void ngx_master_process_cycle(ngx_cycle_t *cycle) { char *title; u_char *p; size_t size; ngx_int_t i; ngx_uint_t n, sigio; sigset_t set; struct itimerval itv; ngx_uint_t live; ngx_msec_t delay; ngx_listening_t *ls; ngx_core_conf_t *ccf; sigemptyset(&set); sigaddset(&set, SIGCHLD); sigaddset(&set, SIGALRM); sigaddset(&set, SIGIO); sigaddset(&set, SIGINT); sigaddset(&set, ngx_signal_value(NGX_RECONFIGURE_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_REOPEN_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_NOACCEPT_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_TERMINATE_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_CHANGEBIN_SIGNAL)); if (sigprocmask(SIG_BLOCK, &set, NULL) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "sigprocmask() failed"); } sigemptyset(&set); size = sizeof(master_process); for (i = 0; i < ngx_argc; i++) { size += ngx_strlen(ngx_argv[i]) + 1; } title = ngx_pnalloc(cycle->pool, size); p = ngx_cpymem(title, master_process, sizeof(master_process) - 1); for (i = 0; i < ngx_argc; i++) { *p++ = ' '; p = ngx_cpystrn(p, (u_char *) ngx_argv[i], size); } ngx_setproctitle(title); ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module); ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); ngx_start_cache_manager_processes(cycle, 0); ngx_new_binary = 0; delay = 0; sigio = 0; live = 1; for ( ;; ) { if (delay) { if (ngx_sigalrm) { sigio = 0; delay *= 2; ngx_sigalrm = 0; } ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "termination cycle: %d", delay); itv.it_interval.tv_sec = 0; itv.it_interval.tv_usec = 0; itv.it_value.tv_sec = delay / 1000; itv.it_value.tv_usec = (delay % 1000 ) * 1000; if (setitimer(ITIMER_REAL, &itv, NULL) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "setitimer() failed"); } } ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "sigsuspend"); sigsuspend(&set); ngx_time_update(); ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "wake up, sigio %i", sigio); if (ngx_reap) { ngx_reap = 0; ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "reap children"); live = ngx_reap_children(cycle); } if (!live && (ngx_terminate || ngx_quit)) { ngx_master_process_exit(cycle); } if (ngx_terminate) { if (delay == 0) { delay = 50; } if (sigio) { sigio--; continue; } sigio = ccf->worker_processes + 2 /* cache processes */; if (delay > 1000) { ngx_signal_worker_processes(cycle, SIGKILL); } else { ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_TERMINATE_SIGNAL)); } continue; } if (ngx_quit) { ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); ls = cycle->listening.elts; for (n = 0; n < cycle->listening.nelts; n++) { if (ngx_close_socket(ls[n].fd) == -1) { ngx_log_error(NGX_LOG_EMERG, cycle->log, ngx_socket_errno, ngx_close_socket_n " %V failed", &ls[n].addr_text); } } cycle->listening.nelts = 0; continue; } if (ngx_reconfigure) { ngx_reconfigure = 0; if (ngx_new_binary) { ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); ngx_start_cache_manager_processes(cycle, 0); ngx_noaccepting = 0; continue; } ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reconfiguring"); cycle = ngx_init_cycle(cycle); if (cycle == NULL) { cycle = (ngx_cycle_t *) ngx_cycle; continue; } ngx_cycle = cycle; ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module); ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_JUST_RESPAWN); ngx_start_cache_manager_processes(cycle, 1); /* allow new processes to start */ ngx_msleep(100); live = 1; ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); } if (ngx_restart) { ngx_restart = 0; ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); ngx_start_cache_manager_processes(cycle, 0); live = 1; } if (ngx_reopen) { ngx_reopen = 0; ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reopening logs"); ngx_reopen_files(cycle, ccf->user); ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_REOPEN_SIGNAL)); } if (ngx_change_binary) { ngx_change_binary = 0; ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "changing binary"); ngx_new_binary = ngx_exec_new_binary(cycle, ngx_argv); } if (ngx_noaccept) { ngx_noaccept = 0; ngx_noaccepting = 1; ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); } } }
/* * 主要工作: * 主进程设置信号堵塞 * 设置进程标题 * 启动worker进程 * 启动缓存索引重建(cache loader)进程及管理(Cache Manager)进程 * 主进程循环处理信号 * */ void ngx_master_process_cycle(ngx_cycle_t *cycle) { char *title; u_char *p; size_t size; ngx_int_t i; ngx_uint_t n, sigio; sigset_t set; struct itimerval itv; ngx_uint_t live; ngx_msec_t delay; /*保存的是等待工作进程退出的时间*/ ngx_listening_t *ls; ngx_core_conf_t *ccf; /*将下列信号添加到信号集set中*/ sigemptyset(&set); sigaddset(&set, SIGCHLD); sigaddset(&set, SIGALRM); sigaddset(&set, SIGIO); sigaddset(&set, SIGINT); sigaddset(&set, ngx_signal_value(NGX_RECONFIGURE_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_REOPEN_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_NOACCEPT_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_TERMINATE_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_CHANGEBIN_SIGNAL)); /*将信号集set覆盖为当前进程的信号集*/ if (sigprocmask(SIG_BLOCK, &set, NULL) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "sigprocmask() failed"); } sigemptyset(&set); /*开始设置进程标题*/ /*计算进程标题的总体长度*/ size = sizeof(master_process); for (i = 0; i < ngx_argc; i++) { size += ngx_strlen(ngx_argv[i]) + 1; } title = ngx_pnalloc(cycle->pool, size); if (title == NULL) { /* fatal */ exit(2); } p = ngx_cpymem(title, master_process, sizeof(master_process) - 1); for (i = 0; i < ngx_argc; i++) { *p++ = ' '; p = ngx_cpystrn(p, (u_char *) ngx_argv[i], size); } /*设置进程标题*/ ngx_setproctitle(title); /*获取核心模块上下文*/ ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module); /*启动工作进程*/ ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); /*启动缓存索引重建进程,该进程在整个Nginx服务器运行过程中只存在很短的时间,主要用来遍历磁盘上的缓存数据,在内存中建立数据索引,提高Nginx服务器检索缓存的效率*/ ngx_start_cache_manager_processes(cycle, 0); ngx_new_binary = 0; delay = 0; sigio = 0; live = 1; for ( ;; ) { if (delay) { /*等待工作进程退出的时间*/ if (ngx_sigalrm) { sigio = 0; delay *= 2; ngx_sigalrm = 0; } ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "termination cycle: %M", delay); /*初始化一个定时器*/ itv.it_interval.tv_sec = 0; itv.it_interval.tv_usec = 0; itv.it_value.tv_sec = delay / 1000; itv.it_value.tv_usec = (delay % 1000 ) * 1000; if (setitimer(ITIMER_REAL, &itv, NULL) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "setitimer() failed"); } } ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "sigsuspend"); /*挂起进程,等待接收到信号,在不向主进程发送信号的情况下,该进程将一直挂起在这里等待*/ sigsuspend(&set); /*更新缓冲时间*/ ngx_time_update(); ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "wake up, sigio %i", sigio); /*如果有工作进程异常退出,则调用ngx_reap_children()重启该工作进程*/ if (ngx_reap) { ngx_reap = 0; ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "reap children"); /*重启工作进程*/ live = ngx_reap_children(cycle); } /*如果主进程接收到的是NGX_CMD_TERMINATE信号、SIGTERM信号、SIGINT信号(ngx_terminate=1)或者收到的是NGX_CMD_QUIT信号、SIGQUIT信号(ngx_quit=1),并且工作进程退出,则主进程调用ngx_master_process_exit()函数退出*/ if (!live && (ngx_terminate || ngx_quit)) { ngx_master_process_exit(cycle); } /*处理SIGINT信号*/ if (ngx_terminate) { if (delay == 0) { delay = 50; } if (sigio) { sigio--; continue; } /*包括两个管理内存索引的进程*/ sigio = ccf->worker_processes + 2 /* cache processes */; /*超时1s,直接终止工作进程*/ if (delay > 1000) { ngx_signal_worker_processes(cycle, SIGKILL); } else { /*工作进程正常退出*/ ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_TERMINATE_SIGNAL)); } continue; } /*处理SIGQUIT信号*/ if (ngx_quit) { ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); /*关闭所有的socket*/ ls = cycle->listening.elts; for (n = 0; n < cycle->listening.nelts; n++) { if (ngx_close_socket(ls[n].fd) == -1) { ngx_log_error(NGX_LOG_EMERG, cycle->log, ngx_socket_errno, ngx_close_socket_n " %V failed", &ls[n].addr_text); } } cycle->listening.nelts = 0; continue; } /*处理SIGHUP信号*/ if (ngx_reconfigure) { ngx_reconfigure = 0; /*热升级(平滑升级,不用停止服务)*/ /*当ngx_new_binary=1时,说明主进程本身需要升级,但是不需要重新初始化Nginx配置,因此可以直接调用ngx_start_worker_processes()函数重启工作进程和缓存索引管理进程*/ /*当ngx_new_binary!=1时,则说明时Nginx服务器配置改变,需要调用ngx_init_cycle()函数初始化Nginx配置,并按照新的配置启动工作进程和缓存索引管理进程,向之前的所有进程发送NGX_SHUTDOWN_SIGNAL信号,这样旧实现了Nginx服务器的平滑升级*/ if (ngx_new_binary) { ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); ngx_start_cache_manager_processes(cycle, 0); ngx_noaccepting = 0; continue; } ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reconfiguring"); /*建立信的cycle结构*/ cycle = ngx_init_cycle(cycle); if (cycle == NULL) { cycle = (ngx_cycle_t *) ngx_cycle; continue; } /*读取Nginx配置*/ ngx_cycle = cycle; ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module); /*创建工作进程*/ ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_JUST_RESPAWN); /*创建缓存管理进程*/ ngx_start_cache_manager_processes(cycle, 1); /* allow new processes to start */ ngx_msleep(100); live = 1; /*关闭旧的Nginx进程*/ ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); } /*重启工作进程*/ /*只有一种情况可以将ngx_restart变量赋值为1,就是在调用ngx_reap_children()函数重启工作进程的时候,当主进程接收到NGX_NOACCEPT_SIGNAL信号(不再接收请求,退出工作进程)时,会设置全局变量ngx_noaccept为1,然后再Nginx初始化信号设置时会将全局变量ngx_noaccepting设置为1,于是在ngx_reap_children()函数中就会将ngx_restart变量设置为1,进而执行下面的if语句中的代码,重启工作进程和缓存索引管理进程*/ if (ngx_restart) { ngx_restart = 0; /*启动工作进程*/ ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); /*启动缓存索引管理进程刷新缓存索引*/ ngx_start_cache_manager_processes(cycle, 0); live = 1; } /*处理SIGUSR1信号,该信号用于重新打开日志文件*/ if (ngx_reopen) { ngx_reopen = 0; ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reopening logs"); ngx_reopen_files(cycle, ccf->user); ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_REOPEN_SIGNAL)); } /*处理SIGUSR2信号,热代码切换*/ if (ngx_change_binary) { ngx_change_binary = 0; ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "changing binary"); ngx_new_binary = ngx_exec_new_binary(cycle, ngx_argv); } /*处理NGX_NOACCEPT_SIGNAL信号*/ if (ngx_noaccept) { ngx_noaccept = 0; ngx_noaccepting = 1; /*退出工作进程,不再接收网络请求*/ ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); } } }
/*启动nginx,主要有以下几步工作: 1.主进程设置信号阻塞 2.设置进程标题 3.启动worker进程 4.启动缓存索引重建进程和管理进程 5.主进程循环处理信号 */ void ngx_master_process_cycle(ngx_cycle_t *cycle) { char *title; u_char *p; size_t size; ngx_int_t i; ngx_uint_t n, sigio; sigset_t set; struct itimerval itv; ngx_uint_t live; ngx_msec_t delay; ngx_listening_t *ls; ngx_core_conf_t *ccf; //设置信号阻塞,屏蔽一系列信号,防止被打扰,具体见《apue》 sigemptyset(&set); sigaddset(&set, SIGCHLD); sigaddset(&set, SIGALRM); sigaddset(&set, SIGIO); sigaddset(&set, SIGINT); sigaddset(&set, ngx_signal_value(NGX_RECONFIGURE_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_REOPEN_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_NOACCEPT_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_TERMINATE_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_CHANGEBIN_SIGNAL)); if (sigprocmask(SIG_BLOCK, &set, NULL) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "sigprocmask() failed"); } sigemptyset(&set); size = sizeof(master_process); for (i = 0; i < ngx_argc; i++) { size += ngx_strlen(ngx_argv[i]) + 1; } title = ngx_pnalloc(cycle->pool, size); p = ngx_cpymem(title, master_process, sizeof(master_process) - 1); for (i = 0; i < ngx_argc; i++) { *p++ = ' '; p = ngx_cpystrn(p, (u_char *) ngx_argv[i], size); } //设置进程标题 ngx_setproctitle(title); //master进程获取core模块配置,ccf中有要创建多少个worker的设定 ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module); //启动worker,这时已经有了worker进程 ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); ngx_start_cache_manager_processes(cycle, 0); //创建有关cache的子进程 //信号处理是nginx服务器主进程在服务器运行期间的主要工作,通过一个for循环来实现对信号的循环处理。 ngx_new_binary = 0; delay = 0; sigio = 0; live = 1; for ( ;; ) { //delay用来等待子进程退出的时间,由于我们接受到SIGINT信号后,我们需要先发送信号给子进程, //而子进程的退出需要一定的时间,超时时如果子进程已退出,我们父进程就直接退出, //否则发送sigkill信号给子进程(强制退出),然后再退出。 if (delay) { if (ngx_sigalrm) { sigio = 0; delay *= 2; ngx_sigalrm = 0; } ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "termination cycle: %d", delay); //初始化一个定时器 itv.it_interval.tv_sec = 0; itv.it_interval.tv_usec = 0; itv.it_value.tv_sec = delay / 1000; itv.it_value.tv_usec = (delay % 1000 ) * 1000; //设置定时器 if (setitimer(ITIMER_REAL, &itv, NULL) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "setitimer() failed"); } } ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "sigsuspend"); //延时,等待信号 sigsuspend(&set); //调用这个将master进程挂起来 ngx_time_update(); //更新缓冲时间 ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "wake up, sigio %i", sigio); //ngx_reap为1,说明有子进程已经退出 if (ngx_reap) { ngx_reap = 0; ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "reap children"); //这个里面处理退出的子进程(有的worker异常退出,这时我们就需要重启这个worker ),如果所有子进程都退出则会返回0. live = ngx_reap_children(cycle); } //如果没有存活的子进程,并且收到了ngx_terminate或者ngx_quit信号,则master退出。 if (!live && (ngx_terminate || ngx_quit)) { ngx_master_process_exit(cycle); //master退出 } //收到了sigint信号 if (ngx_terminate) { //设置延时 if (delay == 0) { delay = 50; } if (sigio) { sigio--; continue; } sigio = ccf->worker_processes + 2 /* cache processes */; if (delay > 1000) { //如果超时,则强制杀死worker ngx_signal_worker_processes(cycle, SIGKILL); } else { //负责发送sigint给worker,让它退出 ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_TERMINATE_SIGNAL)); } continue; } //收到quit信号 if (ngx_quit) { //发送给worker quit信号 ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); ls = cycle->listening.elts; for (n = 0; n < cycle->listening.nelts; n++) { if (ngx_close_socket(ls[n].fd) == -1) { //关闭所有socket ngx_log_error(NGX_LOG_EMERG, cycle->log, ngx_socket_errno, ngx_close_socket_n " %V failed", &ls[n].addr_text); } } cycle->listening.nelts = 0; continue; } //收到需要reconfig的信号 if (ngx_reconfigure) { ngx_reconfigure = 0; //判断是否热代码替换后的新的代码还在运行中(也就是还没退出当前的master)。如果还在运行中,则不需要重新初始化config //ngx_new_binary表示程序本身需要升级,但不需要重新初始化nginx配置,直接调用ngx_start_wroker_process if (ngx_new_binary) { ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); ngx_start_cache_manager_processes(cycle, 0); ngx_noaccepting = 0; continue; } ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reconfiguring"); //重新初始化config,并重新启动新的worker cycle = ngx_init_cycle(cycle); if (cycle == NULL) { cycle = (ngx_cycle_t *) ngx_cycle; continue; } ngx_cycle = cycle; ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module); ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_JUST_RESPAWN); ngx_start_cache_manager_processes(cycle, 1); live = 1; ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); } if (ngx_restart) { ngx_restart = 0; ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); ngx_start_cache_manager_processes(cycle, 0); live = 1; } //重新打开 if (ngx_reopen) { ngx_reopen = 0; ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reopening logs"); ngx_reopen_files(cycle, ccf->user); ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_REOPEN_SIGNAL)); } //热代码替换 if (ngx_change_binary) { ngx_change_binary = 0; ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "changing binary"); //进行热代码替换,这里是调用execve来执行新的代码 ngx_new_binary = ngx_exec_new_binary(cycle, ngx_argv); } //接受到停止accept连接,其实也就是worker退出(有区别的是,这里master不需要退出) if (ngx_noaccept) { ngx_noaccept = 0; ngx_noaccepting = 1; //给worker发送信号 ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); } } //end of for 信号处理结束 }
/* * master进程主循环 */ void ngx_master_process_cycle(ngx_cycle_t *cycle) { char *title; u_char *p; size_t size; ngx_int_t i; ngx_uint_t n, sigio; sigset_t set; struct itimerval itv; ngx_uint_t live; ngx_msec_t delay; ngx_listening_t *ls; ngx_core_conf_t *ccf; sigemptyset(&set); sigaddset(&set, SIGCHLD); sigaddset(&set, SIGALRM); sigaddset(&set, SIGIO); sigaddset(&set, SIGINT); sigaddset(&set, ngx_signal_value(NGX_RECONFIGURE_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_REOPEN_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_NOACCEPT_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_TERMINATE_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_CHANGEBIN_SIGNAL)); /* 进程屏蔽set中的信号 */ if (sigprocmask(SIG_BLOCK, &set, NULL) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "sigprocmask() failed"); } sigemptyset(&set); size = sizeof(master_process); for (i = 0; i < ngx_argc; i++) { size += ngx_strlen(ngx_argv[i]) + 1; } title = ngx_pnalloc(cycle->pool, size); if (title == NULL) { /* fatal */ exit(2); } p = ngx_cpymem(title, master_process, sizeof(master_process) - 1); for (i = 0; i < ngx_argc; i++) { *p++ = ' '; p = ngx_cpystrn(p, (u_char *) ngx_argv[i], size); } /* 修改进程名 */ ngx_setproctitle(title); ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module); /* 启动work进程 */ ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); ngx_start_cache_manager_processes(cycle, 0); ngx_new_binary = 0; delay = 0; sigio = 0; live = 1; /* 标记是否还有活着的子进程*/ for ( ;; ) { //delay用来设置等待worker终止的时间,master接收了终止信号后 //首先发送终止信号给worker,然后等待work终止 if (delay) { if (ngx_sigalrm) { sigio = 0; delay *= 2; ngx_sigalrm = 0; } ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "termination cycle: %d", delay); itv.it_interval.tv_sec = 0; itv.it_interval.tv_usec = 0; itv.it_value.tv_sec = delay / 1000; itv.it_value.tv_usec = (delay % 1000 ) * 1000; /* 应为itv.it_interval 为0 定时器只触发一次 */ if (setitimer(ITIMER_REAL, &itv, NULL) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "setitimer() failed"); } } ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "sigsuspend"); /* 将进程的屏蔽信号集置空,然后进程挂起等待信号进入,信号处理程序处理完进入的信号后 恢复屏蔽信号集,最后sigsuspend返回 */ sigsuspend(&set); ngx_time_update(); ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "wake up, sigio %i", sigio); /* 当master收到work进程结束信号,回收子进程 */ if (ngx_reap) { ngx_reap = 0; ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "reap children"); live = ngx_reap_children(cycle); } /* live为1表示有子进程在运行,为0代表,所有子进程都退出了 */ if (!live && (ngx_terminate || ngx_quit)) { /* 没有子进程了 且收到终止或退出信号*/ ngx_master_process_exit(cycle); } /* master收到终止信号*/ if (ngx_terminate) { if (delay == 0) { delay = 50; } if (sigio) { sigio--; continue; } sigio = ccf->worker_processes + 2 /* cache processes */; if (delay > 1000) { /* 延时已到,给所有worker发送SIGKILL信号,强制杀死worker */ ngx_signal_worker_processes(cycle, SIGKILL); } else { /* 通知work进程终止 */ ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_TERMINATE_SIGNAL)); } continue; } /* 通知工作线程退出,并关闭所有监听套接口 */ if (ngx_quit) { ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); ls = cycle->listening.elts; for (n = 0; n < cycle->listening.nelts; n++) { if (ngx_close_socket(ls[n].fd) == -1) { ngx_log_error(NGX_LOG_EMERG, cycle->log, ngx_socket_errno, ngx_close_socket_n " %V failed", &ls[n].addr_text); } } cycle->listening.nelts = 0; continue; } if (ngx_reconfigure) { ngx_reconfigure = 0; /* 代码已被替换,重启worker,不需要重新初始化配置。 */ if (ngx_new_binary) { ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); ngx_start_cache_manager_processes(cycle, 0); ngx_noaccepting = 0; continue; } ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reconfiguring"); //重新初始化配置 cycle = ngx_init_cycle(cycle); if (cycle == NULL) { cycle = (ngx_cycle_t *) ngx_cycle; continue; } ngx_cycle = cycle; ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module); ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_JUST_RESPAWN); ngx_start_cache_manager_processes(cycle, 1); /* allow new processes to start */ ngx_msleep(100); live = 1; ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); } /* 重新创建work进程 当ngx_noaccepting==1时,会把ngx_restart设为1,重启worker */ if (ngx_restart) { ngx_restart = 0; ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); ngx_start_cache_manager_processes(cycle, 0); live = 1; } /* 从新打开日志文件 */ if (ngx_reopen) { ngx_reopen = 0; ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reopening logs"); ngx_reopen_files(cycle, ccf->user); ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_REOPEN_SIGNAL)); } /* 热替换 */ if (ngx_change_binary) { ngx_change_binary = 0; ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "changing binary"); ngx_new_binary = ngx_exec_new_binary(cycle, ngx_argv); } /* 通知work进程停止accept新连接,work进程退出 */ if (ngx_noaccept) { ngx_noaccept = 0; ngx_noaccepting = 1; ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); } } }
// http://www.xuebuyuan.com/557917.html // http://blog.csdn.net/lu_ming/article/details/5144427 // http://blog.csdn.net/lengzijian/article/details/7587740 void ngx_master_process_cycle(ngx_cycle_t *cycle) { char *title; u_char *p; size_t size; ngx_int_t i; ngx_uint_t n, sigio; sigset_t set; struct itimerval itv; ngx_uint_t live; ngx_msec_t delay; ngx_listening_t *ls; ngx_core_conf_t *ccf; // block these signals sigemptyset(&set); sigaddset(&set, SIGCHLD); sigaddset(&set, SIGALRM); sigaddset(&set, SIGIO); sigaddset(&set, SIGINT); sigaddset(&set, ngx_signal_value(NGX_RECONFIGURE_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_REOPEN_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_NOACCEPT_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_TERMINATE_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_CHANGEBIN_SIGNAL)); if (sigprocmask(SIG_BLOCK, &set, NULL) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "sigprocmask() failed"); } sigemptyset(&set); // set title = "master process" + argv[0] + argv[1] + ... size = sizeof(master_process); for (i = 0; i < ngx_argc; i++) { size += ngx_strlen(ngx_argv[i]) + 1; } title = ngx_pnalloc(cycle->pool, size); p = ngx_cpymem(title, master_process, sizeof(master_process) - 1); for (i = 0; i < ngx_argc; i++) { *p++ = ' '; p = ngx_cpystrn(p, (u_char *) ngx_argv[i], size); } ngx_setproctitle(title); // Start workers and cache_manager ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module); ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); ngx_start_cache_manager_processes(cycle, 0); ngx_new_binary = 0; delay = 0; sigio = 0; live = 1; for ( ;; ) { if (delay) { if (ngx_sigalrm) { sigio = 0; delay *= 2; ngx_sigalrm = 0; } ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "termination cycle: %d", delay); itv.it_interval.tv_sec = 0; itv.it_interval.tv_usec = 0; itv.it_value.tv_sec = delay / 1000; itv.it_value.tv_usec = (delay % 1000 ) * 1000; if (setitimer(ITIMER_REAL, &itv, NULL) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "setitimer() failed"); } } ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "sigsuspend"); // sigsuspend() temporarily replaces the signal mask of the calling // process with the mask given by mask and then suspends the process // until delivery of a signal whose action is to invoke a // signal handler or to terminate a process. sigsuspend(&set); ngx_time_update(); ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "wake up, sigio %i", sigio); if (ngx_reap) { ngx_reap = 0; ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "reap children"); live = ngx_reap_children(cycle); } if (!live && (ngx_terminate || ngx_quit)) { ngx_master_process_exit(cycle); } // on SIGINT set ngx_terminate = 1 if (ngx_terminate) { if (delay == 0) { delay = 50; } if (sigio) { sigio--; continue; } sigio = ccf->worker_processes + 2 /* cache processes */; if (delay > 1000) { ngx_signal_worker_processes(cycle, SIGKILL); } else { ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_TERMINATE_SIGNAL)); } continue; } if (ngx_quit) { ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); ls = cycle->listening.elts; for (n = 0; n < cycle->listening.nelts; n++) { if (ngx_close_socket(ls[n].fd) == -1) { ngx_log_error(NGX_LOG_EMERG, cycle->log, ngx_socket_errno, ngx_close_socket_n " %V failed", &ls[n].addr_text); } } cycle->listening.nelts = 0; continue; } if (ngx_reconfigure) { ngx_reconfigure = 0; if (ngx_new_binary) { ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); ngx_start_cache_manager_processes(cycle, 0); ngx_noaccepting = 0; continue; } ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reconfiguring"); cycle = ngx_init_cycle(cycle); if (cycle == NULL) { cycle = (ngx_cycle_t *) ngx_cycle; continue; } ngx_cycle = cycle; ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module); ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_JUST_RESPAWN); ngx_start_cache_manager_processes(cycle, 1); // Nginx won't guarantee the new workers will be ready to accept // new connections before sending shutdown signals to old workers. // If the new works takes more than 100ms to startup, then there is // a risk that the old workers are shutdown but new workers are still // not ready, as a result, new connections will be pending until a new // worker is ready to handle. /* allow new processes to start */ ngx_msleep(100); live = 1; ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); } if (ngx_restart) { ngx_restart = 0; ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); ngx_start_cache_manager_processes(cycle, 0); live = 1; } if (ngx_reopen) { ngx_reopen = 0; ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reopening logs"); ngx_reopen_files(cycle, ccf->user); ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_REOPEN_SIGNAL)); } if (ngx_change_binary) { ngx_change_binary = 0; ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "changing binary"); ngx_new_binary = ngx_exec_new_binary(cycle, ngx_argv); } if (ngx_noaccept) { ngx_noaccept = 0; ngx_noaccepting = 1; ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); } } }
// main()函数里调用,启动worker进程 // 监听信号 // 核心操作是sigsuspend,暂时挂起进程,不占用CPU,只有收到信号时才被唤醒 void ngx_master_process_cycle(ngx_cycle_t *cycle) { char *title; u_char *p; size_t size; ngx_int_t i; ngx_uint_t n, sigio; sigset_t set; struct itimerval itv; ngx_uint_t live; ngx_msec_t delay; ngx_listening_t *ls; ngx_core_conf_t *ccf; // 添加master进程关注的信号 sigemptyset(&set); sigaddset(&set, SIGCHLD); sigaddset(&set, SIGALRM); sigaddset(&set, SIGIO); sigaddset(&set, SIGINT); sigaddset(&set, ngx_signal_value(NGX_RECONFIGURE_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_REOPEN_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_NOACCEPT_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_TERMINATE_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_CHANGEBIN_SIGNAL)); if (sigprocmask(SIG_BLOCK, &set, NULL) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "sigprocmask() failed"); } sigemptyset(&set); // static u_char master_process[] = "master process"; // 计算master进程的名字 size = sizeof(master_process); // 加上命令行参数,注意使用的是nginx拷贝后的参数 for (i = 0; i < ngx_argc; i++) { size += ngx_strlen(ngx_argv[i]) + 1; } // 分配名字的内存 title = ngx_pnalloc(cycle->pool, size); if (title == NULL) { /* fatal */ exit(2); } // 拷贝字符串 p = ngx_cpymem(title, master_process, sizeof(master_process) - 1); for (i = 0; i < ngx_argc; i++) { *p++ = ' '; p = ngx_cpystrn(p, (u_char *) ngx_argv[i], size); } // 设置进程名 ngx_setproctitle(title); // 取core模块配置 ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module); // 启动worker进程,数量由配置决定,即worker_processes指令 // #define NGX_PROCESS_RESPAWN -3 ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); // cache进程 ngx_start_cache_manager_processes(cycle, 0); ngx_new_binary = 0; delay = 0; //延时的计数器 sigio = 0; live = 1; //是否有存活的子进程 // master进程的无限循环,只处理信号 // 主要调用ngx_signal_worker_processes()发送信号 // ngx_start_worker_processes()产生新子进程 for ( ;; ) { // 延时等待子进程关闭,每次进入加倍等待 if (delay) { if (ngx_sigalrm) { sigio = 0; delay *= 2; //延时加倍 ngx_sigalrm = 0; } ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "termination cycle: %d", delay); itv.it_interval.tv_sec = 0; itv.it_interval.tv_usec = 0; itv.it_value.tv_sec = delay / 1000; itv.it_value.tv_usec = (delay % 1000 ) * 1000; // 系统调用,设置发送SIGALRM的时间间隔 if (setitimer(ITIMER_REAL, &itv, NULL) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "setitimer() failed"); } } ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "sigsuspend"); // 核心操作是sigsuspend,暂时挂起进程,不占用CPU,只有收到信号时才被唤醒 // 收到SIGALRM就检查子进程是否都已经处理完了 sigsuspend(&set); // 更新一下时间 ngx_time_update(); ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "wake up, sigio %i", sigio); // 子进程可能发生了意外结束 // 在os/unix/ngx_process.c ngx_signal_handler()里设置 if (ngx_reap) { ngx_reap = 0; ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "reap children"); // 重新产生子进程 live = ngx_reap_children(cycle); } // 无存活子进程且收到stop/quit信号 if (!live && (ngx_terminate || ngx_quit)) { // 删除pid,模块清理,关闭监听端口 // 内部直接exit(0)退出 ngx_master_process_exit(cycle); } // 收到了-s stop,停止进程 if (ngx_terminate) { // 延时等待子进程关闭 if (delay == 0) { delay = 50; } if (sigio) { sigio--; continue; } sigio = ccf->worker_processes + 2 /* cache processes */; if (delay > 1000) { // 超时太多,直接发送SIGKILL杀死进程 // master进程调用,遍历ngx_processes数组,用kill发送信号 ngx_signal_worker_processes(cycle, SIGKILL); } else { // master进程调用,遍历ngx_processes数组,用kill发送信号 // 走到worker进程的ngx_signal_handler() // 然后再是ngx_worker_process_cycle()的ngx_terminate ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_TERMINATE_SIGNAL)); } // 等待SIGALRM信号,检查子进程是否都结束 continue; } // 收到了-s quit,关闭监听端口后再停止进程(优雅关闭) if (ngx_quit) { // master进程调用,遍历ngx_processes数组,用kill发送信号 // 走到worker进程的ngx_signal_handler() // 然后再是ngx_worker_process_cycle()的ngx_quit ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); // 关闭所有监听端口 ls = cycle->listening.elts; for (n = 0; n < cycle->listening.nelts; n++) { if (ngx_close_socket(ls[n].fd) == -1) { ngx_log_error(NGX_LOG_EMERG, cycle->log, ngx_socket_errno, ngx_close_socket_n " %V failed", &ls[n].addr_text); } } cycle->listening.nelts = 0; continue; } // 收到了-s reload重新配置 if (ngx_reconfigure) { ngx_reconfigure = 0; // 启动新的nginx二进制 if (ngx_new_binary) { // 启动worker进程,数量由配置决定,即worker_processes指令 // 调用时传递的是#define NGX_PROCESS_RESPAWN -3 ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); ngx_start_cache_manager_processes(cycle, 0); ngx_noaccepting = 0; continue; } ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reconfiguring"); // nginx可执行程序不变,以当前cycle重新初始化 cycle = ngx_init_cycle(cycle); if (cycle == NULL) { cycle = (ngx_cycle_t *) ngx_cycle; continue; } ngx_cycle = cycle; ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module); // 启动worker进程,数量由配置决定,即worker_processes指令 // 调用时传递的是#define NGX_PROCESS_JUST_RESPAWN -2 // 这样新启动的进程不会发送shutdown信号 ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_JUST_RESPAWN); ngx_start_cache_manager_processes(cycle, 1); /* allow new processes to start */ // 阻塞等待100毫秒 ngx_msleep(100); // 设置进程存活标志 live = 1; // 关闭原来的worker进程 // 新启动的进程不会发送shutdown信号 // master进程调用,遍历ngx_processes数组,用kill发送信号 // 走到worker进程的ngx_signal_handler() // 然后再是ngx_worker_process_cycle()的ngx_quit ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); } if (ngx_restart) { ngx_restart = 0; // 启动worker进程,数量由配置决定,即worker_processes指令 // 调用时传递的是#define NGX_PROCESS_RESPAWN -3 ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); ngx_start_cache_manager_processes(cycle, 0); // 设置进程存活标志 live = 1; } if (ngx_reopen) { ngx_reopen = 0; ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reopening logs"); ngx_reopen_files(cycle, ccf->user); ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_REOPEN_SIGNAL)); } if (ngx_change_binary) { ngx_change_binary = 0; ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "changing binary"); ngx_new_binary = ngx_exec_new_binary(cycle, ngx_argv); } if (ngx_noaccept) { ngx_noaccept = 0; ngx_noaccepting = 1; ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); } } //master进程无限循环结束 }
// 启动后master进程在这个函数进入死循环 void ngx_master_process_cycle(ngx_cycle_t *cycle) { char *title; u_char *p; size_t size; ngx_int_t i; ngx_uint_t n, sigio; sigset_t set; struct itimerval itv; ngx_uint_t live; ngx_msec_t delay; ngx_listening_t *ls; ngx_core_conf_t *ccf; sigemptyset(&set); sigaddset(&set, SIGCHLD); sigaddset(&set, SIGALRM); sigaddset(&set, SIGIO); sigaddset(&set, SIGINT); sigaddset(&set, ngx_signal_value(NGX_RECONFIGURE_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_REOPEN_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_NOACCEPT_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_TERMINATE_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_CHANGEBIN_SIGNAL)); // 让master进程只有在sigsuspend()里才会捕捉参数set里的信号。 if (sigprocmask(SIG_BLOCK, &set, NULL) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "sigprocmask() failed"); } sigemptyset(&set); // 设置ps命令显示的进程标题 size = sizeof(master_process); for (i = 0; i < ngx_argc; i++) { size += ngx_strlen(ngx_argv[i]) + 1; } title = ngx_pnalloc(cycle->pool, size); p = ngx_cpymem(title, master_process, sizeof(master_process) - 1); for (i = 0; i < ngx_argc; i++) { *p++ = ' '; p = ngx_cpystrn(p, (u_char *) ngx_argv[i], size); } ngx_setproctitle(title); ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module); // 启动worker进程 ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); // 配置文件配置了相关功能时打开cache manager或cache loader进程, ngx_start_cache_manager_processes(cycle, 0); ngx_new_binary = 0; delay = 0; sigio = 0; live = 1; for ( ;; ) { if (delay) { // 收到退出信号后会使用这个分支, // 作用是定时检查是否还有活跃子进程,如果没有就退出master进程 if (ngx_sigalrm) { sigio = 0; delay *= 2; ngx_sigalrm = 0; } ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "termination cycle: %d", delay); itv.it_interval.tv_sec = 0; itv.it_interval.tv_usec = 0; itv.it_value.tv_sec = delay / 1000; itv.it_value.tv_usec = (delay % 1000 ) * 1000; if (setitimer(ITIMER_REAL, &itv, NULL) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "setitimer() failed"); } } ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "sigsuspend"); // 当没有收到信号时进程会在这个函数里休眠, 当收到信号后如果有信号处理函数先运行信号处理函数, // 然后向下运行。 sigsuspend(&set); // 更新记录当前时间的全局变量。 ngx_time_update(); ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "wake up, sigio %i", sigio); if (ngx_reap) { // master进程的子进程结束时,master进程收到SIGCHLD信号后,ngx_reap被置1。 ngx_reap = 0; ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "reap children"); live = ngx_reap_children(cycle); } if (!live && (ngx_terminate || ngx_quit)) { // 收到退出信号且已经没有活跃子进程后便退出 ngx_master_process_exit(cycle); } if (ngx_terminate) { // 收到SIGINT,SIGTERM信号后,直接关闭nginx, // 首先给子进程发送关闭信号,1秒还没有关完就强制关闭所有子进程 if (delay == 0) { delay = 50; } if (sigio) { sigio--; continue; } sigio = ccf->worker_processes + 2 /* cache processes */; if (delay > 1000) { ngx_signal_worker_processes(cycle, SIGKILL); } else { ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_TERMINATE_SIGNAL)); } continue; } if (ngx_quit) { // 收到SIGQUIT信号后,优雅关闭Nginx, // 待所有worker进程将已经连接的请求处理完后在退出 ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); ls = cycle->listening.elts; for (n = 0; n < cycle->listening.nelts; n++) { if (ngx_close_socket(ls[n].fd) == -1) { ngx_log_error(NGX_LOG_EMERG, cycle->log, ngx_socket_errno, ngx_close_socket_n " %V failed", &ls[n].addr_text); } } cycle->listening.nelts = 0; continue; } if (ngx_reconfigure) { // 收到SIGHUP信号后,ngx_reconfigure在信号处理函数中被置1,执行让新配置文件生效的操作。 ngx_reconfigure = 0; if (ngx_new_binary) { // 在不重新载入配置文件的情况下启动工作进程。 ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); ngx_start_cache_manager_processes(cycle, 0); ngx_noaccepting = 0; continue; } ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reconfiguring"); cycle = ngx_init_cycle(cycle); if (cycle == NULL) { cycle = (ngx_cycle_t *) ngx_cycle; continue; } ngx_cycle = cycle; ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module); ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_JUST_RESPAWN); ngx_start_cache_manager_processes(cycle, 1); /* allow new processes to start */ ngx_msleep(100); live = 1; ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); } if (ngx_restart) { // 好像是平滑升级时,新起的nginx意外退出了,要在把之前nginx的工作进程在重新启动 ngx_restart = 0; ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); ngx_start_cache_manager_processes(cycle, 0); live = 1; } if (ngx_reopen) { // 重新打开日志文件 ngx_reopen = 0; ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reopening logs"); ngx_reopen_files(cycle, ccf->user); ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_REOPEN_SIGNAL)); } if (ngx_change_binary) { // 启动新的nignx,使新旧nginx同时工作 ngx_change_binary = 0; ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "changing binary"); ngx_new_binary = ngx_exec_new_binary(cycle, ngx_argv); } if (ngx_noaccept) { // 收到sigwinch信号后优雅关闭所有子进程 ngx_noaccept = 0; ngx_noaccepting = 1; ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); } } }
void ngx_master_process_cycle(ngx_cycle_t *cycle) { char *title; u_char *p; size_t size; ngx_int_t i; ngx_uint_t n, sigio; sigset_t set; struct itimerval itv; ngx_uint_t live; ngx_msec_t delay; ngx_listening_t *ls; ngx_core_conf_t *ccf; struct rlimit rlmt; sigemptyset(&set); sigaddset(&set, SIGCHLD); sigaddset(&set, SIGALRM); sigaddset(&set, SIGIO); sigaddset(&set, SIGINT); sigaddset(&set, ngx_signal_value(NGX_RECONFIGURE_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_REOPEN_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_NOACCEPT_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_TERMINATE_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); sigaddset(&set, ngx_signal_value(NGX_CHANGEBIN_SIGNAL)); if (sigprocmask(SIG_BLOCK, &set, NULL) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "sigprocmask() failed"); } sigemptyset(&set); size = sizeof(master_process); for (i = 0; i < ngx_argc; i++) { size += ngx_strlen(ngx_argv[i]) + 1; } title = ngx_pnalloc(cycle->pool, size); p = ngx_cpymem(title, master_process, sizeof(master_process) - 1); for (i = 0; i < ngx_argc; i++) { *p++ = ' '; p = ngx_cpystrn(p, (u_char *) ngx_argv[i], size); } ngx_setproctitle(title); ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module); ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); /* The directives such as "user", "rlimit_core", etc. should also be * effective on master process. Changed by Zimbra */ if (ccf->rlimit_nofile != NGX_CONF_UNSET) { rlmt.rlim_cur = (rlim_t) ccf->rlimit_nofile; rlmt.rlim_max = (rlim_t) ccf->rlimit_nofile; if (setrlimit(RLIMIT_NOFILE, &rlmt) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "setrlimit(RLIMIT_NOFILE, %i) failed", ccf->rlimit_nofile); } } if (ccf->rlimit_core != NGX_CONF_UNSET) { rlmt.rlim_cur = (rlim_t) ccf->rlimit_core; rlmt.rlim_max = (rlim_t) ccf->rlimit_core; if (setrlimit(RLIMIT_CORE, &rlmt) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "setrlimit(RLIMIT_CORE, %O) failed", ccf->rlimit_core); } } #ifdef RLIMIT_SIGPENDING if (ccf->rlimit_sigpending != NGX_CONF_UNSET) { rlmt.rlim_cur = (rlim_t) ccf->rlimit_sigpending; rlmt.rlim_max = (rlim_t) ccf->rlimit_sigpending; if (setrlimit(RLIMIT_SIGPENDING, &rlmt) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "setrlimit(RLIMIT_SIGPENDING, %i) failed", ccf->rlimit_sigpending); } } #endif if (geteuid() == 0) { if (setgid(ccf->group) == -1) { ngx_log_error(NGX_LOG_EMERG, cycle->log, ngx_errno, "setgid(%d) failed", ccf->group); /* fatal */ exit(2); } if (initgroups(ccf->username, ccf->group) == -1) { ngx_log_error(NGX_LOG_EMERG, cycle->log, ngx_errno, "initgroups(%s, %d) failed", ccf->username, ccf->group); } if (setuid(ccf->user) == -1) { ngx_log_error(NGX_LOG_EMERG, cycle->log, ngx_errno, "setuid(%d) failed", ccf->user); /* fatal */ exit(2); } } /* end change by Zimbra */ ngx_start_cache_manager_processes(cycle, 0); ngx_new_binary = 0; delay = 0; sigio = 0; live = 1; for ( ;; ) { if (delay) { if (ngx_sigalrm) { sigio = 0; delay *= 2; ngx_sigalrm = 0; } ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "termination cycle: %d", delay); itv.it_interval.tv_sec = 0; itv.it_interval.tv_usec = 0; itv.it_value.tv_sec = delay / 1000; itv.it_value.tv_usec = (delay % 1000 ) * 1000; if (setitimer(ITIMER_REAL, &itv, NULL) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "setitimer() failed"); } } ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "sigsuspend"); sigsuspend(&set); ngx_time_update(); ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "wake up, sigio %i", sigio); if (ngx_reap) { ngx_reap = 0; ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "reap children"); live = ngx_reap_children(cycle); } if (!live && (ngx_terminate || ngx_quit)) { ngx_master_process_exit(cycle); } if (ngx_terminate) { if (delay == 0) { delay = 50; } if (sigio) { sigio--; continue; } sigio = ccf->worker_processes + 2 /* cache processes */; if (delay > 1000) { ngx_signal_worker_processes(cycle, SIGKILL); } else { ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_TERMINATE_SIGNAL)); } continue; } if (ngx_quit) { ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); ls = cycle->listening.elts; for (n = 0; n < cycle->listening.nelts; n++) { if (ngx_close_socket(ls[n].fd) == -1) { ngx_log_error(NGX_LOG_EMERG, cycle->log, ngx_socket_errno, ngx_close_socket_n " %V failed", &ls[n].addr_text); } } cycle->listening.nelts = 0; continue; } if (ngx_reconfigure) { ngx_reconfigure = 0; if (ngx_new_binary) { ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); ngx_start_cache_manager_processes(cycle, 0); ngx_noaccepting = 0; continue; } ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reconfiguring"); cycle = ngx_init_cycle(cycle); if (cycle == NULL) { cycle = (ngx_cycle_t *) ngx_cycle; continue; } ngx_cycle = cycle; ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module); ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_JUST_RESPAWN); ngx_start_cache_manager_processes(cycle, 1); live = 1; ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); } if (ngx_restart) { ngx_restart = 0; ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN); ngx_start_cache_manager_processes(cycle, 0); live = 1; } if (ngx_reopen) { ngx_reopen = 0; ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reopening logs"); ngx_reopen_files(cycle, ccf->user); ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_REOPEN_SIGNAL)); } if (ngx_change_binary) { ngx_change_binary = 0; ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "changing binary"); ngx_new_binary = ngx_exec_new_binary(cycle, ngx_argv); } if (ngx_noaccept) { ngx_noaccept = 0; ngx_noaccepting = 1; ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL)); } } }