/**
 * Read a polygon file and convert it to an NMG shell
 *
 * A polygon file consists of the following:
 *
 * The first line consists of two integer numbers: the number of
 * points (vertices) in the file, followed by the number of polygons
 * in the file.  This line is followed by lines for each of the
 * vertices.  Each vertex is listed on its own line, as the 3tuple "X
 * Y Z".  After the list of vertices comes the list of polygons.
 * each polygon is represented by a line containing 1) the number of
 * vertices in the polygon, followed by 2) the indices of the
 * vertices that make up the polygon.
 *
 * Implicitly returns r->s_p which is a new shell containing all the
 * faces from the polygon file.
 *
 * XXX This is a horrible way to do this.  Lee violates his own rules
 * about not creating fundamental structures on his own...  :-)
 * Retired in favor of more modern tessellation strategies.
 */
struct shell *
nmg_polytonmg(FILE *fp, struct nmgregion *r, const struct bn_tol *tol)
{
    int i, j, num_pts, num_facets, pts_this_face, facet;
    int vl_len;
    struct vertex **v;  /* list of all vertices */
    struct vertex **vl; /* list of vertices for this polygon*/
    point_t p;
    struct shell *s;
    struct faceuse *fu;
    struct loopuse *lu;
    struct edgeuse *eu;
    plane_t plane;
    struct model *m;

    s = nmg_msv(r);
    m = s->r_p->m_p;
    nmg_kvu(s->vu_p);

    /* get number of points & number of facets in file */
    if (fscanf(fp, "%d %d", &num_pts, &num_facets) != 2)
	bu_bomb("polytonmg() Error in first line of poly file\n");
    else
	if (RTG.NMG_debug & DEBUG_POLYTO)
	    bu_log("points: %d facets: %d\n",
		   num_pts, num_facets);


    v = (struct vertex **) bu_calloc(num_pts, sizeof (struct vertex *),
				     "vertices");

    /* build the vertices */
    for (i = 0; i < num_pts; ++i) {
	GET_VERTEX(v[i], m);
	v[i]->magic = NMG_VERTEX_MAGIC;
    }

    /* read in the coordinates of the vertices */
    for (i=0; i < num_pts; ++i) {
	if (fscanf(fp, "%lg %lg %lg", &p[0], &p[1], &p[2]) != 3)
	    bu_bomb("polytonmg() Error reading point");
	else
	    if (RTG.NMG_debug & DEBUG_POLYTO)
		bu_log("read vertex #%d (%g %g %g)\n",
		       i, p[0], p[1], p[2]);

	nmg_vertex_gv(v[i], p);
    }

    vl = (struct vertex **)bu_calloc(vl_len=8, sizeof (struct vertex *),
				     "vertex parameter list");

    for (facet = 0; facet < num_facets; ++facet) {
	if (fscanf(fp, "%d", &pts_this_face) != 1)
	    bu_bomb("polytonmg() error getting pt count for this face");

	if (RTG.NMG_debug & DEBUG_POLYTO)
	    bu_log("facet %d pts in face %d\n",
		   facet, pts_this_face);

	if (pts_this_face > vl_len) {
	    while (vl_len < pts_this_face) vl_len *= 2;
	    vl = (struct vertex **)bu_realloc((char *)vl,
					      vl_len*sizeof(struct vertex *),
					      "vertex parameter list (realloc)");
	}

	for (i=0; i < pts_this_face; ++i) {
	    if (fscanf(fp, "%d", &j) != 1)
		bu_bomb("polytonmg() error getting point index for v in f");
	    vl[i] = v[j-1];
	}

	fu = nmg_cface(s, vl, pts_this_face);
	lu = BU_LIST_FIRST(loopuse, &fu->lu_hd);
	/* XXX should check for vertex-loop */
	eu = BU_LIST_FIRST(edgeuse, &lu->down_hd);
	NMG_CK_EDGEUSE(eu);
	if (bn_mk_plane_3pts(plane, eu->vu_p->v_p->vg_p->coord,
			     BU_LIST_PNEXT(edgeuse, eu)->vu_p->v_p->vg_p->coord,
			     BU_LIST_PLAST(edgeuse, eu)->vu_p->v_p->vg_p->coord,
			     tol)) {
	    bu_log("At %d in %s\n", __LINE__, __FILE__);
	    bu_bomb("polytonmg() cannot make plane equation\n");
	} else nmg_face_g(fu, plane);
    }

    for (i=0; i < num_pts; ++i) {
	if (BU_LIST_IS_EMPTY(&v[i]->vu_hd)) continue;
	FREE_VERTEX(v[i]);
    }
    bu_free((char *)v, "vertex array");
    return s;
}
예제 #2
0
/* IEEE patch number of the Bi-Cubic Bezier patch and convert it
 * to a B-Spline surface (Bezier surfaces are a subset of B-spline surfaces
 * and output it to a BRL-CAD binary format.
 */
void
dump_patch(int (*patch)[4])
{
    struct vertex *verts[4];
    struct faceuse *fu;
    struct loopuse *lu;
    struct edgeuse *eu;
    int i, j, pt_type;
    fastf_t *mesh=NULL;
    fastf_t *ukv=NULL;
    fastf_t *vkv=NULL;

    /* U and V parametric Direction Spline parameters
     * Cubic = order 4,
     * knot size is Control point + order = 8
     * control point size is 4
     * point size is 3
     */

    for ( i=0; i<4; i++ )
        verts[i] = (struct vertex *)NULL;

    fu = nmg_cface( s, verts, 4 );
    NMG_CK_FACEUSE( fu );

    for ( i=0; i<4; i++ )
    {
        struct vertexuse *vu;
        vect_t uvw;
        point_t pnt;
        int k, j;

        switch ( i )
        {
        default:
        case 0:
            VSET( uvw, 0.0, 0.0, 0.0 );
            k = 0;
            j = 0;
            break;
        case 1:
            VSET( uvw, 1.0, 0.0, 0.0 );
            k = 0;
            j = 3;
            break;
        case 2:
            VSET( uvw, 1.0, 1.0, 0.0 );
            k = 3;
            j = 3;
            break;
        case 3:
            VSET( uvw, 0.0, 1.0, 0.0 );
            k = 3;
            j = 0;
            break;
        }

        VSET( pnt ,
              ducks[patch[k][j]-1].x * 1000 ,
              ducks[patch[k][j]-1].y * 1000 ,
              ducks[patch[k][j]-1].z * 1000 );
        nmg_vertex_gv( verts[i], pnt );

        for ( BU_LIST_FOR( vu, vertexuse, &verts[i]->vu_hd ) )
            nmg_vertexuse_a_cnurb( vu, uvw );
    }

    pt_type = RT_NURB_MAKE_PT_TYPE(3, RT_NURB_PT_XYZ, 0); /* see nurb.h for details */

    nmg_face_g_snurb( fu, 4, 4, 8, 8, ukv, vkv, 4, 4, pt_type, mesh );

    NMG_CK_FACE( fu->f_p );
    NMG_CK_FACE_G_SNURB( fu->f_p->g.snurb_p );
    mesh = fu->f_p->g.snurb_p->ctl_points;

    /* Copy the control points */

    for ( i = 0; i< 4; i++)
        for ( j = 0; j < 4; j++)
        {
            *mesh = ducks[patch[i][j]-1].x * 1000;
            *(mesh+1) = ducks[patch[i][j]-1].y * 1000;
            *(mesh+2) = ducks[patch[i][j]-1].z * 1000;
            mesh += 3;
        }

    /* Both u and v knot vectors are [ 0 0 0 0 1 1 1 1] */
    ukv = fu->f_p->g.snurb_p->u.knots;
    vkv = fu->f_p->g.snurb_p->v.knots;
    /* set the knot vectors */
    for ( i=0; i<4; i++ )
    {
        *(ukv+i) = 0.0;
        *(vkv+i) = 0.0;
    }
    for ( i=0; i<4; i++ )
    {
        *(ukv+4+i) = 1.0;
        *(vkv+4+i) = 1.0;
    }

    /* set eu geometry */
    pt_type = RT_NURB_MAKE_PT_TYPE(2, RT_NURB_PT_UV, 0); /* see nurb.h for details */
    lu = BU_LIST_FIRST( loopuse, &fu->lu_hd );
    NMG_CK_LOOPUSE( lu );
    for ( BU_LIST_FOR( eu, edgeuse, &lu->down_hd ) )
    {
#if 0
        nmg_edge_g_cnurb( eu, 2, 0, (fastf_t *)NULL, 2 ,
                          pt_type, (fastf_t *)NULL );
#else
        nmg_edge_g_cnurb_plinear( eu );
#endif
    }
    nmg_face_bb( fu->f_p, &tol );
}
예제 #3
0
파일: poly.c 프로젝트: cogitokat/brlcad
/**
 * R T _ P G _ T E S S
 */
int
rt_pg_tess(struct nmgregion **r, struct model *m, struct rt_db_internal *ip, const struct rt_tess_tol *UNUSED(ttol), const struct bn_tol *tol)
{
    size_t i;
    struct shell *s;
    struct vertex **verts;	/* dynamic array of pointers */
    struct vertex ***vertp;/* dynamic array of ptrs to pointers */
    struct faceuse *fu;
    size_t p;	/* current polygon number */
    struct rt_pg_internal *pgp;

    RT_CK_DB_INTERNAL(ip);
    pgp = (struct rt_pg_internal *)ip->idb_ptr;
    RT_PG_CK_MAGIC(pgp);

    *r = nmg_mrsv(m);	/* Make region, empty shell, vertex */
    s = BU_LIST_FIRST(shell, &(*r)->s_hd);

    verts = (struct vertex **)bu_malloc(
	pgp->max_npts * sizeof(struct vertex *), "pg_tess verts[]");
    vertp = (struct vertex ***)bu_malloc(
	pgp->max_npts * sizeof(struct vertex **), "pg_tess vertp[]");
    for (i=0; i < pgp->max_npts; i++)
	vertp[i] = &verts[i];

    for (p = 0; p < pgp->npoly; p++) {
	struct rt_pg_face_internal *pp;

	pp = &pgp->poly[p];

	/* Locate these points, if previously mentioned */
	for (i=0; i < pp->npts; i++) {
	    verts[i] = nmg_find_pt_in_shell(s,
					    &pp->verts[3*i], tol);
	}

	/* Construct the face.  Verts should be in CCW order */
	if ((fu = nmg_cmface(s, vertp, pp->npts)) == (struct faceuse *)0) {
	    bu_log("rt_pg_tess() nmg_cmface failed, skipping face %zu\n",
		   p);
	}

	/* Associate vertex geometry, where none existed before */
	for (i=0; i < pp->npts; i++) {
	    if (verts[i]->vg_p) continue;
	    nmg_vertex_gv(verts[i], &pp->verts[3*i]);
	}

	/* Associate face geometry */
	if (nmg_calc_face_g(fu)) {
	    nmg_pr_fu_briefly(fu, "");
	    bu_free((char *)verts, "pg_tess verts[]");
	    bu_free((char *)vertp, "pg_tess vertp[]");
	    return -1;			/* FAIL */
	}
    }

    /* Compute "geometry" for region and shell */
    nmg_region_a(*r, tol);

    /* Polysolids are often built with incorrect face normals.
     * Don't depend on them here.
     */
    nmg_fix_normals(s, tol);
    bu_free((char *)verts, "pg_tess verts[]");
    bu_free((char *)vertp, "pg_tess vertp[]");

    return 0;		/* OK */
}
int
psurf_to_nmg(struct model *m, FILE *fp, char *jfile)
/* Input/output, nmg model. */
/* Input, pointer to psurf data file. */
/* Name of Jack data base file. */
{
    int		face, fail, i, lst[MAX_NUM_PTS], nf, nv;
    struct faceuse	*outfaceuses[MAX_NUM_PTS];
    struct nmgregion *r;
    struct shell	*s;
    struct vertex	*vertlist[MAX_NUM_PTS];
    struct vlist	vert;

    /* Copied from proc-db/nmgmodel.c */
    tol.magic = BN_TOL_MAGIC;
    tol.dist = 0.01;
    tol.dist_sq = tol.dist * tol.dist;
    tol.perp = 0.001;
    tol.para = 0.999;

    face = 0;
    r = nmg_mrsv(m);	/* Make region, empty shell, vertex. */
    s = BU_LIST_FIRST(shell, &r->s_hd);

    while ((nv = read_psurf_vertices(fp, &vert)) != 0) {
	size_t ret;

	while ((nf = read_psurf_face(fp, lst)) != 0) {

	    /* Make face out of vertices in lst (ccw ordered). */
	    for (i = 0; i < nf; i++)
		vertlist[i] = vert.vt[lst[i]-1];
	    outfaceuses[face] = nmg_cface(s, vertlist, nf);
	    face++;

	    /* Save (possibly) newly created vertex structs. */
	    for (i = 0; i < nf; i++)
		vert.vt[lst[i]-1] = vertlist[i];
	}
	ret = fscanf(fp, ";;");
	if (ret > 0)
	    bu_log("unknown parsing error\n");

	/* Associate the vertex geometry, ccw. */
	for (i = 0; i < nv; i++)
	    if (vert.vt[i])
		nmg_vertex_gv(vert.vt[i], &vert.pt[3*i]);
	    else
		fprintf(stderr, "%s, vertex %d is unused\n",
			jfile, i+1);
    }

    nmg_vertex_fuse(&m->magic, &tol);

    /* Associate the face geometry. */
    for (i = 0, fail = 0; i < face; i++)
    {
	struct loopuse *lu;
	plane_t pl;

	lu = BU_LIST_FIRST(loopuse, &outfaceuses[i]->lu_hd);
	if (nmg_loop_plane_area(lu, pl) < 0.0)
	{
	    fail = 1;
	    nmg_kfu(outfaceuses[i]);
	}
	else
	    nmg_face_g(outfaceuses[i], pl);
    }
    if (fail)
	return -1;

    if (face)
    {
	int empty_model;
	empty_model = nmg_kill_zero_length_edgeuses(m);
	if (!empty_model) {

	  /* Compute "geometry" for region and shell */
	  nmg_region_a(r, &tol);

	  nmg_break_e_on_v(&m->magic, &tol);
	  empty_model = nmg_kill_zero_length_edgeuses(m);

	  /* Glue edges of outward pointing face uses together. */
	  if (!empty_model) nmg_edge_fuse(&m->magic, &tol);
	}
    }

    return 0;
}
/*
 *	Convert an ascii description of an nmg to an actual nmg.
 *	(This should be done with lex and yacc.)
 */
static void
descr_to_nmg(struct shell *s, FILE *fp, fastf_t *Ext)
    /* NMG shell to add loops to. */
    /* File pointer for ascii nmg file. */
    /* Extrusion vector. */
{
#define MAXV	10000

    char token[80] = {0};	/* Token read from ascii nmg file. */
    double x, y, z;	/* Coordinates of a vertex. */
    int	dir = OT_NONE;	/* Direction of face. */
    int	i,
	lu_verts[MAXV] = {0},	/* Vertex names making up loop. */
	n,		/* Number of vertices so far in loop. */
	status,		/* Set to EOF when finished ascii file. */
	vert_num;	/* Current vertex in ascii file. */
    fastf_t	pts[3*MAXV] = {(fastf_t)0};	/* Points in current loop. */
    struct faceuse *fu;	/* Face created. */
    struct vertex	*cur_loop[MAXV], /* Vertices in current loop. */
			*verts[MAXV];	/* Vertices in all loops. */

    n = 0;			/* No vertices read in yet. */
    fu = NULL;		/* Face to be created elsewhere. */
    for (i = 0; i < MAXV; i++) {
	cur_loop[i] = NULL;
	verts[i] = NULL;
    }

    status = fscanf(fp, "%80s", token);	/* Get 1st token. */
    do {
	switch (token[0]) {
	    case 'e':		/* Extrude face. */
		status = fscanf(fp, "%80s", token);
		switch (token[0]) {
		    case '0':
		    case '1':
		    case '2':
		    case '3':
		    case '4':
		    case '5':
		    case '6':
		    case '7':
		    case '8':
		    case '9':
		    case '.':
		    case '+':
		    case '-':
			/* Get x value of vector. */
			x = atof(token);
			if (fscanf(fp, "%lf%lf", &y, &z) != 2)
			    bu_exit(EXIT_FAILURE, "descr_to_nmg: messed up vector\n");
			VSET(Ext, x, y, z);

			/* Get token for next trip through loop. */
			status = fscanf(fp, "%80s", token);
			break;
		}
		break;
	    case 'l':		/* Start new loop. */
		/* Make a loop with vertices previous to this 'l'. */
		if (n) {
		    for (i = 0; i < n; i++)
			if (lu_verts[i] >= 0)
			    cur_loop[i] = verts[lu_verts[i]];
			else /* Reuse of a vertex. */
			    cur_loop[i] = NULL;
		    fu = nmg_add_loop_to_face(s, fu, cur_loop, n,
			    dir);
		    /* Associate geometry with vertices. */
		    for (i = 0; i < n; i++) {
			if (lu_verts[i] >= 0 && !verts[lu_verts[i]]) {
			    nmg_vertex_gv( cur_loop[i],
				    &pts[3*lu_verts[i]]);
			    verts[lu_verts[i]] =
				cur_loop[i];
			}
		    }
		    /* Take care of reused vertices. */
		    for (i = 0; i < n; i++)
			if (lu_verts[i] < 0)
			    nmg_jv(verts[-lu_verts[i]], cur_loop[i]);
		    n = 0;
		}
		status = fscanf(fp, "%80s", token);

		switch (token[0]) {
		    case 'h':	/* Is it cw or ccw? */
			if (BU_STR_EQUAL(token, "hole"))
			    dir = OT_OPPOSITE;
			else
			    bu_exit(EXIT_FAILURE, "descr_to_nmg: expected \"hole\"\n");
			/* Get token for next trip through loop. */
			status = fscanf(fp, "%80s", token);
			break;

		    default:
			dir = OT_SAME;
			break;
		}
		break;

	    case 'v':		/* Vertex in current loop. */
		if (token[1] == '\0')
		    bu_exit(EXIT_FAILURE, "descr_to_nmg: vertices must be numbered.\n");
		vert_num = atoi(token+1);
		if (vert_num < 0 || vert_num >= MAXV) {
		    bu_log("Vertex number out of bounds: %d\nAborting\n", vert_num);
		    return;
		}
		status = fscanf(fp, "%80s", token);
		switch (token[0]) {
		    case '0':
		    case '1':
		    case '2':
		    case '3':
		    case '4':
		    case '5':
		    case '6':
		    case '7':
		    case '8':
		    case '9':
		    case '.':
		    case '+':
		    case '-':
			/* Get coordinates of vertex. */
			x = atof(token);
			if (fscanf(fp, "%lf%lf", &y, &z) != 2)
			    bu_exit(EXIT_FAILURE, "descr_to_nmg: messed up vertex\n");
			/* Save vertex with others in current loop. */
			pts[3*vert_num] = x;
			pts[3*vert_num+1] = y;
			pts[3*vert_num+2] = z;
			/* Save vertex number. */
			lu_verts[n] = vert_num;
			if (++n > MAXV)
			    bu_exit(EXIT_FAILURE, "descr_to_nmg: too many points in loop\n");
			/* Get token for next trip through loop. */
			status = fscanf(fp, "%80s", token);
			break;

		    default:
			/* Use negative vert number to mark vertex as being reused. */
			lu_verts[n] = -vert_num;
			if (++n > MAXV)
			    bu_exit(EXIT_FAILURE, "descr_to_nmg: too many points in loop\n");
			break;
		}
		break;

	    default:
		bu_exit(1, "descr_to_nmg: unexpected token \"%s\"\n", token);
		break;
	}
    } while (status != EOF);

    /* Make a loop with vertices previous to this 'l'. */
    if (n) {
	for (i = 0; i < n; i++)
	    if (lu_verts[i] >= 0)
		cur_loop[i] = verts[lu_verts[i]];
	    else /* Reuse of a vertex. */
		cur_loop[i] = NULL;
	nmg_add_loop_to_face(s, fu, cur_loop, n, dir);

	/* Associate geometry with vertices. */
	for (i = 0; i < n; i++) {
	    if (lu_verts[i] >= 0 && !verts[lu_verts[i]]) {
		nmg_vertex_gv( cur_loop[i],
			&pts[3*lu_verts[i]]);
		verts[lu_verts[i]] =
		    cur_loop[i];
	    }
	}
	/* Take care of reused vertices. */
	for (i = 0; i < n; i++)
	    if (lu_verts[i] < 0)
		nmg_jv(verts[-lu_verts[i]], cur_loop[i]);
	n = 0;
    }
}
예제 #6
0
파일: extrude.c 프로젝트: cogitokat/brlcad
int
extrude(int entityno)
{

    fastf_t length;			/* extrusion length */
    vect_t edir;			/* a unit vector (direction of extrusion */
    vect_t evect;			/* Scaled vector for extrusion */
    int sol_num;		/* IGES solid type number */
    int curve;			/* pointer to directory entry for base curve */
    struct ptlist *curv_pts;		/* List of points along curve */
    int i;

    /* Default values */
    VSET(edir, 0.0, 0.0, 1.0);


    /* Acquiring Data */

    if (dir[entityno]->param <= pstart) {
	bu_log("Illegal parameter pointer for entity D%07d (%s)\n" ,
	       dir[entityno]->direct, dir[entityno]->name);
	return 0;
    }
    Readrec(dir[entityno]->param);
    Readint(&sol_num, "");

    /* Read pointer to directory entry for curve to be extruded */

    Readint(&curve, "");

    /* Convert this to a "dir" index */

    curve = (curve-1)/2;

    Readcnv(&length, "");
    Readflt(&edir[X], "");
    Readflt(&edir[Y], "");
    Readflt(&edir[Z], "");

    if (length <= 0.0) {
	bu_log("Illegal parameters for entity D%07d (%s)\n" ,
	       dir[entityno]->direct, dir[entityno]->name);
	return 0;
    }

    /*
     * Unitize direction vector
     */

    VUNITIZE(edir);

    /* Scale vector */

    VSCALE(evect, edir, length);

    /* Switch based on type of curve to be extruded */

    switch (dir[curve]->type) {
	case 100:	/* circular arc */
	    return Extrudcirc(entityno, curve, evect);
	case 104:	/* conic arc */
	    return Extrudcon(entityno, curve, evect);
	case 102:	/* composite curve */
	case 106:	/* copius data */
	case 112:	/* parametric spline */
	case 126: {
	    /* B-spline */
	    int npts;
	    struct model *m;
	    struct nmgregion *r;
	    struct shell *s;
	    struct faceuse *fu;
	    struct loopuse *lu;
	    struct edgeuse *eu;
	    struct ptlist *pt_ptr;

	    npts = Getcurve(curve, &curv_pts);
	    if (npts < 3)
		return 0;


	    m = nmg_mm();
	    r = nmg_mrsv(m);
	    s = BU_LIST_FIRST(shell, &r->s_hd);

	    fu = nmg_cface(s, (struct vertex **)NULL, npts-1);
	    pt_ptr = curv_pts;
	    lu = BU_LIST_FIRST(loopuse, &fu->lu_hd);
	    for (BU_LIST_FOR(eu, edgeuse, &lu->down_hd)) {
		struct vertex *v;

		v = eu->vu_p->v_p;
		nmg_vertex_gv(v, pt_ptr->pt);
		pt_ptr = pt_ptr->next;
	    }

	    if (nmg_calc_face_g(fu)) {
		bu_log("Extrude: Failed to calculate face geometry\n");
		nmg_km(m);
		bu_free((char *)curv_pts, "curve_pts");
		return 0;
	    }

	    if (nmg_extrude_face(fu, evect, &tol)) {
		bu_log("Extrude: extrusion failed\n");
		nmg_km(m);
		bu_free((char *)curv_pts, "curve_pts");
		return 0;
	    }

	    mk_bot_from_nmg(fdout, dir[entityno]->name, s);
	    nmg_km(m);
	    bu_free((char *)curv_pts, "curve_pts");

	    return 1;
	}
	default:
	    i = (-1);
	    while (dir[curve]->type != typecount[++i].type && i < ntypes);
	    bu_log("Extrusions of %s are not allowed\n", typecount[i].name);
	    break;
    }
    return 0;


}
예제 #7
0
파일: off-g.c 프로젝트: kanzure/brlcad
int read_faces(struct model *m, FILE *fgeom)
{
    int 		   nverts, nfaces, nedges;
    int 	   i, j, fail=0;
    fastf_t 	  *pts;
    struct vertex 	 **verts;
    struct faceuse 	 **outfaceuses;
    struct nmgregion  *r;
    struct shell 	  *s;
    size_t ret;

    /* Get numbers of vertices and faces, and grab the appropriate amount of memory */
    if (fscanf(fgeom, "%d %d %d", &nverts, &nfaces, &nedges) != 3)
	bu_exit(1, "Cannot read number of vertices, faces, edges.\n");

    pts = (fastf_t *) bu_malloc(sizeof(fastf_t) * 3 * nverts, "points list");
    verts = (struct vertex **) bu_malloc(sizeof(struct vertex *) * nverts, "vertices");
    outfaceuses = (struct faceuse **) bu_malloc(sizeof(struct faceuse *) * nfaces, "faceuses");

    /* Read in vertex geometry, store in geometry list */
    for (i = 0; i < nverts; i++) {
	double scan[3];
	if (fscanf(fgeom, "%lf %lf %lf", &scan[0], &scan[1], &scan[2]) != 3) {
	    bu_exit(1, "Not enough data points in geometry file.\n");
	}
	pts[3*i] = scan[0];
	pts[3*i+1] = scan[1];
	pts[3*i+2] = scan[2];

	verts[i] = (struct vertex *) 0;
	ret = fscanf(fgeom, "%*[^\n]");
	if (ret > 0)
	    bu_log("unknown parsing error\n");
    }

    r = nmg_mrsv(m);		/* Make region, empty shell, vertex. */
    s = BU_LIST_FIRST(shell, &r->s_hd);


    for (i = 0; i < nfaces; i++) {
	/* Read in each of the faces */
	struct vertex **vlist;
	int *pinds;

	if (fscanf(fgeom, "%d", &nedges) != 1) {
	    bu_exit(1, "Not enough faces in geometry file.\n");
	}
	/* Grab memory for list for this face. */
	vlist = (struct vertex **) bu_malloc(sizeof(struct vertex *) * nedges, "vertex list");
	pinds = (int *) bu_malloc(sizeof(int) * nedges, "point indices");

	for (j = 0; j < nedges; j++) {
	    /* Read list of point indices. */
	    if (fscanf(fgeom, "%d", &pinds[j]) != 1) {
		bu_exit(1, "Not enough points on face.\n");
	    }
	    vlist[j] = verts[pinds[j]-1];
	}

	outfaceuses[i] = nmg_cface(s, vlist, nedges);	/* Create face. */
	NMG_CK_FACEUSE(outfaceuses[i]);

	for (j = 0; j < nedges; j++)		/* Save (possibly) newly created vertex structs. */
	    verts[pinds[j]-1] = vlist[j];

	ret = fscanf(fgeom, "%*[^\n]");
	if (ret > 0)
	    bu_log("unknown parsing error\n");

	bu_free((char *)vlist, "vertext list");
	bu_free((char *)pinds, "point indices");
    }

    for (i = 0; i < nverts; i++)
	if (verts[i] != 0)
	    nmg_vertex_gv(verts[i], &pts[3*i]);
	else
	    fprintf(stderr, "Warning: vertex %d unused.\n", i+1);

    for (i = 0; i < nfaces; i++) {
	plane_t pl;

	fprintf(stderr, "planeeqning face %d.\n", i);
	if ( nmg_loop_plane_area( BU_LIST_FIRST( loopuse, &outfaceuses[i]->lu_hd ), pl ) < 0.0 )
	    fail = 1;
	else
	    nmg_face_g( outfaceuses[i], pl );

    }

    if (fail) return -1;

    nmg_gluefaces(outfaceuses, nfaces, &tol);
    nmg_region_a(r, &tol);

    bu_free((char *)pts, "points list");
    return 0;
}
예제 #8
0
파일: nastran-g.c 프로젝트: kanzure/brlcad
HIDDEN void
get_ctria3(void)
{
    int pid;
    int g1, g2, g3;
    int gin1, gin2, gin3;
    point_t pt1, pt2, pt3;
    struct vertex **v[3];
    struct faceuse *fu;
    struct shell *s;
    struct pshell *psh;
    int pid_index=0;

    pid = atoi(curr_rec[2]);

    pid_index = get_pid_index(pid);

    g1 = atoi(curr_rec[3]);

    g2 = atoi(curr_rec[4]);

    g3 = atoi(curr_rec[5]);

    gin1 = get_gridi(g1);
    gin2 = get_gridi(g2);
    gin3 = get_gridi(g3);

    v[0] = &g_pts[gin1].v[pid_index];
    v[1] = &g_pts[gin2].v[pid_index];
    v[2] = &g_pts[gin3].v[pid_index];

    VSCALE(pt1, g_pts[gin1].pt, conv[units]);
    VSCALE(pt2, g_pts[gin2].pt, conv[units]);
    VSCALE(pt3, g_pts[gin3].pt, conv[units]);

    if (!nmg_model && !pid) {
	struct nmgregion *r;

	nmg_model = nmg_mm();
	r = nmg_mrsv(nmg_model);
	nmg_shell = BU_LIST_FIRST(shell, &r->s_hd);
    }

    if (!pid)
	s = nmg_shell;
    else {
	int found=0;

	/* find pshell entry for this pid */
	for (BU_LIST_FOR(psh, pshell, &pshell_head.l)) {
	    if (psh->pid == pid) {
		found = 1;
		break;
	    }
	}

	if (!found) {
	    bu_log("Cannot find PSHELL entry for a CTRIA3 element (ignoring)!\n");
	    write_fields();
	    return;
	}

	if (psh->s)
	    s = psh->s;
	else {
	    struct model *m;
	    struct nmgregion *r;

	    m = nmg_mm();
	    r = nmg_mrsv(m);
	    s = BU_LIST_FIRST(shell, &r->s_hd);
	    psh->s = s;
	}
    }

    fu = nmg_cmface(s, v, 3);

    if (!g_pts[gin1].v[pid_index]->vg_p)
	nmg_vertex_gv(g_pts[gin1].v[pid_index], pt1);
    if (!g_pts[gin2].v[pid_index]->vg_p)
	nmg_vertex_gv(g_pts[gin2].v[pid_index], pt2);
    if (!g_pts[gin3].v[pid_index]->vg_p)
	nmg_vertex_gv(g_pts[gin3].v[pid_index], pt3);

    nmg_calc_face_g(fu);
}
struct faceuse *
Make_planar_face(struct shell *s, int entityno, int face_orient)
{

    int sol_num;	/* IGES solid type number */
    int no_of_edges;	/* edge count for this loop */
    int no_of_param_curves;
    int vert_count = 0;	/* Actual number of vertices used to make face */
    struct iges_edge_use *edge_list;	/* list of edgeuses from iges loop entity */
    struct faceuse *fu = NULL;	/* NMG face use */
    struct loopuse *lu;		/* NMG loop use */
    struct vertex ***verts;	/* list of vertices */
    struct iges_vertex_list *v_list;
    int done;
    int i, j, k;

    /* Acquiring Data */

    if (dir[entityno]->param <= pstart) {
	bu_log("Illegal parameter pointer for entity D%07d (%s)\n" ,
	       dir[entityno]->direct, dir[entityno]->name);
	return 0;
    }

    Readrec(dir[entityno]->param);
    Readint(&sol_num, "");
    if (sol_num != 508) {
	bu_exit(1, "ERROR: Entity #%d is not a loop (it's a %s)\n", entityno, iges_type(sol_num));
    }

    Readint(&no_of_edges, "");
    edge_list = (struct iges_edge_use *)bu_calloc(no_of_edges, sizeof(struct iges_edge_use) ,
						  "Make_face (edge_list)");
    for (i = 0; i < no_of_edges; i++) {
	Readint(&edge_list[i].edge_is_vertex, "");
	Readint(&edge_list[i].edge_de, "");
	Readint(&edge_list[i].index, "");
	Readint(&edge_list[i].orient, "");
	if (!face_orient) {
	    /* need opposite orientation of edge */
	    if (edge_list[i].orient)
		edge_list[i].orient = 0;
	    else
		edge_list[i].orient = 1;
	}
	edge_list[i].root = (struct iges_param_curve *)NULL;
	Readint(&no_of_param_curves, "");
	for (j = 0; j < no_of_param_curves; j++) {
	    struct iges_param_curve *new_crv;
	    struct iges_param_curve *crv;

	    Readint(&k, "");	/* ignore iso-parametric flag */

	    BU_ALLOC(new_crv, struct iges_param_curve);
	    if (edge_list[i].root == (struct iges_param_curve *)NULL)
		edge_list[i].root = new_crv;
	    else {
		crv = edge_list[i].root;
		while (crv->next != (struct iges_param_curve *)NULL)
		    crv = crv->next;
		crv->next = new_crv;
	    }
	    Readint(&new_crv->curve_de, "");
	    new_crv->next = (struct iges_param_curve *)NULL;
	}
    }

    verts = (struct vertex ***)bu_calloc(no_of_edges, sizeof(struct vertex **) ,
					 "Make_face: vertex_list **");

    for (i = 0; i < no_of_edges; i++) {
	if (face_orient)
	    verts[i] = Get_vertex(&edge_list[i]);
	else
	    verts[no_of_edges-1-i] = Get_vertex(&edge_list[i]);
    }

    /* eliminate zero length edges */
    vert_count = no_of_edges;
    done = 0;
    while (!done) {
	done = 1;
	for (i = 0; i < vert_count; i++) {
	    k = i + 1;
	    if (k == vert_count)
		k = 0;

	    if (verts[i] == verts[k]) {
		bu_log("Ignoring zero length edge\n");
		done = 0;
		vert_count--;
		for (j = i; j < vert_count; j++)
		    verts[j] = verts[j+1];
	    }
	}
    }

    if (vert_count) {
	plane_t pl;		/* Plane equation for face */
	fastf_t area;		/* area of loop */
	fastf_t dist;
	vect_t min2max;
	point_t outside_pt;

	fu = nmg_cmface(s, verts, vert_count);

	/* associate geometry */
	v_list = vertex_root;
	while (v_list != NULL) {
	    for (i = 0; i < v_list->no_of_verts; i++) {
		if (v_list->i_verts[i].v != NULL && v_list->i_verts[i].v->vg_p == NULL) {
		    NMG_CK_VERTEX(v_list->i_verts[i].v);
		    nmg_vertex_gv(v_list->i_verts[i].v ,
				  v_list->i_verts[i].pt);
		}
	    }
	    v_list = v_list->next;
	}

	lu = BU_LIST_FIRST(loopuse, &fu->lu_hd);
	NMG_CK_LOOPUSE(lu);

	area = nmg_loop_plane_area(lu, pl);
	if (area < 0.0) {
	    bu_log("Could not calculate area for face (entityno = %d)\n", entityno);
	    nmg_pr_fu_briefly(fu, "");
	    nmg_kfu(fu);
	    fu = (struct faceuse *)NULL;
	    goto err;
	}

	nmg_face_g(fu, pl);
	nmg_face_bb(fu->f_p, &tol);

	/* find a point that is surely outside the loop */
	VSUB2(min2max, fu->f_p->max_pt, fu->f_p->min_pt);
	VADD2(outside_pt, fu->f_p->max_pt, min2max);

	/* move it to the plane of the face */
	dist = DIST_PT_PLANE(outside_pt, pl);
	VJOIN1(outside_pt, outside_pt, -dist, pl);

	if (nmg_class_pt_lu_except(outside_pt, lu, (struct edge *)NULL, &tol) != NMG_CLASS_AoutB) {
	    nmg_reverse_face(fu);
	    if (fu->orientation != OT_SAME) {
		fu = fu->fumate_p;
		if (fu->orientation != OT_SAME)
		    bu_exit(1, "ERROR: no OT_SAME use for a face!\n");
	    }
	}
    } else
	bu_log("No edges left!\n");

err:
    bu_free((char *)edge_list, "Make_face (edge_list)");
    bu_free((char *)verts, "Make_face (vertexlist)");
    return fu;
}
예제 #10
0
파일: arbn.c 프로젝트: kanzure/brlcad
/**
 * "Tessellate" an ARB into an NMG data structure.
 * Purely a mechanical transformation of one faceted object
 * into another.
 *
 * Returns -
 * -1 failure
 *  0 OK.  *r points to nmgregion that holds this tessellation.
 */
int
rt_arbn_tess(struct nmgregion **r, struct model *m, struct rt_db_internal *ip, const struct rt_tess_tol *UNUSED(ttol), const struct bn_tol *tol)
{
    struct rt_arbn_internal *aip;
    struct shell *s;
    struct faceuse **fu;		/* array of faceuses */
    size_t nverts;		/* maximum possible number of vertices = neqn!/(3!(neqn-3)! */
    size_t point_count = 0;	/* actual number of vertices */
    size_t face_count = 0;	/* actual number of faces built */
    size_t i, j, k, l, n;
    struct arbn_pts *pts;
    struct arbn_edges *edges;		/* A list of edges for each plane eqn (each face) */
    size_t *edge_count;	/* number of edges for each face */
    size_t max_edge_count; /* maximum number of edges for any face */
    struct vertex **verts;	/* Array of pointers to vertex structs */
    struct vertex ***loop_verts;	/* Array of pointers to vertex structs to pass to nmg_cmface */

    RT_CK_DB_INTERNAL(ip);
    aip = (struct rt_arbn_internal *)ip->idb_ptr;
    RT_ARBN_CK_MAGIC(aip);

    /* Allocate memory for the vertices */
    nverts = aip->neqn * (aip->neqn-1) * (aip->neqn-2) / 6;
    pts = (struct arbn_pts *)bu_calloc(nverts, sizeof(struct arbn_pts), "rt_arbn_tess: pts");

    /* Allocate memory for arbn_edges */
    edges = (struct arbn_edges *)bu_calloc(aip->neqn*aip->neqn, sizeof(struct arbn_edges) ,
					   "rt_arbn_tess: edges");
    edge_count = (size_t *)bu_calloc(aip->neqn, sizeof(size_t), "rt_arbn_tess: edge_count");

    /* Allocate memory for faceuses */
    fu = (struct faceuse **)bu_calloc(aip->neqn, sizeof(struct faceuse *), "rt_arbn_tess: fu");

    /* Calculate all vertices */
    for (i = 0; i < aip->neqn; i++) {
	for (j = i + 1; j < aip->neqn; j++) {
	    for (k = j + 1; k < aip->neqn; k++) {
		int keep_point = 1;

		if (bn_mkpoint_3planes(pts[point_count].pt, aip->eqn[i], aip->eqn[j], aip->eqn[k]))
		    continue;

		for (l = 0; l < aip->neqn; l++) {
		    if (l == i || l == j || l == k)
			continue;
		    if (DIST_PT_PLANE(pts[point_count].pt, aip->eqn[l]) > tol->dist) {
			keep_point = 0;
			break;
		    }
		}
		if (keep_point) {
		    pts[point_count].plane_no[0] = i;
		    pts[point_count].plane_no[1] = j;
		    pts[point_count].plane_no[2] = k;
		    point_count++;
		}
	    }
	}
    }

    /* Allocate memory for the NMG vertex pointers */
    verts = (struct vertex **)bu_calloc(point_count, sizeof(struct vertex *) ,
					"rt_arbn_tess: verts");

    /* Associate points with vertices */
    for (i = 0; i < point_count; i++)
	pts[i].vp = &verts[i];

    /* Check for duplicate points */
    for (i = 0; i < point_count; i++) {
	for (j = i + 1; j < point_count; j++) {
	    if (DIST_PT_PT_SQ(pts[i].pt, pts[j].pt) < tol->dist_sq) {
		/* These two points should point to the same vertex */
		pts[j].vp = pts[i].vp;
	    }
	}
    }

    /* Make list of edges for each face */
    for (i = 0; i < aip->neqn; i++) {
	/* look for a point that lies in this face */
	for (j = 0; j < point_count; j++) {
	    if (pts[j].plane_no[0] != (int)i
		&& pts[j].plane_no[1] != (int)i
		&& pts[j].plane_no[2] != (int)i)
		continue;

	    /* look for another point that shares plane "i" and another with this one */
	    for (k = j + 1; k < point_count; k++) {
		size_t match = (size_t)-1;
		size_t pt1, pt2;
		int duplicate = 0;

		/* skip points not on plane "i" */
		if (pts[k].plane_no[0] != (int)i
		    && pts[k].plane_no[1] != (int)i
		    && pts[k].plane_no[2] != (int)i)
		    continue;

		for (l = 0; l < 3; l++) {
		    for (n = 0; n < 3; n++) {
			if (pts[j].plane_no[l] == pts[k].plane_no[n]
			    && pts[j].plane_no[l] != (int)i) {
			    match = pts[j].plane_no[l];
			    break;
			}
		    }
		    if (match != (size_t)-1)
			break;
		}

		if (match == (size_t)-1)
		    continue;

		/* convert equivalent points to lowest point number */
		pt1 = j;
		pt2 = k;
		for (l = 0; l < pt1; l++) {
		    if (pts[pt1].vp == pts[l].vp) {
			pt1 = l;
			break;
		    }
		}
		for (l = 0; l < pt2; l++) {
		    if (pts[pt2].vp == pts[l].vp) {
			pt2 = l;
			break;
		    }
		}

		/* skip null edges */
		if (pt1 == pt2)
		    continue;

		/* check for duplicate edge */
		for (l = 0; l < edge_count[i]; l++) {
		    if ((edges[LOC(i, l)].v1_no == (int)pt1
			 && edges[LOC(i, l)].v2_no == (int)pt2)
			|| (edges[LOC(i, l)].v2_no == (int)pt1
			    && edges[LOC(i, l)].v1_no == (int)pt2))
		    {
			duplicate = 1;
			break;
		    }
		}
		if (duplicate)
		    continue;

		/* found an edge belonging to faces "i" and "match" */
		if (edge_count[i] == aip->neqn) {
		    bu_log("Too many edges found for one face\n");
		    goto fail;
		}
		edges[LOC(i, edge_count[i])].v1_no = pt1;
		edges[LOC(i, edge_count[i])].v2_no = pt2;
		edge_count[i]++;
	    }
	}
    }

    /* for each face, sort the list of edges into a loop */
    Sort_edges(edges, edge_count, aip);

    /* Get max number of edges for any face */
    max_edge_count = 0;
    for (i = 0; i < aip->neqn; i++)
	if (edge_count[i] > max_edge_count)
	    max_edge_count = edge_count[i];

    /* Allocate memory for array to pass to nmg_cmface */
    loop_verts = (struct vertex ***) bu_calloc(max_edge_count, sizeof(struct vertex **) ,
					       "rt_arbn_tess: loop_verts");

    *r = nmg_mrsv(m);	/* Make region, empty shell, vertex */
    s = BU_LIST_FIRST(shell, &(*r)->s_hd);

    /* Make the faces */
    for (i = 0; i < aip->neqn; i++) {
	int loop_length = 0;

	for (j = 0; j < edge_count[i]; j++) {
	    /* skip zero length edges */
	    if (pts[edges[LOC(i, j)].v1_no].vp == pts[edges[LOC(i, j)].v2_no].vp)
		continue;

	    /* put vertex pointers into loop_verts array */
	    loop_verts[loop_length] = pts[edges[LOC(i, j)].v2_no].vp;
	    loop_length++;
	}

	/* Make the face if there is are least 3 vertices */
	if (loop_length > 2)
	    fu[face_count++] = nmg_cmface(s, loop_verts, loop_length);
    }

    /* Associate vertex geometry */
    for (i = 0; i < point_count; i++) {
	if (!(*pts[i].vp))
	    continue;

	if ((*pts[i].vp)->vg_p)
	    continue;

	nmg_vertex_gv(*pts[i].vp, pts[i].pt);
    }

    bu_free((char *)pts, "rt_arbn_tess: pts");
    bu_free((char *)edges, "rt_arbn_tess: edges");
    bu_free((char *)edge_count, "rt_arbn_tess: edge_count");
    bu_free((char *)verts, "rt_arbn_tess: verts");
    bu_free((char *)loop_verts, "rt_arbn_tess: loop_verts");

    /* Associate face geometry */
    for (i = 0; i < face_count; i++) {
	if (nmg_fu_planeeqn(fu[i], tol)) {
	    bu_log("Failed to calculate face plane equation\n");
	    bu_free((char *)fu, "rt_arbn_tess: fu");
	    nmg_kr(*r);
	    *r = (struct nmgregion *)NULL;
	    return -1;
	}
    }

    bu_free((char *)fu, "rt_arbn_tess: fu");

    nmg_fix_normals(s, tol);

    (void)nmg_mark_edges_real(&s->l.magic);

    /* Compute "geometry" for region and shell */
    nmg_region_a(*r, tol);

    return 0;

fail:
    bu_free((char *)pts, "rt_arbn_tess: pts");
    bu_free((char *)edges, "rt_arbn_tess: edges");
    bu_free((char *)edge_count, "rt_arbn_tess: edge_count");
    bu_free((char *)verts, "rt_arbn_tess: verts");
    return -1;
}