int __cpuinit xlr_wakeup_secondary_cpus(void) { struct nlm_soc_info *nodep; unsigned int i, j, boot_cpu; volatile u32 *cpu_ready = nlm_get_boot_data(BOOT_CPU_READY); /* * In case of RMI boot, hit with NMI to get the cores * from bootloader to linux code. */ nodep = nlm_get_node(0); boot_cpu = hard_smp_processor_id(); nlm_set_nmi_handler(nlm_rmiboot_preboot); for (i = 0; i < NR_CPUS; i++) { if (i == boot_cpu || !cpumask_test_cpu(i, &nlm_cpumask)) continue; nlm_pic_send_ipi(nodep->picbase, i, 1, 1); /* send NMI */ } /* Fill up the coremask early */ nodep->coremask = 1; for (i = 1; i < NLM_CORES_PER_NODE; i++) { for (j = 1000000; j > 0; j--) { if (cpu_ready[i * NLM_THREADS_PER_CORE]) break; udelay(10); } if (j != 0) nodep->coremask |= (1u << i); else pr_err("Failed to wakeup core %d\n", i); } return 0; }
int __cpuinit xlr_wakeup_secondary_cpus(void) { unsigned int i, boot_cpu; boot_cpu = hard_smp_processor_id(); nlm_set_nmi_handler(nlm_rmiboot_preboot); for (i = 0; i < NR_CPUS; i++) { if (i == boot_cpu || (nlm_cpumask & (1u << i)) == 0) continue; nlm_pic_send_ipi(nlm_pic_base, i, 1, 1); } return 0; }
int __cpuinit xlr_wakeup_secondary_cpus(void) { unsigned int i, boot_cpu; /* * In case of RMI boot, hit with NMI to get the cores * from bootloader to linux code. */ boot_cpu = hard_smp_processor_id(); nlm_set_nmi_handler(nlm_rmiboot_preboot); for (i = 0; i < NR_CPUS; i++) { if (i == boot_cpu || (nlm_cpumask & (1u << i)) == 0) continue; nlm_pic_send_ipi(nlm_pic_base, i, 1, 1); /* send NMI */ } return 0; }