예제 #1
0
        bool run(OperationContext* txn, const string&, BSONObj& cmdObj, int, string& errmsg,
                 BSONObjBuilder& result, bool) {

            Timer t;

            ConnectionString hostConn(cmdObj["host"].String(),
                                      ConnectionString::SYNC);

            unsigned seed = (unsigned) number_field(cmdObj, "seed", 0);
            int numThreads = (int) number_field(cmdObj, "numThreads", 4);
            int wait = (int) number_field(cmdObj, "wait", 10000);

            log() << "Starting " << this->name << " with -" << endl
                  << "  seed: " << seed << endl
                  << "  numThreads: " << numThreads << endl
                  << "  total wait: " << wait << endl << endl;

            // Skew host clocks if needed
            try {
                skewClocks( hostConn, cmdObj );
            }
            catch( DBException e ) {
                errmsg = str::stream() << "Clocks could not be skewed." << causedBy( e );
                return false;
            }

            count.store(0);
            keepGoing = true;

            vector<shared_ptr<boost::thread> > threads;
            vector<shared_ptr<BSONObjBuilder> > results;
            for (int i = 0; i < numThreads; i++) {
                results.push_back(shared_ptr<BSONObjBuilder> (new BSONObjBuilder()));
                threads.push_back(shared_ptr<boost::thread> (new boost::thread(
                                      stdx::bind(&TestDistLockWithSkew::runThread, this,
                                                  hostConn, (unsigned) i, seed + i, boost::ref(cmdObj),
                                                  boost::ref(*(results[i].get()))))));
            }

            sleepsecs(wait / 1000);
            keepGoing = false;

            bool errors = false;
            for (unsigned i = 0; i < threads.size(); i++) {
                threads[i]->join();
                errors = errors || results[i].get()->obj()["errors"].Bool();
            }

            result.append("count", count.loadRelaxed());
            result.append("errors", errors);
            result.append("timeMS", t.millis());

            return !errors;

        }
예제 #2
0
        bool run(OperationContext* txn, const string&, BSONObj& cmdObj, int, string& errmsg,
                 BSONObjBuilder& result, bool) {

            long long skew = (long long) number_field(cmdObj, "skew", 0);

            log() << "Adjusting jsTime() clock skew to " << skew << endl;

            jsTimeVirtualSkew( skew );

            log() << "JSTime adjusted, now is " << jsTime() << endl;

            return true;

        }
예제 #3
0
        void runThread(ConnectionString& hostConn, unsigned threadId, unsigned seed,
                       BSONObj& cmdObj, BSONObjBuilder& result) {

            stringstream ss;
            ss << "thread-" << threadId;
            setThreadName(ss.str().c_str());

            // Lock name
            string lockName = string_field(cmdObj, "lockName", this->name + "_lock");

            // Range of clock skew in diff threads
            int skewRange = (int) number_field(cmdObj, "skewRange", 1);

            // How long to wait with the lock
            int threadWait = (int) number_field(cmdObj, "threadWait", 30);
            if(threadWait <= 0) threadWait = 1;

            // Max amount of time (ms) a thread waits before checking the lock again
            int threadSleep = (int) number_field(cmdObj, "threadSleep", 30);
            if(threadSleep <= 0) threadSleep = 1;

            // How long until the lock is forced in ms, only compared locally
            unsigned long long takeoverMS = (unsigned long long) number_field(cmdObj, "takeoverMS", 0);

            // Whether or not we should hang some threads
            int hangThreads = (int) number_field(cmdObj, "hangThreads", 0);


            boost::mt19937 gen((boost::mt19937::result_type) seed);

            boost::variate_generator<boost::mt19937&, boost::uniform_int<> > randomSkew(gen, boost::uniform_int<>(0, skewRange));
            boost::variate_generator<boost::mt19937&, boost::uniform_int<> > randomWait(gen, boost::uniform_int<>(1, threadWait));
            boost::variate_generator<boost::mt19937&, boost::uniform_int<> > randomSleep(gen, boost::uniform_int<>(1, threadSleep));
            boost::variate_generator<boost::mt19937&, boost::uniform_int<> > randomNewLock(gen, boost::uniform_int<>(0, 3));


            int skew = 0;
            if (!lock.get()) {

                // Pick a skew, but the first two threads skew the whole range
                if(threadId == 0)
                    skew = -skewRange / 2;
                else if(threadId == 1)
                    skew = skewRange / 2;
                else skew = randomSkew() - (skewRange / 2);

                // Skew this thread
                jsTimeVirtualThreadSkew( skew );

                log() << "Initializing lock with skew of " << skew << " for thread " << threadId << endl;

                lock.reset(new DistributedLock(hostConn, lockName, takeoverMS, true ));

                log() << "Skewed time " << jsTime() << "  for thread " << threadId << endl
                      << "  max wait (with lock: " << threadWait << ", after lock: " << threadSleep << ")" << endl
                      << "  takeover in " << takeoverMS << "(ms remote)" << endl;

            }

            DistributedLock* myLock = lock.get();

            bool errors = false;
            BSONObj lockObj;
            while (keepGoing) {
                try {

                    if (myLock->lock_try("Testing distributed lock with skew.", false, &lockObj )) {

                        log() << "**** Locked for thread " << threadId << " with ts " << lockObj["ts"] << endl;

                        if( count.loadRelaxed() % 2 == 1 && ! myLock->lock_try( "Testing lock re-entry.", true ) ) {
                            errors = true;
                            log() << "**** !Could not re-enter lock already held" << endl;
                            break;
                        }

                        if( count.loadRelaxed() % 3 == 1 && myLock->lock_try( "Testing lock non-re-entry.", false ) ) {
                            errors = true;
                            log() << "**** !Invalid lock re-entry" << endl;
                            break;
                        }

                        int before = count.addAndFetch(1);
                        int sleep = randomWait();
                        sleepmillis(sleep);
                        int after = count.loadRelaxed();

                        if(after != before) {
                            errors = true;
                            log() << "**** !Bad increment while sleeping with lock for: " << sleep << "ms" << endl;
                            break;
                        }

                        // Unlock only half the time...
                        if(hangThreads == 0 || threadId % hangThreads != 0) {
                            log() << "**** Unlocking for thread " << threadId << " with ts " << lockObj["ts"] << endl;
                            myLock->unlock( &lockObj );
                        }
                        else {
                            log() << "**** Not unlocking for thread " << threadId << endl;
                            verify( DistributedLock::killPinger( *myLock ) );
                            // We're simulating a crashed process...
                            break;
                        }
                    }

                }
                catch( const DBException& ex ) {
                    log() << "*** !Could not try distributed lock." << causedBy( ex ) << endl;
                    break;
                }

                // Create a new lock 1/3 of the time
                if( randomNewLock() > 1 ){
                    lock.reset(new DistributedLock( hostConn, lockName, takeoverMS, true ));
                    myLock = lock.get();
                }

                sleepmillis(randomSleep());
            }

            result << "errors" << errors
                   << "skew" << skew
                   << "takeover" << (long long) takeoverMS
                   << "localTimeout" << (takeoverMS > 0);

        }
예제 #4
0
        void runThread(ConnectionString& hostConn, unsigned threadId, unsigned seed,
                       BSONObj& cmdObj, BSONObjBuilder& result) {

            stringstream ss;
            ss << "thread-" << threadId;
            setThreadName(ss.str().c_str());

            // Lock name
            string lockName = string_field(cmdObj, "lockName", this->name + "_lock");

            // Range of clock skew in diff threads
            int skewRange = (int) number_field(cmdObj, "skewRange", 1);

            // How long to wait with the lock
            int threadWait = (int) number_field(cmdObj, "threadWait", 30);
            if(threadWait <= 0) threadWait = 1;

            // Max amount of time (ms) a thread waits before checking the lock again
            int threadSleep = (int) number_field(cmdObj, "threadSleep", 30);
            if(threadSleep <= 0) threadSleep = 1;

            // (Legacy) how long until the lock is forced in mins, measured locally
            int takeoverMins = (int) number_field(cmdObj, "takeoverMins", 0);

            // How long until the lock is forced in ms, only compared locally
            unsigned long long takeoverMS = (unsigned long long) number_field(cmdObj, "takeoverMS", 0);

            // Whether or not we should hang some threads
            int hangThreads = (int) number_field(cmdObj, "hangThreads", 0);


            boost::mt19937 gen((boost::mt19937::result_type) seed);

            boost::variate_generator<boost::mt19937&, boost::uniform_int<> > randomSkew(gen, boost::uniform_int<>(0, skewRange));
            boost::variate_generator<boost::mt19937&, boost::uniform_int<> > randomWait(gen, boost::uniform_int<>(1, threadWait));
            boost::variate_generator<boost::mt19937&, boost::uniform_int<> > randomSleep(gen, boost::uniform_int<>(1, threadSleep));


            int skew = 0;
            bool legacy = (takeoverMins > 0);
            if (!lock.get()) {

                // Pick a skew, but the first two threads skew the whole range
                if(threadId == 0)
                    skew = -skewRange / 2;
                else if(threadId == 1)
                    skew = skewRange / 2;
                else skew = randomSkew() - (skewRange / 2);

                // Skew this thread
                jsTimeVirtualThreadSkew( skew );

                log() << "Initializing lock with skew of " << skew << " for thread " << threadId << endl;

                lock.reset(new DistributedLock(hostConn, lockName, legacy ? (unsigned long long)takeoverMins : takeoverMS, true, legacy));

                log() << "Skewed time " << jsTime() << "  for thread " << threadId << endl
                      << "  max wait (with lock: " << threadWait << ", after lock: " << threadSleep << ")" << endl
                      << "  takeover in " << (legacy ? (unsigned long long)takeoverMins : takeoverMS) << (legacy ? " (mins local)" : "(ms remote)") << endl;

            }

            DistributedLock* myLock = lock.get();

            bool errors = false;
            while (keepGoing) {
                try {

                    if (myLock->lock_try("Testing distributed lock with skew.")) {

                        log() << "**** Locked for thread " << threadId << endl;

                        count++;
                        int before = count;
                        int sleep = randomWait();
                        sleepmillis(sleep);
                        int after = count;

                        if(after != before) {
                            errors = true;
                            log() << "**** !Bad increment while sleeping with lock for: " << sleep << "ms" << endl;
                            break;
                        }

                        // Unlock only half the time...
                        if(hangThreads == 0 || threadId % hangThreads != 0) {
                            log() << "**** Unlocking for thread " << threadId << endl;
                            myLock->unlock();
                        }
                        else {
                            log() << "**** Not unlocking for thread " << threadId << endl;
                            DistributedLock::killPinger( *myLock );
                            // We're simulating a crashed process...
                            break;
                        }
                    }

                }
                catch( LockException& e ) {
                    log() << "*** !Could not try distributed lock." << m_caused_by(e) << endl;
                    break;
                }

                sleepmillis(randomSleep());
            }

            result << "errors" << errors
                   << "skew" << skew
                   << "takeover" << (long long) (legacy ? takeoverMS : (unsigned long long)takeoverMins)
                   << "localTimeout" << (takeoverMS > 0);

        }