk("NFS reply rmdir: %d\n", status); return status; } /* * The READDIR implementation is somewhat hackish - we pass the user buffer * to the encode function, which installs it in the receive iovec. * The decode function itself doesn't perform any decoding, it just makes * sure the reply is syntactically correct. * * Also note that this implementation handles both plain readdir and * readdirplus. */ static int nfs3_proc_readdir(struct dentry *dentry, struct rpc_cred *cred, u64 cookie, struct page **pages, unsigned int count, int plus) { struct inode *dir = dentry->d_inode; __be32 *verf = NFS_I(dir)->cookieverf; struct nfs3_readdirargs arg = { .fh = NFS_FH(dir), .cookie = cookie, .verf = {verf[0], verf[1]}, .plus = plus, .count = count, .pages = pages }; struct nfs3_readdirres res = { .verf = verf, .plus = plus }; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_READDIR], .rpc_argp = &arg, .rpc_resp = &res, .rpc_cred = cred }; int status = -ENOMEM; if (plus) msg.rpc_proc = &nfs3_procedures[NFS3PROC_READDIRPLUS]; dprintk("NFS call readdir%s %d\n", plus? "plus" : "", (unsigned int) cookie); res.dir_attr = nfs_alloc_fattr(); if (res.dir_attr == NULL) goto out; zql_control_test(NFS_SERVER(dir)); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_invalidate_atime(dir); nfs_refresh_inode(dir, res.dir_attr); nfs_free_fattr(res.dir_attr); out: dprintk("NFS reply readdir%s: %d\n", plus? "plus" : "", status); return status; } static int nfs3_proc_mknod(struct inode *dir, struct dentry *dentry, struct iattr *sattr, dev_t rdev) { struct posix_acl *default_acl, *acl; struct nfs3_createdata *data; int status = -ENOMEM; dprintk("NFS call mknod %pd %u:%u\n", dentry, MAJOR(rdev), MINOR(rdev)); data = nfs3_alloc_createdata(); if (data == NULL) goto out; status = posix_acl_create(dir, &sattr->ia_mode, &default_acl, &acl); if (status) goto out; data->msg.rpc_proc = &nfs3_procedures[NFS3PROC_MKNOD]; data->arg.mknod.fh = NFS_FH(dir); data->arg.mknod.name = dentry->d_name.name; data->arg.mknod.len = dentry->d_name.len; data->arg.mknod.sattr = sattr; data->arg.mknod.rdev = rdev; switch (sattr->ia_mode & S_IFMT) { case S_IFBLK: data->arg.mknod.type = NF3BLK; break; case S_IFCHR: data->arg.mknod.type = NF3CHR; break; case S_IFIFO: data->arg.mknod.type = NF3FIFO; break; case S_IFSOCK: data->arg.mknod.type = NF3SOCK; break; default: status = -EINVAL; goto out; } zql_control_test(NFS_SERVER(dir)); status = nfs3_do_create(dir, dentry, data); if (status != 0) goto out_release_acls; status = nfs3_proc_setacls(dentry->d_inode, acl, default_acl); out_release_acls: posix_acl_release(acl); posix_acl_release(default_acl); out: nfs3_free_createdata(data); dprintk("NFS reply mknod: %d\n", status); return status; } static int nfs3_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *stat) { struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_FSSTAT], .rpc_argp = fhandle, .rpc_resp = stat, }; int status; dprintk("NFS call fsstat\n"); nfs_fattr_init(stat->fattr); zql_control_test(server); status = rpc_call_sync(server->client, &msg, 0); dprintk("NFS reply fsstat: %d\n", status); return status; } static int do_proc_fsinfo(struct rpc_clnt *client, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_FSINFO], .rpc_argp = fhandle, .rpc_resp = info, }; int status; dprintk("NFS call fsinfo\n"); nfs_fattr_init(info->fattr); status = rpc_call_sync(client, &msg, 0); dprintk("NFS reply fsinfo: %d\n", status); return status; } /* * Bare-bones access to fsinfo: this is for nfs_get_root/nfs_get_sb via * nfs_create_server */ static int nfs3_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { int status; zql_control_test(server); status = do_proc_fsinfo(server->client, fhandle, info); if (status && server->nfs_client->cl_rpcclient != server->client) status = do_proc_fsinfo(server->nfs_client->cl_rpcclient, fhandle, info); return status; }
static int nfs3_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr, struct nfs4_label *label) { struct nfs3_diropargs arg = { .fh = NFS_FH(dir), .name = name->name, .len = name->len }; struct nfs3_diropres res = { .fh = fhandle, .fattr = fattr }; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_LOOKUP], .rpc_argp = &arg, .rpc_resp = &res, }; int status; dprintk("NFS call lookup %s\n", name->name); res.dir_attr = nfs_alloc_fattr(); if (res.dir_attr == NULL) return -ENOMEM; nfs_fattr_init(fattr); zql_control_test(NFS_SERVER(dir)); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_refresh_inode(dir, res.dir_attr); if (status >= 0 && !(fattr->valid & NFS_ATTR_FATTR)) { msg.rpc_proc = &nfs3_procedures[NFS3PROC_GETATTR]; msg.rpc_argp = fhandle; msg.rpc_resp = fattr; status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); } nfs_free_fattr(res.dir_attr); dprintk("NFS reply lookup: %d\n", status); return status; } static int nfs3_proc_access(struct inode *inode, struct nfs_access_entry *entry) { struct nfs3_accessargs arg = { .fh = NFS_FH(inode), }; struct nfs3_accessres res; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_ACCESS], .rpc_argp = &arg, .rpc_resp = &res, .rpc_cred = entry->cred, }; int mode = entry->mask; int status = -ENOMEM; dprintk("NFS call access\n"); if (mode & MAY_READ) arg.access |= NFS3_ACCESS_READ; if (S_ISDIR(inode->i_mode)) { if (mode & MAY_WRITE) arg.access |= NFS3_ACCESS_MODIFY | NFS3_ACCESS_EXTEND | NFS3_ACCESS_DELETE; if (mode & MAY_EXEC) arg.access |= NFS3_ACCESS_LOOKUP; } else { if (mode & MAY_WRITE) arg.access |= NFS3_ACCESS_MODIFY | NFS3_ACCESS_EXTEND; if (mode & MAY_EXEC) arg.access |= NFS3_ACCESS_EXECUTE; } res.fattr = nfs_alloc_fattr(); if (res.fattr == NULL) goto out; zql_control_test(NFS_SERVER(inode)); status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); nfs_refresh_inode(inode, res.fattr); if (status == 0) { entry->mask = 0; if (res.access & NFS3_ACCESS_READ) entry->mask |= MAY_READ; if (res.access & (NFS3_ACCESS_MODIFY | NFS3_ACCESS_EXTEND | NFS3_ACCESS_DELETE)) entry->mask |= MAY_WRITE; if (res.access & (NFS3_ACCESS_LOOKUP|NFS3_ACCESS_EXECUTE)) entry->mask |= MAY_EXEC; } nfs_free_fattr(res.fattr); out: dprintk("NFS reply access: %d\n", status); return status; } static int nfs3_proc_readlink(struct inode *inode, struct page *page, unsigned int pgbase, unsigned int pglen) { struct nfs_fattr *fattr; struct nfs3_readlinkargs args = { .fh = NFS_FH(inode), .pgbase = pgbase, .pglen = pglen, .pages = &page }; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_READLINK], .rpc_argp = &args, }; int status = -ENOMEM; dprintk("NFS call readlink\n"); fattr = nfs_alloc_fattr(); if (fattr == NULL) goto out; msg.rpc_resp = fattr; zql_control_test(NFS_SERVER(inode)); status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); nfs_refresh_inode(inode, fattr); nfs_free_fattr(fattr); out: dprintk("NFS reply readlink: %d\n", status); return status; } struct nfs3_createdata { struct rpc_message msg; union { struct nfs3_createargs create; struct nfs3_mkdirargs mkdir; struct nfs3_symlinkargs symlink; struct nfs3_mknodargs mknod; } arg; struct nfs3_diropres res; struct nfs_fh fh; struct nfs_fattr fattr; struct nfs_fattr dir_attr; }; static struct nfs3_createdata *nfs3_alloc_createdata(void) { struct nfs3_createdata *data; data = kzalloc(sizeof(*data), GFP_KERNEL); if (data != NULL) { data->msg.rpc_argp = &data->arg; data->msg.rpc_resp = &data->res; data->res.fh = &data->fh; data->res.fattr = &data->fattr; data->res.dir_attr = &data->dir_attr; nfs_fattr_init(data->res.fattr); nfs_fattr_init(data->res.dir_attr); } return data; } static int nfs3_do_create(struct inode *dir, struct dentry *dentry, struct nfs3_createdata *data) { int status; status = rpc_call_sync(NFS_CLIENT(dir), &data->msg, 0); nfs_post_op_update_inode(dir, data->res.dir_attr); if (status == 0) status = nfs_instantiate(dentry, data->res.fh, data->res.fattr, NULL); return status; } static void nfs3_free_createdata(struct nfs3_createdata *data) { kfree(data); }
static int nfs_proc_remove(struct inode *dir, struct qstr *name) { struct nfs_removeargs arg = { .fh = NFS_FH(dir), .name.len = name->len, .name.name = name->name, }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_REMOVE], .rpc_argp = &arg, }; int status; dprintk("NFS call remove %s\n", name->name); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_mark_for_revalidate(dir); dprintk("NFS reply remove: %d\n", status); return status; } static void nfs_proc_unlink_setup(struct rpc_message *msg, struct inode *dir) { msg->rpc_proc = &nfs_procedures[NFSPROC_REMOVE]; } static int nfs_proc_unlink_done(struct rpc_task *task, struct inode *dir) { if (nfs_async_handle_expired_key(task)) return 0; nfs_mark_for_revalidate(dir); return 1; } static void nfs_proc_rename_setup(struct rpc_message *msg, struct inode *dir) { msg->rpc_proc = &nfs_procedures[NFSPROC_RENAME]; } static int nfs_proc_rename_done(struct rpc_task *task, struct inode *old_dir, struct inode *new_dir) { if (nfs_async_handle_expired_key(task)) return 0; nfs_mark_for_revalidate(old_dir); nfs_mark_for_revalidate(new_dir); return 1; } static int nfs_proc_rename(struct inode *old_dir, struct qstr *old_name, struct inode *new_dir, struct qstr *new_name) { struct nfs_renameargs arg = { .old_dir = NFS_FH(old_dir), .old_name = old_name, .new_dir = NFS_FH(new_dir), .new_name = new_name, }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_RENAME], .rpc_argp = &arg, }; int status; dprintk("NFS call rename %s -> %s\n", old_name->name, new_name->name); status = rpc_call_sync(NFS_CLIENT(old_dir), &msg, 0); nfs_mark_for_revalidate(old_dir); nfs_mark_for_revalidate(new_dir); dprintk("NFS reply rename: %d\n", status); return status; } static int nfs_proc_link(struct inode *inode, struct inode *dir, struct qstr *name) { struct nfs_linkargs arg = { .fromfh = NFS_FH(inode), .tofh = NFS_FH(dir), .toname = name->name, .tolen = name->len }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_LINK], .rpc_argp = &arg, }; int status; dprintk("NFS call link %s\n", name->name); status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); nfs_mark_for_revalidate(inode); nfs_mark_for_revalidate(dir); dprintk("NFS reply link: %d\n", status); return status; } static int nfs_proc_symlink(struct inode *dir, struct dentry *dentry, struct page *page, unsigned int len, struct iattr *sattr) { struct nfs_fh *fh; struct nfs_fattr *fattr; struct nfs_symlinkargs arg = { .fromfh = NFS_FH(dir), .fromname = dentry->d_name.name, .fromlen = dentry->d_name.len, .pages = &page, .pathlen = len, .sattr = sattr }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_SYMLINK], .rpc_argp = &arg, }; int status = -ENAMETOOLONG; dprintk("NFS call symlink %s\n", dentry->d_name.name); if (len > NFS2_MAXPATHLEN) goto out; fh = nfs_alloc_fhandle(); fattr = nfs_alloc_fattr(); status = -ENOMEM; if (fh == NULL || fattr == NULL) goto out_free; status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_mark_for_revalidate(dir); /* * V2 SYMLINK requests don't return any attributes. Setting the * filehandle size to zero indicates to nfs_instantiate that it * should fill in the data with a LOOKUP call on the wire. */ if (status == 0) status = nfs_instantiate(dentry, fh, fattr); out_free: nfs_free_fattr(fattr); nfs_free_fhandle(fh); out: dprintk("NFS reply symlink: %d\n", status); return status; } static int nfs_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr) { struct nfs_createdata *data; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_MKDIR], }; int status = -ENOMEM; dprintk("NFS call mkdir %s\n", dentry->d_name.name); data = nfs_alloc_createdata(dir, dentry, sattr); if (data == NULL) goto out; msg.rpc_argp = &data->arg; msg.rpc_resp = &data->res; status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_mark_for_revalidate(dir); if (status == 0) status = nfs_instantiate(dentry, data->res.fh, data->res.fattr); nfs_free_createdata(data); out: dprintk("NFS reply mkdir: %d\n", status); return status; } static int nfs_proc_rmdir(struct inode *dir, struct qstr *name) { struct nfs_diropargs arg = { .fh = NFS_FH(dir), .name = name->name, .len = name->len }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_RMDIR], .rpc_argp = &arg, }; int status; dprintk("NFS call rmdir %s\n", name->name); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_mark_for_revalidate(dir); dprintk("NFS reply rmdir: %d\n", status); return status; } /* * The READDIR implementation is somewhat hackish - we pass a temporary * buffer to the encode function, which installs it in the receive * the receive iovec. The decode function just parses the reply to make * sure it is syntactically correct; the entries itself are decoded * from nfs_readdir by calling the decode_entry function directly. */ static int nfs_proc_readdir(struct dentry *dentry, struct rpc_cred *cred, u64 cookie, struct page **pages, unsigned int count, int plus) { struct inode *dir = dentry->d_inode; struct nfs_readdirargs arg = { .fh = NFS_FH(dir), .cookie = cookie, .count = count, .pages = pages, }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_READDIR], .rpc_argp = &arg, .rpc_cred = cred, }; int status; dprintk("NFS call readdir %d\n", (unsigned int)cookie); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_invalidate_atime(dir); dprintk("NFS reply readdir: %d\n", status); return status; } static int nfs_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *stat) { struct nfs2_fsstat fsinfo; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_STATFS], .rpc_argp = fhandle, .rpc_resp = &fsinfo, }; int status; dprintk("NFS call statfs\n"); nfs_fattr_init(stat->fattr); status = rpc_call_sync(server->client, &msg, 0); dprintk("NFS reply statfs: %d\n", status); if (status) goto out; stat->tbytes = (u64)fsinfo.blocks * fsinfo.bsize; stat->fbytes = (u64)fsinfo.bfree * fsinfo.bsize; stat->abytes = (u64)fsinfo.bavail * fsinfo.bsize; stat->tfiles = 0; stat->ffiles = 0; stat->afiles = 0; out: return status; } static int nfs_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { struct nfs2_fsstat fsinfo; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_STATFS], .rpc_argp = fhandle, .rpc_resp = &fsinfo, }; int status; dprintk("NFS call fsinfo\n"); nfs_fattr_init(info->fattr); status = rpc_call_sync(server->client, &msg, 0); dprintk("NFS reply fsinfo: %d\n", status); if (status) goto out; info->rtmax = NFS_MAXDATA; info->rtpref = fsinfo.tsize; info->rtmult = fsinfo.bsize; info->wtmax = NFS_MAXDATA; info->wtpref = fsinfo.tsize; info->wtmult = fsinfo.bsize; info->dtpref = fsinfo.tsize; info->maxfilesize = 0x7FFFFFFF; info->lease_time = 0; out: return status; } static int nfs_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_pathconf *info) { info->max_link = 0; info->max_namelen = NFS2_MAXNAMLEN; return 0; } static int nfs_read_done(struct rpc_task *task, struct nfs_read_data *data) { if (nfs_async_handle_expired_key(task)) return -EAGAIN; nfs_invalidate_atime(data->inode); if (task->tk_status >= 0) { nfs_refresh_inode(data->inode, data->res.fattr); /* Emulate the eof flag, which isn't normally needed in NFSv2 * as it is guaranteed to always return the file attributes */ if (data->args.offset + data->args.count >= data->res.fattr->size) data->res.eof = 1; } return 0; } static void nfs_proc_read_setup(struct nfs_read_data *data, struct rpc_message *msg) { msg->rpc_proc = &nfs_procedures[NFSPROC_READ]; } static int nfs_write_done(struct rpc_task *task, struct nfs_write_data *data) { if (nfs_async_handle_expired_key(task)) return -EAGAIN; if (task->tk_status >= 0) nfs_post_op_update_inode_force_wcc(data->inode, data->res.fattr); return 0; } static void nfs_proc_write_setup(struct nfs_write_data *data, struct rpc_message *msg) { /* Note: NFSv2 ignores @stable and always uses NFS_FILE_SYNC */ data->args.stable = NFS_FILE_SYNC; msg->rpc_proc = &nfs_procedures[NFSPROC_WRITE]; } static void nfs_proc_commit_setup(struct nfs_write_data *data, struct rpc_message *msg) { BUG(); } static int nfs_proc_lock(struct file *filp, int cmd, struct file_lock *fl) { struct inode *inode = filp->f_path.dentry->d_inode; return nlmclnt_proc(NFS_SERVER(inode)->nlm_host, cmd, fl); } /* Helper functions for NFS lock bounds checking */ #define NFS_LOCK32_OFFSET_MAX ((__s32)0x7fffffffUL) static int nfs_lock_check_bounds(const struct file_lock *fl) { __s32 start, end; start = (__s32)fl->fl_start; if ((loff_t)start != fl->fl_start) goto out_einval; if (fl->fl_end != OFFSET_MAX) { end = (__s32)fl->fl_end; if ((loff_t)end != fl->fl_end) goto out_einval; } else end = NFS_LOCK32_OFFSET_MAX; if (start < 0 || start > end) goto out_einval; return 0; out_einval: return -EINVAL; } const struct nfs_rpc_ops nfs_v2_clientops = { .version = 2, /* protocol version */ .dentry_ops = &nfs_dentry_operations, .dir_inode_ops = &nfs_dir_inode_operations, .file_inode_ops = &nfs_file_inode_operations, .getroot = nfs_proc_get_root, .getattr = nfs_proc_getattr, .setattr = nfs_proc_setattr, .lookup = nfs_proc_lookup, .access = NULL, /* access */ .readlink = nfs_proc_readlink, .create = nfs_proc_create, .remove = nfs_proc_remove, .unlink_setup = nfs_proc_unlink_setup, .unlink_done = nfs_proc_unlink_done, .rename = nfs_proc_rename, .rename_setup = nfs_proc_rename_setup, .rename_done = nfs_proc_rename_done, .link = nfs_proc_link, .symlink = nfs_proc_symlink, .mkdir = nfs_proc_mkdir, .rmdir = nfs_proc_rmdir, .readdir = nfs_proc_readdir, .mknod = nfs_proc_mknod, .statfs = nfs_proc_statfs, .fsinfo = nfs_proc_fsinfo, .pathconf = nfs_proc_pathconf, .decode_dirent = nfs2_decode_dirent, .read_setup = nfs_proc_read_setup, .read_done = nfs_read_done, .write_setup = nfs_proc_write_setup, .write_done = nfs_write_done, .commit_setup = nfs_proc_commit_setup, .lock = nfs_proc_lock, .lock_check_bounds = nfs_lock_check_bounds, .close_context = nfs_close_context, .init_client = nfs_init_client, };
struct posix_acl *nfs3_get_acl(struct inode *inode, int type) { struct nfs_server *server = NFS_SERVER(inode); struct page *pages[NFSACL_MAXPAGES] = { }; struct nfs3_getaclargs args = { .fh = NFS_FH(inode), /* The xdr layer may allocate pages here. */ .pages = pages, }; struct nfs3_getaclres res = { NULL, }; struct rpc_message msg = { .rpc_argp = &args, .rpc_resp = &res, }; int status, count; if (!nfs_server_capable(inode, NFS_CAP_ACLS)) return ERR_PTR(-EOPNOTSUPP); status = nfs_revalidate_inode(server, inode); if (status < 0) return ERR_PTR(status); /* * Only get the access acl when explicitly requested: We don't * need it for access decisions, and only some applications use * it. Applications which request the access acl first are not * penalized from this optimization. */ if (type == ACL_TYPE_ACCESS) args.mask |= NFS_ACLCNT|NFS_ACL; if (S_ISDIR(inode->i_mode)) args.mask |= NFS_DFACLCNT|NFS_DFACL; if (args.mask == 0) return NULL; dprintk("NFS call getacl\n"); msg.rpc_proc = &server->client_acl->cl_procinfo[ACLPROC3_GETACL]; res.fattr = nfs_alloc_fattr(); if (res.fattr == NULL) return ERR_PTR(-ENOMEM); status = rpc_call_sync(server->client_acl, &msg, 0); dprintk("NFS reply getacl: %d\n", status); /* pages may have been allocated at the xdr layer. */ for (count = 0; count < NFSACL_MAXPAGES && args.pages[count]; count++) __free_page(args.pages[count]); switch (status) { case 0: status = nfs_refresh_inode(inode, res.fattr); break; case -EPFNOSUPPORT: case -EPROTONOSUPPORT: dprintk("NFS_V3_ACL extension not supported; disabling\n"); server->caps &= ~NFS_CAP_ACLS; case -ENOTSUPP: status = -EOPNOTSUPP; default: goto getout; } if ((args.mask & res.mask) != args.mask) { status = -EIO; goto getout; } if (res.acl_access != NULL) { if ((posix_acl_equiv_mode(res.acl_access, NULL) == 0) || res.acl_access->a_count == 0) { posix_acl_release(res.acl_access); res.acl_access = NULL; } } if (res.mask & NFS_ACL) set_cached_acl(inode, ACL_TYPE_ACCESS, res.acl_access); else forget_cached_acl(inode, ACL_TYPE_ACCESS); if (res.mask & NFS_DFACL) set_cached_acl(inode, ACL_TYPE_DEFAULT, res.acl_default); else forget_cached_acl(inode, ACL_TYPE_DEFAULT); nfs_free_fattr(res.fattr); if (type == ACL_TYPE_ACCESS) { posix_acl_release(res.acl_default); return res.acl_access; } else { posix_acl_release(res.acl_access); return res.acl_default; } getout: posix_acl_release(res.acl_access); posix_acl_release(res.acl_default); nfs_free_fattr(res.fattr); return ERR_PTR(status); }
if (args.len > NFS_ACL_INLINE_BUFSIZE) { unsigned int npages = 1 + ((args.len - 1) >> PAGE_SHIFT); status = -ENOMEM; do { args.pages[args.npages] = alloc_page(GFP_KERNEL); if (args.pages[args.npages] == NULL) goto out_freepages; args.npages++; } while (args.npages < npages); } dprintk("NFS call setacl\n"); status = -ENOMEM; fattr = nfs_alloc_fattr(); if (fattr == NULL) goto out_freepages; msg.rpc_proc = &server->client_acl->cl_procinfo[ACLPROC3_SETACL]; msg.rpc_resp = fattr; status = rpc_call_sync(server->client_acl, &msg, 0); nfs_access_zap_cache(inode); nfs_zap_acl_cache(inode); dprintk("NFS reply setacl: %d\n", status); switch (status) { case 0: status = nfs_refresh_inode(inode, fattr); set_cached_acl(inode, ACL_TYPE_ACCESS, acl); set_cached_acl(inode, ACL_TYPE_DEFAULT, dfacl);
static int nfs_proc_link(struct inode *inode, struct inode *dir, struct qstr *name) { struct nfs_linkargs arg = { .fromfh = NFS_FH(inode), .tofh = NFS_FH(dir), .toname = name->name, .tolen = name->len }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_LINK], .rpc_argp = &arg, }; int status; dprintk("NFS call link %s\n", name->name); status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); nfs_mark_for_revalidate(inode); nfs_mark_for_revalidate(dir); dprintk("NFS reply link: %d\n", status); return status; } static int nfs_proc_symlink(struct inode *dir, struct dentry *dentry, struct page *page, unsigned int len, struct iattr *sattr) { struct nfs_fh *fh; struct nfs_fattr *fattr; struct nfs_symlinkargs arg = { .fromfh = NFS_FH(dir), .fromname = dentry->d_name.name, .fromlen = dentry->d_name.len, .pages = &page, .pathlen = len, .sattr = sattr }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_SYMLINK], .rpc_argp = &arg, }; int status = -ENAMETOOLONG; dprintk("NFS call symlink %s\n", dentry->d_name.name); if (len > NFS2_MAXPATHLEN) goto out; fh = nfs_alloc_fhandle(); fattr = nfs_alloc_fattr(); status = -ENOMEM; if (fh == NULL || fattr == NULL) goto out_free; status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_mark_for_revalidate(dir); /* */ if (status == 0) status = nfs_instantiate(dentry, fh, fattr); out_free: nfs_free_fattr(fattr); nfs_free_fhandle(fh); out: dprintk("NFS reply symlink: %d\n", status); return status; } static int nfs_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr) { struct nfs_createdata *data; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_MKDIR], }; int status = -ENOMEM; dprintk("NFS call mkdir %s\n", dentry->d_name.name); data = nfs_alloc_createdata(dir, dentry, sattr); if (data == NULL) goto out; msg.rpc_argp = &data->arg; msg.rpc_resp = &data->res; status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_mark_for_revalidate(dir); if (status == 0) status = nfs_instantiate(dentry, data->res.fh, data->res.fattr); nfs_free_createdata(data); out: dprintk("NFS reply mkdir: %d\n", status); return status; } static int nfs_proc_rmdir(struct inode *dir, struct qstr *name) { struct nfs_diropargs arg = { .fh = NFS_FH(dir), .name = name->name, .len = name->len }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_RMDIR], .rpc_argp = &arg, }; int status; dprintk("NFS call rmdir %s\n", name->name); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_mark_for_revalidate(dir); dprintk("NFS reply rmdir: %d\n", status); return status; } /* */ static int nfs_proc_readdir(struct dentry *dentry, struct rpc_cred *cred, u64 cookie, struct page **pages, unsigned int count, int plus) { struct inode *dir = dentry->d_inode; struct nfs_readdirargs arg = { .fh = NFS_FH(dir), .cookie = cookie, .count = count, .pages = pages, }; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_READDIR], .rpc_argp = &arg, .rpc_cred = cred, }; int status; dprintk("NFS call readdir %d\n", (unsigned int)cookie); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_invalidate_atime(dir); dprintk("NFS reply readdir: %d\n", status); return status; } static int nfs_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *stat) { struct nfs2_fsstat fsinfo; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_STATFS], .rpc_argp = fhandle, .rpc_resp = &fsinfo, }; int status; dprintk("NFS call statfs\n"); nfs_fattr_init(stat->fattr); status = rpc_call_sync(server->client, &msg, 0); dprintk("NFS reply statfs: %d\n", status); if (status) goto out; stat->tbytes = (u64)fsinfo.blocks * fsinfo.bsize; stat->fbytes = (u64)fsinfo.bfree * fsinfo.bsize; stat->abytes = (u64)fsinfo.bavail * fsinfo.bsize; stat->tfiles = 0; stat->ffiles = 0; stat->afiles = 0; out: return status; } static int nfs_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { struct nfs2_fsstat fsinfo; struct rpc_message msg = { .rpc_proc = &nfs_procedures[NFSPROC_STATFS], .rpc_argp = fhandle, .rpc_resp = &fsinfo, }; int status; dprintk("NFS call fsinfo\n"); nfs_fattr_init(info->fattr); status = rpc_call_sync(server->client, &msg, 0); dprintk("NFS reply fsinfo: %d\n", status); if (status) goto out; info->rtmax = NFS_MAXDATA; info->rtpref = fsinfo.tsize; info->rtmult = fsinfo.bsize; info->wtmax = NFS_MAXDATA; info->wtpref = fsinfo.tsize; info->wtmult = fsinfo.bsize; info->dtpref = fsinfo.tsize; info->maxfilesize = 0x7FFFFFFF; info->lease_time = 0; out: return status; } static int nfs_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_pathconf *info) { info->max_link = 0; info->max_namelen = NFS2_MAXNAMLEN; return 0; } static int nfs_read_done(struct rpc_task *task, struct nfs_read_data *data) { if (nfs_async_handle_expired_key(task)) return -EAGAIN; nfs_invalidate_atime(data->inode); if (task->tk_status >= 0) { nfs_refresh_inode(data->inode, data->res.fattr); /* */ if (data->args.offset + data->args.count >= data->res.fattr->size) data->res.eof = 1; } return 0; } static void nfs_proc_read_setup(struct nfs_read_data *data, struct rpc_message *msg) { msg->rpc_proc = &nfs_procedures[NFSPROC_READ]; } static void nfs_proc_read_rpc_prepare(struct rpc_task *task, struct nfs_read_data *data) { rpc_call_start(task); } static int nfs_write_done(struct rpc_task *task, struct nfs_write_data *data) { if (nfs_async_handle_expired_key(task)) return -EAGAIN; if (task->tk_status >= 0) nfs_post_op_update_inode_force_wcc(data->inode, data->res.fattr); return 0; } static void nfs_proc_write_setup(struct nfs_write_data *data, struct rpc_message *msg) { /* */ data->args.stable = NFS_FILE_SYNC; msg->rpc_proc = &nfs_procedures[NFSPROC_WRITE]; }
static int nfs3_proc_remove(struct inode *dir, struct qstr *name) { struct nfs_removeargs arg = { .fh = NFS_FH(dir), .name.len = name->len, .name.name = name->name, }; struct nfs_removeres res; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_REMOVE], .rpc_argp = &arg, .rpc_resp = &res, }; int status = -ENOMEM; dprintk("NFS call remove %s\n", name->name); res.dir_attr = nfs_alloc_fattr(); if (res.dir_attr == NULL) goto out; status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_post_op_update_inode(dir, res.dir_attr); nfs_free_fattr(res.dir_attr); out: dprintk("NFS reply remove: %d\n", status); return status; } static void nfs3_proc_unlink_setup(struct rpc_message *msg, struct inode *dir) { msg->rpc_proc = &nfs3_procedures[NFS3PROC_REMOVE]; } static int nfs3_proc_unlink_done(struct rpc_task *task, struct inode *dir) { struct nfs_removeres *res; if (nfs3_async_handle_jukebox(task, dir)) return 0; res = task->tk_msg.rpc_resp; nfs_post_op_update_inode(dir, res->dir_attr); return 1; } static void nfs3_proc_rename_setup(struct rpc_message *msg, struct inode *dir) { msg->rpc_proc = &nfs3_procedures[NFS3PROC_RENAME]; } static int nfs3_proc_rename_done(struct rpc_task *task, struct inode *old_dir, struct inode *new_dir) { struct nfs_renameres *res; if (nfs3_async_handle_jukebox(task, old_dir)) return 0; res = task->tk_msg.rpc_resp; nfs_post_op_update_inode(old_dir, res->old_fattr); nfs_post_op_update_inode(new_dir, res->new_fattr); return 1; } static int nfs3_proc_rename(struct inode *old_dir, struct qstr *old_name, struct inode *new_dir, struct qstr *new_name) { struct nfs_renameargs arg = { .old_dir = NFS_FH(old_dir), .old_name = old_name, .new_dir = NFS_FH(new_dir), .new_name = new_name, }; struct nfs_renameres res; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_RENAME], .rpc_argp = &arg, .rpc_resp = &res, }; int status = -ENOMEM; dprintk("NFS call rename %s -> %s\n", old_name->name, new_name->name); res.old_fattr = nfs_alloc_fattr(); res.new_fattr = nfs_alloc_fattr(); if (res.old_fattr == NULL || res.new_fattr == NULL) goto out; status = rpc_call_sync(NFS_CLIENT(old_dir), &msg, 0); nfs_post_op_update_inode(old_dir, res.old_fattr); nfs_post_op_update_inode(new_dir, res.new_fattr); out: nfs_free_fattr(res.old_fattr); nfs_free_fattr(res.new_fattr); dprintk("NFS reply rename: %d\n", status); return status; } static int nfs3_proc_link(struct inode *inode, struct inode *dir, struct qstr *name) { struct nfs3_linkargs arg = { .fromfh = NFS_FH(inode), .tofh = NFS_FH(dir), .toname = name->name, .tolen = name->len }; struct nfs3_linkres res; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_LINK], .rpc_argp = &arg, .rpc_resp = &res, }; int status = -ENOMEM; dprintk("NFS call link %s\n", name->name); res.fattr = nfs_alloc_fattr(); res.dir_attr = nfs_alloc_fattr(); if (res.fattr == NULL || res.dir_attr == NULL) goto out; status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); nfs_post_op_update_inode(dir, res.dir_attr); nfs_post_op_update_inode(inode, res.fattr); out: nfs_free_fattr(res.dir_attr); nfs_free_fattr(res.fattr); dprintk("NFS reply link: %d\n", status); return status; } static int nfs3_proc_symlink(struct inode *dir, struct dentry *dentry, struct page *page, unsigned int len, struct iattr *sattr) { struct nfs3_createdata *data; int status = -ENOMEM; if (len > NFS3_MAXPATHLEN) return -ENAMETOOLONG; dprintk("NFS call symlink %s\n", dentry->d_name.name); data = nfs3_alloc_createdata(); if (data == NULL) goto out; data->msg.rpc_proc = &nfs3_procedures[NFS3PROC_SYMLINK]; data->arg.symlink.fromfh = NFS_FH(dir); data->arg.symlink.fromname = dentry->d_name.name; data->arg.symlink.fromlen = dentry->d_name.len; data->arg.symlink.pages = &page; data->arg.symlink.pathlen = len; data->arg.symlink.sattr = sattr; status = nfs3_do_create(dir, dentry, data); nfs3_free_createdata(data); out: dprintk("NFS reply symlink: %d\n", status); return status; } static int nfs3_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr) { struct nfs3_createdata *data; int mode = sattr->ia_mode; int status = -ENOMEM; dprintk("NFS call mkdir %s\n", dentry->d_name.name); sattr->ia_mode &= ~current_umask(); data = nfs3_alloc_createdata(); if (data == NULL) goto out; data->msg.rpc_proc = &nfs3_procedures[NFS3PROC_MKDIR]; data->arg.mkdir.fh = NFS_FH(dir); data->arg.mkdir.name = dentry->d_name.name; data->arg.mkdir.len = dentry->d_name.len; data->arg.mkdir.sattr = sattr; status = nfs3_do_create(dir, dentry, data); if (status != 0) goto out; status = nfs3_proc_set_default_acl(dir, dentry->d_inode, mode); out: nfs3_free_createdata(data); dprintk("NFS reply mkdir: %d\n", status); return status; } static int nfs3_proc_rmdir(struct inode *dir, struct qstr *name) { struct nfs_fattr *dir_attr; struct nfs3_diropargs arg = { .fh = NFS_FH(dir), .name = name->name, .len = name->len }; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_RMDIR], .rpc_argp = &arg, }; int status = -ENOMEM; dprintk("NFS call rmdir %s\n", name->name); dir_attr = nfs_alloc_fattr(); if (dir_attr == NULL) goto out; msg.rpc_resp = dir_attr; status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_post_op_update_inode(dir, dir_attr); nfs_free_fattr(dir_attr); out: dprintk("NFS reply rmdir: %d\n", status); return status; } /* * The READDIR implementation is somewhat hackish - we pass the user buffer * to the encode function, which installs it in the receive iovec. * The decode function itself doesn't perform any decoding, it just makes * sure the reply is syntactically correct. * * Also note that this implementation handles both plain readdir and * readdirplus. */ static int nfs3_proc_readdir(struct dentry *dentry, struct rpc_cred *cred, u64 cookie, struct page **pages, unsigned int count, int plus) { struct inode *dir = dentry->d_inode; __be32 *verf = NFS_COOKIEVERF(dir); struct nfs3_readdirargs arg = { .fh = NFS_FH(dir), .cookie = cookie, .verf = {verf[0], verf[1]}, .plus = plus, .count = count, .pages = pages }; struct nfs3_readdirres res = { .verf = verf, .plus = plus }; struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_READDIR], .rpc_argp = &arg, .rpc_resp = &res, .rpc_cred = cred }; int status = -ENOMEM; if (plus) msg.rpc_proc = &nfs3_procedures[NFS3PROC_READDIRPLUS]; dprintk("NFS call readdir%s %d\n", plus? "plus" : "", (unsigned int) cookie); res.dir_attr = nfs_alloc_fattr(); if (res.dir_attr == NULL) goto out; status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); nfs_invalidate_atime(dir); nfs_refresh_inode(dir, res.dir_attr); nfs_free_fattr(res.dir_attr); out: dprintk("NFS reply readdir%s: %d\n", plus? "plus" : "", status); return status; } static int nfs3_proc_mknod(struct inode *dir, struct dentry *dentry, struct iattr *sattr, dev_t rdev) { struct nfs3_createdata *data; mode_t mode = sattr->ia_mode; int status = -ENOMEM; dprintk("NFS call mknod %s %u:%u\n", dentry->d_name.name, MAJOR(rdev), MINOR(rdev)); sattr->ia_mode &= ~current_umask(); data = nfs3_alloc_createdata(); if (data == NULL) goto out; data->msg.rpc_proc = &nfs3_procedures[NFS3PROC_MKNOD]; data->arg.mknod.fh = NFS_FH(dir); data->arg.mknod.name = dentry->d_name.name; data->arg.mknod.len = dentry->d_name.len; data->arg.mknod.sattr = sattr; data->arg.mknod.rdev = rdev; switch (sattr->ia_mode & S_IFMT) { case S_IFBLK: data->arg.mknod.type = NF3BLK; break; case S_IFCHR: data->arg.mknod.type = NF3CHR; break; case S_IFIFO: data->arg.mknod.type = NF3FIFO; break; case S_IFSOCK: data->arg.mknod.type = NF3SOCK; break; default: status = -EINVAL; goto out; } status = nfs3_do_create(dir, dentry, data); if (status != 0) goto out; status = nfs3_proc_set_default_acl(dir, dentry->d_inode, mode); out: nfs3_free_createdata(data); dprintk("NFS reply mknod: %d\n", status); return status; } static int nfs3_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *stat) { struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_FSSTAT], .rpc_argp = fhandle, .rpc_resp = stat, }; int status; dprintk("NFS call fsstat\n"); nfs_fattr_init(stat->fattr); status = rpc_call_sync(server->client, &msg, 0); dprintk("NFS reply fsstat: %d\n", status); return status; } static int do_proc_fsinfo(struct rpc_clnt *client, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_FSINFO], .rpc_argp = fhandle, .rpc_resp = info, }; int status; dprintk("NFS call fsinfo\n"); nfs_fattr_init(info->fattr); status = rpc_call_sync(client, &msg, 0); dprintk("NFS reply fsinfo: %d\n", status); return status; } /* * Bare-bones access to fsinfo: this is for nfs_get_root/nfs_get_sb via * nfs_create_server */ static int nfs3_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { int status; status = do_proc_fsinfo(server->client, fhandle, info); if (status && server->nfs_client->cl_rpcclient != server->client) status = do_proc_fsinfo(server->nfs_client->cl_rpcclient, fhandle, info); return status; } static int nfs3_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_pathconf *info) { struct rpc_message msg = { .rpc_proc = &nfs3_procedures[NFS3PROC_PATHCONF], .rpc_argp = fhandle, .rpc_resp = info, }; int status; dprintk("NFS call pathconf\n"); nfs_fattr_init(info->fattr); status = rpc_call_sync(server->client, &msg, 0); dprintk("NFS reply pathconf: %d\n", status); return status; } static int nfs3_read_done(struct rpc_task *task, struct nfs_read_data *data) { if (nfs3_async_handle_jukebox(task, data->inode)) return -EAGAIN; nfs_invalidate_atime(data->inode); nfs_refresh_inode(data->inode, &data->fattr); return 0; } static void nfs3_proc_read_setup(struct nfs_read_data *data, struct rpc_message *msg) { msg->rpc_proc = &nfs3_procedures[NFS3PROC_READ]; } static int nfs3_write_done(struct rpc_task *task, struct nfs_write_data *data) { if (nfs3_async_handle_jukebox(task, data->inode)) return -EAGAIN; if (task->tk_status >= 0) nfs_post_op_update_inode_force_wcc(data->inode, data->res.fattr); return 0; } static void nfs3_proc_write_setup(struct nfs_write_data *data, struct rpc_message *msg) { msg->rpc_proc = &nfs3_procedures[NFS3PROC_WRITE]; } static int nfs3_commit_done(struct rpc_task *task, struct nfs_write_data *data) { if (nfs3_async_handle_jukebox(task, data->inode)) return -EAGAIN; nfs_refresh_inode(data->inode, data->res.fattr); return 0; } static void nfs3_proc_commit_setup(struct nfs_write_data *data, struct rpc_message *msg) { msg->rpc_proc = &nfs3_procedures[NFS3PROC_COMMIT]; } static int nfs3_proc_lock(struct file *filp, int cmd, struct file_lock *fl) { struct inode *inode = filp->f_path.dentry->d_inode; return nlmclnt_proc(NFS_SERVER(inode)->nlm_host, cmd, fl); } const struct nfs_rpc_ops nfs_v3_clientops = { .version = 3, /* protocol version */ .dentry_ops = &nfs_dentry_operations, .dir_inode_ops = &nfs3_dir_inode_operations, .file_inode_ops = &nfs3_file_inode_operations, .file_ops = &nfs_file_operations, .getroot = nfs3_proc_get_root, .getattr = nfs3_proc_getattr, .setattr = nfs3_proc_setattr, .lookup = nfs3_proc_lookup, .access = nfs3_proc_access, .readlink = nfs3_proc_readlink, .create = nfs3_proc_create, .remove = nfs3_proc_remove, .unlink_setup = nfs3_proc_unlink_setup, .unlink_done = nfs3_proc_unlink_done, .rename = nfs3_proc_rename, .rename_setup = nfs3_proc_rename_setup, .rename_done = nfs3_proc_rename_done, .link = nfs3_proc_link, .symlink = nfs3_proc_symlink, .mkdir = nfs3_proc_mkdir, .rmdir = nfs3_proc_rmdir, .readdir = nfs3_proc_readdir, .mknod = nfs3_proc_mknod, .statfs = nfs3_proc_statfs, .fsinfo = nfs3_proc_fsinfo, .pathconf = nfs3_proc_pathconf, .decode_dirent = nfs3_decode_dirent, .read_setup = nfs3_proc_read_setup, .read_done = nfs3_read_done, .write_setup = nfs3_proc_write_setup, .write_done = nfs3_write_done, .commit_setup = nfs3_proc_commit_setup, .commit_done = nfs3_commit_done, .lock = nfs3_proc_lock, .clear_acl_cache = nfs3_forget_cached_acls, .close_context = nfs_close_context, .init_client = nfs_init_client, };
static int _nfs42_proc_fallocate(struct rpc_message *msg, struct file *filep, loff_t offset, loff_t len) { struct inode *inode = file_inode(filep); struct nfs_server *server = NFS_SERVER(inode); struct nfs42_falloc_args args = { .falloc_fh = NFS_FH(inode), .falloc_offset = offset, .falloc_length = len, .falloc_bitmask = server->cache_consistency_bitmask, }; struct nfs42_falloc_res res = { .falloc_server = server, }; int status; msg->rpc_argp = &args; msg->rpc_resp = &res; status = nfs42_set_rw_stateid(&args.falloc_stateid, filep, FMODE_WRITE); if (status) return status; res.falloc_fattr = nfs_alloc_fattr(); if (!res.falloc_fattr) return -ENOMEM; status = nfs4_call_sync(server->client, server, msg, &args.seq_args, &res.seq_res, 0); if (status == 0) status = nfs_post_op_update_inode(inode, res.falloc_fattr); kfree(res.falloc_fattr); return status; } static int nfs42_proc_fallocate(struct rpc_message *msg, struct file *filep, loff_t offset, loff_t len) { struct nfs_server *server = NFS_SERVER(file_inode(filep)); struct nfs4_exception exception = { }; int err; do { err = _nfs42_proc_fallocate(msg, filep, offset, len); if (err == -ENOTSUPP) return -EOPNOTSUPP; err = nfs4_handle_exception(server, err, &exception); } while (exception.retry); return err; } int nfs42_proc_allocate(struct file *filep, loff_t offset, loff_t len) { struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ALLOCATE], }; struct inode *inode = file_inode(filep); int err; if (!nfs_server_capable(inode, NFS_CAP_ALLOCATE)) return -EOPNOTSUPP; mutex_lock(&inode->i_mutex); err = nfs42_proc_fallocate(&msg, filep, offset, len); if (err == -EOPNOTSUPP) NFS_SERVER(inode)->caps &= ~NFS_CAP_ALLOCATE; mutex_unlock(&inode->i_mutex); return err; } int nfs42_proc_deallocate(struct file *filep, loff_t offset, loff_t len) { struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DEALLOCATE], }; struct inode *inode = file_inode(filep); int err; if (!nfs_server_capable(inode, NFS_CAP_DEALLOCATE)) return -EOPNOTSUPP; nfs_wb_all(inode); mutex_lock(&inode->i_mutex); err = nfs42_proc_fallocate(&msg, filep, offset, len); if (err == 0) truncate_pagecache_range(inode, offset, (offset + len) -1); if (err == -EOPNOTSUPP) NFS_SERVER(inode)->caps &= ~NFS_CAP_DEALLOCATE; mutex_unlock(&inode->i_mutex); return err; } static loff_t _nfs42_proc_llseek(struct file *filep, loff_t offset, int whence) { struct inode *inode = file_inode(filep); struct nfs42_seek_args args = { .sa_fh = NFS_FH(inode), .sa_offset = offset, .sa_what = (whence == SEEK_HOLE) ? NFS4_CONTENT_HOLE : NFS4_CONTENT_DATA, }; struct nfs42_seek_res res; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SEEK], .rpc_argp = &args, .rpc_resp = &res, }; struct nfs_server *server = NFS_SERVER(inode); int status; if (!nfs_server_capable(inode, NFS_CAP_SEEK)) return -ENOTSUPP; status = nfs42_set_rw_stateid(&args.sa_stateid, filep, FMODE_READ); if (status) return status; nfs_wb_all(inode); status = nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0); if (status == -ENOTSUPP) server->caps &= ~NFS_CAP_SEEK; if (status) return status; return vfs_setpos(filep, res.sr_offset, inode->i_sb->s_maxbytes); } loff_t nfs42_proc_llseek(struct file *filep, loff_t offset, int whence) { struct nfs_server *server = NFS_SERVER(file_inode(filep)); struct nfs4_exception exception = { }; loff_t err; do { err = _nfs42_proc_llseek(filep, offset, whence); if (err >= 0) break; if (err == -ENOTSUPP) return -EOPNOTSUPP; err = nfs4_handle_exception(server, err, &exception); } while (exception.retry); return err; } static void nfs42_layoutstat_prepare(struct rpc_task *task, void *calldata) { struct nfs42_layoutstat_data *data = calldata; struct nfs_server *server = NFS_SERVER(data->args.inode); nfs41_setup_sequence(nfs4_get_session(server), &data->args.seq_args, &data->res.seq_res, task); } static void nfs42_layoutstat_done(struct rpc_task *task, void *calldata) { struct nfs42_layoutstat_data *data = calldata; if (!nfs4_sequence_done(task, &data->res.seq_res)) return; switch (task->tk_status) { case 0: break; case -ENOTSUPP: case -EOPNOTSUPP: NFS_SERVER(data->inode)->caps &= ~NFS_CAP_LAYOUTSTATS; default: dprintk("%s server returns %d\n", __func__, task->tk_status); } } static void nfs42_layoutstat_release(void *calldata) { struct nfs42_layoutstat_data *data = calldata; struct nfs_server *nfss = NFS_SERVER(data->args.inode); if (nfss->pnfs_curr_ld->cleanup_layoutstats) nfss->pnfs_curr_ld->cleanup_layoutstats(data); pnfs_put_layout_hdr(NFS_I(data->args.inode)->layout); smp_mb__before_atomic(); clear_bit(NFS_INO_LAYOUTSTATS, &NFS_I(data->args.inode)->flags); smp_mb__after_atomic(); nfs_iput_and_deactive(data->inode); kfree(data->args.devinfo); kfree(data); } static const struct rpc_call_ops nfs42_layoutstat_ops = { .rpc_call_prepare = nfs42_layoutstat_prepare, .rpc_call_done = nfs42_layoutstat_done, .rpc_release = nfs42_layoutstat_release, }; int nfs42_proc_layoutstats_generic(struct nfs_server *server, struct nfs42_layoutstat_data *data) { struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LAYOUTSTATS], .rpc_argp = &data->args, .rpc_resp = &data->res, }; struct rpc_task_setup task_setup = { .rpc_client = server->client, .rpc_message = &msg, .callback_ops = &nfs42_layoutstat_ops, .callback_data = data, .flags = RPC_TASK_ASYNC, }; struct rpc_task *task; data->inode = nfs_igrab_and_active(data->args.inode); if (!data->inode) { nfs42_layoutstat_release(data); return -EAGAIN; } nfs4_init_sequence(&data->args.seq_args, &data->res.seq_res, 0); task = rpc_run_task(&task_setup); if (IS_ERR(task)) return PTR_ERR(task); return 0; } static int _nfs42_proc_clone(struct rpc_message *msg, struct file *src_f, struct file *dst_f, loff_t src_offset, loff_t dst_offset, loff_t count) { struct inode *src_inode = file_inode(src_f); struct inode *dst_inode = file_inode(dst_f); struct nfs_server *server = NFS_SERVER(dst_inode); struct nfs42_clone_args args = { .src_fh = NFS_FH(src_inode), .dst_fh = NFS_FH(dst_inode), .src_offset = src_offset, .dst_offset = dst_offset, .count = count, .dst_bitmask = server->cache_consistency_bitmask, }; struct nfs42_clone_res res = { .server = server, }; int status; msg->rpc_argp = &args; msg->rpc_resp = &res; status = nfs42_set_rw_stateid(&args.src_stateid, src_f, FMODE_READ); if (status) return status; status = nfs42_set_rw_stateid(&args.dst_stateid, dst_f, FMODE_WRITE); if (status) return status; res.dst_fattr = nfs_alloc_fattr(); if (!res.dst_fattr) return -ENOMEM; status = nfs4_call_sync(server->client, server, msg, &args.seq_args, &res.seq_res, 0); if (status == 0) status = nfs_post_op_update_inode(dst_inode, res.dst_fattr); kfree(res.dst_fattr); return status; } int nfs42_proc_clone(struct file *src_f, struct file *dst_f, loff_t src_offset, loff_t dst_offset, loff_t count) { struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLONE], }; struct inode *inode = file_inode(src_f); struct nfs_server *server = NFS_SERVER(file_inode(src_f)); struct nfs4_exception exception = { }; int err; if (!nfs_server_capable(inode, NFS_CAP_CLONE)) return -EOPNOTSUPP; do { err = _nfs42_proc_clone(&msg, src_f, dst_f, src_offset, dst_offset, count); if (err == -ENOTSUPP || err == -EOPNOTSUPP) { NFS_SERVER(inode)->caps &= ~NFS_CAP_CLONE; return -EOPNOTSUPP; } err = nfs4_handle_exception(server, err, &exception); } while (exception.retry); return err; }
static int _nfs42_proc_fallocate(struct rpc_message *msg, struct file *filep, struct nfs_lock_context *lock, loff_t offset, loff_t len) { struct inode *inode = file_inode(filep); struct nfs_server *server = NFS_SERVER(inode); struct nfs42_falloc_args args = { .falloc_fh = NFS_FH(inode), .falloc_offset = offset, .falloc_length = len, .falloc_bitmask = server->cache_consistency_bitmask, }; struct nfs42_falloc_res res = { .falloc_server = server, }; int status; msg->rpc_argp = &args; msg->rpc_resp = &res; status = nfs4_set_rw_stateid(&args.falloc_stateid, lock->open_context, lock, FMODE_WRITE); if (status) return status; res.falloc_fattr = nfs_alloc_fattr(); if (!res.falloc_fattr) return -ENOMEM; status = nfs4_call_sync(server->client, server, msg, &args.seq_args, &res.seq_res, 0); if (status == 0) status = nfs_post_op_update_inode(inode, res.falloc_fattr); kfree(res.falloc_fattr); return status; } static int nfs42_proc_fallocate(struct rpc_message *msg, struct file *filep, loff_t offset, loff_t len) { struct nfs_server *server = NFS_SERVER(file_inode(filep)); struct nfs4_exception exception = { }; struct nfs_lock_context *lock; int err; lock = nfs_get_lock_context(nfs_file_open_context(filep)); if (IS_ERR(lock)) return PTR_ERR(lock); exception.inode = file_inode(filep); exception.state = lock->open_context->state; do { err = _nfs42_proc_fallocate(msg, filep, lock, offset, len); if (err == -ENOTSUPP) { err = -EOPNOTSUPP; break; } err = nfs4_handle_exception(server, err, &exception); } while (exception.retry); nfs_put_lock_context(lock); return err; } int nfs42_proc_allocate(struct file *filep, loff_t offset, loff_t len) { struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ALLOCATE], }; struct inode *inode = file_inode(filep); int err; if (!nfs_server_capable(inode, NFS_CAP_ALLOCATE)) return -EOPNOTSUPP; inode_lock(inode); err = nfs42_proc_fallocate(&msg, filep, offset, len); if (err == -EOPNOTSUPP) NFS_SERVER(inode)->caps &= ~NFS_CAP_ALLOCATE; inode_unlock(inode); return err; } int nfs42_proc_deallocate(struct file *filep, loff_t offset, loff_t len) { struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DEALLOCATE], }; struct inode *inode = file_inode(filep); int err; if (!nfs_server_capable(inode, NFS_CAP_DEALLOCATE)) return -EOPNOTSUPP; inode_lock(inode); err = nfs_sync_inode(inode); if (err) goto out_unlock; err = nfs42_proc_fallocate(&msg, filep, offset, len); if (err == 0) truncate_pagecache_range(inode, offset, (offset + len) -1); if (err == -EOPNOTSUPP) NFS_SERVER(inode)->caps &= ~NFS_CAP_DEALLOCATE; out_unlock: inode_unlock(inode); return err; } static ssize_t _nfs42_proc_copy(struct file *src, loff_t pos_src, struct nfs_lock_context *src_lock, struct file *dst, loff_t pos_dst, struct nfs_lock_context *dst_lock, size_t count) { struct nfs42_copy_args args = { .src_fh = NFS_FH(file_inode(src)), .src_pos = pos_src, .dst_fh = NFS_FH(file_inode(dst)), .dst_pos = pos_dst, .count = count, }; struct nfs42_copy_res res; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COPY], .rpc_argp = &args, .rpc_resp = &res, }; struct inode *dst_inode = file_inode(dst); struct nfs_server *server = NFS_SERVER(dst_inode); int status; status = nfs4_set_rw_stateid(&args.src_stateid, src_lock->open_context, src_lock, FMODE_READ); if (status) return status; status = nfs_filemap_write_and_wait_range(file_inode(src)->i_mapping, pos_src, pos_src + (loff_t)count - 1); if (status) return status; status = nfs4_set_rw_stateid(&args.dst_stateid, dst_lock->open_context, dst_lock, FMODE_WRITE); if (status) return status; status = nfs_sync_inode(dst_inode); if (status) return status; status = nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0); if (status == -ENOTSUPP) server->caps &= ~NFS_CAP_COPY; if (status) return status; if (res.write_res.verifier.committed != NFS_FILE_SYNC) { status = nfs_commit_file(dst, &res.write_res.verifier.verifier); if (status) return status; } truncate_pagecache_range(dst_inode, pos_dst, pos_dst + res.write_res.count); return res.write_res.count; } ssize_t nfs42_proc_copy(struct file *src, loff_t pos_src, struct file *dst, loff_t pos_dst, size_t count) { struct nfs_server *server = NFS_SERVER(file_inode(dst)); struct nfs_lock_context *src_lock; struct nfs_lock_context *dst_lock; struct nfs4_exception src_exception = { }; struct nfs4_exception dst_exception = { }; ssize_t err, err2; if (!nfs_server_capable(file_inode(dst), NFS_CAP_COPY)) return -EOPNOTSUPP; src_lock = nfs_get_lock_context(nfs_file_open_context(src)); if (IS_ERR(src_lock)) return PTR_ERR(src_lock); src_exception.inode = file_inode(src); src_exception.state = src_lock->open_context->state; dst_lock = nfs_get_lock_context(nfs_file_open_context(dst)); if (IS_ERR(dst_lock)) { err = PTR_ERR(dst_lock); goto out_put_src_lock; } dst_exception.inode = file_inode(dst); dst_exception.state = dst_lock->open_context->state; do { inode_lock(file_inode(dst)); err = _nfs42_proc_copy(src, pos_src, src_lock, dst, pos_dst, dst_lock, count); inode_unlock(file_inode(dst)); if (err == -ENOTSUPP) { err = -EOPNOTSUPP; break; } err2 = nfs4_handle_exception(server, err, &src_exception); err = nfs4_handle_exception(server, err, &dst_exception); if (!err) err = err2; } while (src_exception.retry || dst_exception.retry); nfs_put_lock_context(dst_lock); out_put_src_lock: nfs_put_lock_context(src_lock); return err; } static loff_t _nfs42_proc_llseek(struct file *filep, struct nfs_lock_context *lock, loff_t offset, int whence) { struct inode *inode = file_inode(filep); struct nfs42_seek_args args = { .sa_fh = NFS_FH(inode), .sa_offset = offset, .sa_what = (whence == SEEK_HOLE) ? NFS4_CONTENT_HOLE : NFS4_CONTENT_DATA, }; struct nfs42_seek_res res; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SEEK], .rpc_argp = &args, .rpc_resp = &res, }; struct nfs_server *server = NFS_SERVER(inode); int status; if (!nfs_server_capable(inode, NFS_CAP_SEEK)) return -ENOTSUPP; status = nfs4_set_rw_stateid(&args.sa_stateid, lock->open_context, lock, FMODE_READ); if (status) return status; status = nfs_filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); if (status) return status; status = nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0); if (status == -ENOTSUPP) server->caps &= ~NFS_CAP_SEEK; if (status) return status; return vfs_setpos(filep, res.sr_offset, inode->i_sb->s_maxbytes); } loff_t nfs42_proc_llseek(struct file *filep, loff_t offset, int whence) { struct nfs_server *server = NFS_SERVER(file_inode(filep)); struct nfs4_exception exception = { }; struct nfs_lock_context *lock; loff_t err; lock = nfs_get_lock_context(nfs_file_open_context(filep)); if (IS_ERR(lock)) return PTR_ERR(lock); exception.inode = file_inode(filep); exception.state = lock->open_context->state; do { err = _nfs42_proc_llseek(filep, lock, offset, whence); if (err >= 0) break; if (err == -ENOTSUPP) { err = -EOPNOTSUPP; break; } err = nfs4_handle_exception(server, err, &exception); } while (exception.retry); nfs_put_lock_context(lock); return err; } static void nfs42_layoutstat_prepare(struct rpc_task *task, void *calldata) { struct nfs42_layoutstat_data *data = calldata; struct inode *inode = data->inode; struct nfs_server *server = NFS_SERVER(inode); struct pnfs_layout_hdr *lo; spin_lock(&inode->i_lock); lo = NFS_I(inode)->layout; if (!pnfs_layout_is_valid(lo)) { spin_unlock(&inode->i_lock); rpc_exit(task, 0); return; } nfs4_stateid_copy(&data->args.stateid, &lo->plh_stateid); spin_unlock(&inode->i_lock); nfs41_setup_sequence(nfs4_get_session(server), &data->args.seq_args, &data->res.seq_res, task); } static void nfs42_layoutstat_done(struct rpc_task *task, void *calldata) { struct nfs42_layoutstat_data *data = calldata; struct inode *inode = data->inode; struct pnfs_layout_hdr *lo; if (!nfs4_sequence_done(task, &data->res.seq_res)) return; switch (task->tk_status) { case 0: break; case -NFS4ERR_EXPIRED: case -NFS4ERR_ADMIN_REVOKED: case -NFS4ERR_DELEG_REVOKED: case -NFS4ERR_STALE_STATEID: case -NFS4ERR_BAD_STATEID: spin_lock(&inode->i_lock); lo = NFS_I(inode)->layout; if (pnfs_layout_is_valid(lo) && nfs4_stateid_match(&data->args.stateid, &lo->plh_stateid)) { LIST_HEAD(head); /* * Mark the bad layout state as invalid, then retry * with the current stateid. */ pnfs_mark_layout_stateid_invalid(lo, &head); spin_unlock(&inode->i_lock); pnfs_free_lseg_list(&head); } else spin_unlock(&inode->i_lock); break; case -NFS4ERR_OLD_STATEID: spin_lock(&inode->i_lock); lo = NFS_I(inode)->layout; if (pnfs_layout_is_valid(lo) && nfs4_stateid_match_other(&data->args.stateid, &lo->plh_stateid)) { /* Do we need to delay before resending? */ if (!nfs4_stateid_is_newer(&lo->plh_stateid, &data->args.stateid)) rpc_delay(task, HZ); rpc_restart_call_prepare(task); } spin_unlock(&inode->i_lock); break; case -ENOTSUPP: case -EOPNOTSUPP: NFS_SERVER(inode)->caps &= ~NFS_CAP_LAYOUTSTATS; } dprintk("%s server returns %d\n", __func__, task->tk_status); } static void nfs42_layoutstat_release(void *calldata) { struct nfs42_layoutstat_data *data = calldata; struct nfs_server *nfss = NFS_SERVER(data->args.inode); if (nfss->pnfs_curr_ld->cleanup_layoutstats) nfss->pnfs_curr_ld->cleanup_layoutstats(data); pnfs_put_layout_hdr(NFS_I(data->args.inode)->layout); smp_mb__before_atomic(); clear_bit(NFS_INO_LAYOUTSTATS, &NFS_I(data->args.inode)->flags); smp_mb__after_atomic(); nfs_iput_and_deactive(data->inode); kfree(data->args.devinfo); kfree(data); } static const struct rpc_call_ops nfs42_layoutstat_ops = { .rpc_call_prepare = nfs42_layoutstat_prepare, .rpc_call_done = nfs42_layoutstat_done, .rpc_release = nfs42_layoutstat_release, }; int nfs42_proc_layoutstats_generic(struct nfs_server *server, struct nfs42_layoutstat_data *data) { struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LAYOUTSTATS], .rpc_argp = &data->args, .rpc_resp = &data->res, }; struct rpc_task_setup task_setup = { .rpc_client = server->client, .rpc_message = &msg, .callback_ops = &nfs42_layoutstat_ops, .callback_data = data, .flags = RPC_TASK_ASYNC, }; struct rpc_task *task; data->inode = nfs_igrab_and_active(data->args.inode); if (!data->inode) { nfs42_layoutstat_release(data); return -EAGAIN; } nfs4_init_sequence(&data->args.seq_args, &data->res.seq_res, 0); task = rpc_run_task(&task_setup); if (IS_ERR(task)) return PTR_ERR(task); rpc_put_task(task); return 0; } static int _nfs42_proc_clone(struct rpc_message *msg, struct file *src_f, struct file *dst_f, struct nfs_lock_context *src_lock, struct nfs_lock_context *dst_lock, loff_t src_offset, loff_t dst_offset, loff_t count) { struct inode *src_inode = file_inode(src_f); struct inode *dst_inode = file_inode(dst_f); struct nfs_server *server = NFS_SERVER(dst_inode); struct nfs42_clone_args args = { .src_fh = NFS_FH(src_inode), .dst_fh = NFS_FH(dst_inode), .src_offset = src_offset, .dst_offset = dst_offset, .count = count, .dst_bitmask = server->cache_consistency_bitmask, }; struct nfs42_clone_res res = { .server = server, }; int status; msg->rpc_argp = &args; msg->rpc_resp = &res; status = nfs4_set_rw_stateid(&args.src_stateid, src_lock->open_context, src_lock, FMODE_READ); if (status) return status; status = nfs4_set_rw_stateid(&args.dst_stateid, dst_lock->open_context, dst_lock, FMODE_WRITE); if (status) return status; res.dst_fattr = nfs_alloc_fattr(); if (!res.dst_fattr) return -ENOMEM; status = nfs4_call_sync(server->client, server, msg, &args.seq_args, &res.seq_res, 0); if (status == 0) status = nfs_post_op_update_inode(dst_inode, res.dst_fattr); kfree(res.dst_fattr); return status; } int nfs42_proc_clone(struct file *src_f, struct file *dst_f, loff_t src_offset, loff_t dst_offset, loff_t count) { struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLONE], }; struct inode *inode = file_inode(src_f); struct nfs_server *server = NFS_SERVER(file_inode(src_f)); struct nfs_lock_context *src_lock; struct nfs_lock_context *dst_lock; struct nfs4_exception src_exception = { }; struct nfs4_exception dst_exception = { }; int err, err2; if (!nfs_server_capable(inode, NFS_CAP_CLONE)) return -EOPNOTSUPP; src_lock = nfs_get_lock_context(nfs_file_open_context(src_f)); if (IS_ERR(src_lock)) return PTR_ERR(src_lock); src_exception.inode = file_inode(src_f); src_exception.state = src_lock->open_context->state; dst_lock = nfs_get_lock_context(nfs_file_open_context(dst_f)); if (IS_ERR(dst_lock)) { err = PTR_ERR(dst_lock); goto out_put_src_lock; } dst_exception.inode = file_inode(dst_f); dst_exception.state = dst_lock->open_context->state; do { err = _nfs42_proc_clone(&msg, src_f, dst_f, src_lock, dst_lock, src_offset, dst_offset, count); if (err == -ENOTSUPP || err == -EOPNOTSUPP) { NFS_SERVER(inode)->caps &= ~NFS_CAP_CLONE; err = -EOPNOTSUPP; break; } err2 = nfs4_handle_exception(server, err, &src_exception); err = nfs4_handle_exception(server, err, &dst_exception); if (!err) err = err2; } while (src_exception.retry || dst_exception.retry); nfs_put_lock_context(dst_lock); out_put_src_lock: nfs_put_lock_context(src_lock); return err; }
/* * get an NFS2/NFS3 root dentry from the root filehandle */ struct dentry *nfs_get_root(struct super_block *sb, struct nfs_fh *mntfh, const char *devname) { struct nfs_server *server = NFS_SB(sb); struct nfs_fsinfo fsinfo; struct dentry *ret; struct inode *inode; void *name = kstrdup(devname, GFP_KERNEL); int error; if (!name) return ERR_PTR(-ENOMEM); /* get the actual root for this mount */ fsinfo.fattr = nfs_alloc_fattr(); if (fsinfo.fattr == NULL) { kfree(name); return ERR_PTR(-ENOMEM); } error = server->nfs_client->rpc_ops->getroot(server, mntfh, &fsinfo); if (error < 0) { dprintk("nfs_get_root: getattr error = %d\n", -error); ret = ERR_PTR(error); goto out; } inode = nfs_fhget(sb, mntfh, fsinfo.fattr); if (IS_ERR(inode)) { dprintk("nfs_get_root: get root inode failed\n"); ret = ERR_CAST(inode); goto out; } error = nfs_superblock_set_dummy_root(sb, inode); if (error != 0) { ret = ERR_PTR(error); goto out; } /* root dentries normally start off anonymous and get spliced in later * if the dentry tree reaches them; however if the dentry already * exists, we'll pick it up at this point and use it as the root */ ret = d_obtain_alias(inode); if (IS_ERR(ret)) { dprintk("nfs_get_root: get root dentry failed\n"); goto out; } security_d_instantiate(ret, inode); spin_lock(&ret->d_lock); if (IS_ROOT(ret) && !(ret->d_flags & DCACHE_NFSFS_RENAMED)) { ret->d_fsdata = name; name = NULL; } spin_unlock(&ret->d_lock); out: if (name) kfree(name); nfs_free_fattr(fsinfo.fattr); return ret; }
/* * get an NFS4 root dentry from the root filehandle */ struct dentry *nfs4_get_root(struct super_block *sb, struct nfs_fh *mntfh) { struct nfs_server *server = NFS_SB(sb); struct nfs_fattr *fattr = NULL; struct dentry *ret; struct inode *inode; int error; dprintk("--> nfs4_get_root()\n"); /* get the info about the server and filesystem */ error = nfs4_server_capabilities(server, mntfh); if (error < 0) { dprintk("nfs_get_root: getcaps error = %d\n", -error); return ERR_PTR(error); } fattr = nfs_alloc_fattr(); if (fattr == NULL) return ERR_PTR(-ENOMEM);; /* get the actual root for this mount */ error = server->nfs_client->rpc_ops->getattr(server, mntfh, fattr); if (error < 0) { dprintk("nfs_get_root: getattr error = %d\n", -error); ret = ERR_PTR(error); goto out; } inode = nfs_fhget(sb, mntfh, fattr); if (IS_ERR(inode)) { dprintk("nfs_get_root: get root inode failed\n"); ret = ERR_CAST(inode); goto out; } error = nfs_superblock_set_dummy_root(sb, inode); if (error != 0) { ret = ERR_PTR(error); goto out; } /* root dentries normally start off anonymous and get spliced in later * if the dentry tree reaches them; however if the dentry already * exists, we'll pick it up at this point and use it as the root */ ret = d_obtain_alias(inode); if (IS_ERR(ret)) { dprintk("nfs_get_root: get root dentry failed\n"); goto out; } security_d_instantiate(ret, inode); if (ret->d_op == NULL) ret->d_op = server->nfs_client->rpc_ops->dentry_ops; out: nfs_free_fattr(fattr); dprintk("<-- nfs4_get_root()\n"); return ret; }
static int _nfs42_proc_fallocate(struct rpc_message *msg, struct file *filep, loff_t offset, loff_t len) { struct inode *inode = file_inode(filep); struct nfs_server *server = NFS_SERVER(inode); struct nfs42_falloc_args args = { .falloc_fh = NFS_FH(inode), .falloc_offset = offset, .falloc_length = len, .falloc_bitmask = server->cache_consistency_bitmask, }; struct nfs42_falloc_res res = { .falloc_server = server, }; int status; msg->rpc_argp = &args; msg->rpc_resp = &res; status = nfs42_set_rw_stateid(&args.falloc_stateid, filep, FMODE_WRITE); if (status) return status; res.falloc_fattr = nfs_alloc_fattr(); if (!res.falloc_fattr) return -ENOMEM; status = nfs4_call_sync(server->client, server, msg, &args.seq_args, &res.seq_res, 0); if (status == 0) status = nfs_post_op_update_inode(inode, res.falloc_fattr); kfree(res.falloc_fattr); return status; } static int nfs42_proc_fallocate(struct rpc_message *msg, struct file *filep, loff_t offset, loff_t len) { struct nfs_server *server = NFS_SERVER(file_inode(filep)); struct nfs4_exception exception = { }; int err; do { err = _nfs42_proc_fallocate(msg, filep, offset, len); if (err == -ENOTSUPP) return -EOPNOTSUPP; err = nfs4_handle_exception(server, err, &exception); } while (exception.retry); return err; } int nfs42_proc_allocate(struct file *filep, loff_t offset, loff_t len) { struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ALLOCATE], }; struct inode *inode = file_inode(filep); int err; if (!nfs_server_capable(inode, NFS_CAP_ALLOCATE)) return -EOPNOTSUPP; mutex_lock(&inode->i_mutex); err = nfs42_proc_fallocate(&msg, filep, offset, len); if (err == -EOPNOTSUPP) NFS_SERVER(inode)->caps &= ~NFS_CAP_ALLOCATE; mutex_unlock(&inode->i_mutex); return err; } int nfs42_proc_deallocate(struct file *filep, loff_t offset, loff_t len) { struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DEALLOCATE], }; struct inode *inode = file_inode(filep); int err; if (!nfs_server_capable(inode, NFS_CAP_DEALLOCATE)) return -EOPNOTSUPP; nfs_wb_all(inode); mutex_lock(&inode->i_mutex); err = nfs42_proc_fallocate(&msg, filep, offset, len); if (err == 0) truncate_pagecache_range(inode, offset, (offset + len) -1); if (err == -EOPNOTSUPP) NFS_SERVER(inode)->caps &= ~NFS_CAP_DEALLOCATE; mutex_unlock(&inode->i_mutex); return err; } loff_t nfs42_proc_llseek(struct file *filep, loff_t offset, int whence) { struct inode *inode = file_inode(filep); struct nfs42_seek_args args = { .sa_fh = NFS_FH(inode), .sa_offset = offset, .sa_what = (whence == SEEK_HOLE) ? NFS4_CONTENT_HOLE : NFS4_CONTENT_DATA, }; struct nfs42_seek_res res; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SEEK], .rpc_argp = &args, .rpc_resp = &res, }; struct nfs_server *server = NFS_SERVER(inode); int status; if (!nfs_server_capable(inode, NFS_CAP_SEEK)) return -ENOTSUPP; status = nfs42_set_rw_stateid(&args.sa_stateid, filep, FMODE_READ); if (status) return status; nfs_wb_all(inode); status = nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0); if (status == -ENOTSUPP) server->caps &= ~NFS_CAP_SEEK; if (status) return status; return vfs_setpos(filep, res.sr_offset, inode->i_sb->s_maxbytes); }
static void * nfs_follow_mountpoint(struct dentry *dentry, struct nameidata *nd) { struct vfsmount *mnt; struct nfs_server *server = NFS_SERVER(dentry->d_inode); struct dentry *parent; struct nfs_fh *fh = NULL; struct nfs_fattr *fattr = NULL; int err; dprintk("--> nfs_follow_mountpoint()\n"); err = -ESTALE; if (IS_ROOT(dentry)) goto out_err; err = -ENOMEM; fh = nfs_alloc_fhandle(); fattr = nfs_alloc_fattr(); if (fh == NULL || fattr == NULL) goto out_err; dprintk("%s: enter\n", __func__); dput(nd->path.dentry); nd->path.dentry = dget(dentry); /* Look it up again */ parent = dget_parent(nd->path.dentry); err = server->nfs_client->rpc_ops->lookup(parent->d_inode, &nd->path.dentry->d_name, fh, fattr); dput(parent); if (err != 0) goto out_err; if (fattr->valid & NFS_ATTR_FATTR_V4_REFERRAL) mnt = nfs_do_refmount(nd->path.mnt, nd->path.dentry); else mnt = nfs_do_submount(nd->path.mnt, nd->path.dentry, fh, fattr); err = PTR_ERR(mnt); if (IS_ERR(mnt)) goto out_err; mntget(mnt); err = do_add_mount(mnt, &nd->path, nd->path.mnt->mnt_flags|MNT_SHRINKABLE, &nfs_automount_list); if (err < 0) { mntput(mnt); if (err == -EBUSY) goto out_follow; goto out_err; } path_put(&nd->path); nd->path.mnt = mnt; nd->path.dentry = dget(mnt->mnt_root); schedule_delayed_work(&nfs_automount_task, nfs_mountpoint_expiry_timeout); out: nfs_free_fattr(fattr); nfs_free_fhandle(fh); dprintk("%s: done, returned %d\n", __func__, err); dprintk("<-- nfs_follow_mountpoint() = %d\n", err); return ERR_PTR(err); out_err: path_put(&nd->path); goto out; out_follow: while (d_mountpoint(nd->path.dentry) && follow_down(&nd->path)) ; err = 0; goto out; }