static int gcore_create_callback (CORE_ADDR vaddr, unsigned long size, int read, int write, int exec, int modified, void *data) { bfd *obfd = data; asection *osec; flagword flags = SEC_ALLOC | SEC_HAS_CONTENTS | SEC_LOAD; /* If the memory segment has no permissions set, ignore it, otherwise when we later try to access it for read/write, we'll get an error or jam the kernel. */ if (read == 0 && write == 0 && exec == 0 && modified == 0) { if (info_verbose) { fprintf_filtered (gdb_stdout, "Ignore segment, %s bytes at %s\n", plongest (size), paddress (target_gdbarch (), vaddr)); } return 0; } if (write == 0 && modified == 0 && !solib_keep_data_in_core (vaddr, size)) { /* See if this region of memory lies inside a known file on disk. If so, we can avoid copying its contents by clearing SEC_LOAD. */ struct objfile *objfile; struct obj_section *objsec; ALL_OBJSECTIONS (objfile, objsec) { bfd *abfd = objfile->obfd; asection *asec = objsec->the_bfd_section; bfd_vma align = (bfd_vma) 1 << bfd_get_section_alignment (abfd, asec); bfd_vma start = obj_section_addr (objsec) & -align; bfd_vma end = (obj_section_endaddr (objsec) + align - 1) & -align; /* Match if either the entire memory region lies inside the section (i.e. a mapping covering some pages of a large segment) or the entire section lies inside the memory region (i.e. a mapping covering multiple small sections). This BFD was synthesized from reading target memory, we don't want to omit that. */ if (objfile->separate_debug_objfile_backlink == NULL && ((vaddr >= start && vaddr + size <= end) || (start >= vaddr && end <= vaddr + size)) && !(bfd_get_file_flags (abfd) & BFD_IN_MEMORY)) { flags &= ~(SEC_LOAD | SEC_HAS_CONTENTS); goto keep; /* Break out of two nested for loops. */ } } keep:; }
static int frob_address (struct objfile *objfile, CORE_ADDR *pc) { struct obj_section *iter; ALL_OBJFILE_OSECTIONS (objfile, iter) { if (*pc >= obj_section_addr (iter) && *pc < obj_section_endaddr (iter)) { *pc -= obj_section_offset (iter); return 1; } } return 0; }
void add_target_sections_of_objfile (struct objfile *objfile) { struct target_section_table *table = current_target_sections; struct obj_section *osect; int space; unsigned count = 0; struct target_section *ts; if (objfile == NULL) return; /* Compute the number of sections to add. */ ALL_OBJFILE_OSECTIONS (objfile, osect) { if (bfd_get_section_size (osect->the_bfd_section) == 0) continue; count++; } if (count == 0) return; space = resize_section_table (table, count); ts = table->sections + space; ALL_OBJFILE_OSECTIONS (objfile, osect) { if (bfd_get_section_size (osect->the_bfd_section) == 0) continue; gdb_assert (ts < table->sections + space + count); ts->addr = obj_section_addr (osect); ts->endaddr = obj_section_endaddr (osect); ts->the_bfd_section = osect->the_bfd_section; ts->owner = (void *) objfile; ts++; } }
static void print_objfile_section_info (bfd *abfd, struct obj_section *asect, const char *string) { flagword flags = bfd_get_section_flags (abfd, asect->the_bfd_section); const char *name = bfd_section_name (abfd, asect->the_bfd_section); if (string == NULL || *string == '\0' || match_substring (string, name) || match_bfd_flags (string, flags)) { struct gdbarch *gdbarch = gdbarch_from_bfd (abfd); int addr_size = gdbarch_addr_bit (gdbarch) / 8; maint_print_section_info (name, flags, obj_section_addr (asect), obj_section_endaddr (asect), asect->the_bfd_section->filepos, addr_size); } }
static void som_symtab_read (bfd *abfd, struct objfile *objfile, struct section_offsets *section_offsets) { struct cleanup *cleanup; struct gdbarch *gdbarch = get_objfile_arch (objfile); unsigned int number_of_symbols; int val, dynamic; char *stringtab; asection *shlib_info; struct som_external_symbol_dictionary_record *buf, *bufp, *endbufp; char *symname; CONST int symsize = sizeof (struct som_external_symbol_dictionary_record); #define text_offset ANOFFSET (section_offsets, SECT_OFF_TEXT (objfile)) #define data_offset ANOFFSET (section_offsets, SECT_OFF_DATA (objfile)) number_of_symbols = bfd_get_symcount (abfd); /* Allocate a buffer to read in the debug info. We avoid using alloca because the memory size could be so large that we could hit the stack size limit. */ buf = xmalloc (symsize * number_of_symbols); cleanup = make_cleanup (xfree, buf); bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET); val = bfd_bread (buf, symsize * number_of_symbols, abfd); if (val != symsize * number_of_symbols) error (_("Couldn't read symbol dictionary!")); /* Allocate a buffer to read in the som stringtab section of the debugging info. Again, we avoid using alloca because the data could be so large that we could potentially hit the stack size limitat. */ stringtab = xmalloc (obj_som_stringtab_size (abfd)); make_cleanup (xfree, stringtab); bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET); val = bfd_bread (stringtab, obj_som_stringtab_size (abfd), abfd); if (val != obj_som_stringtab_size (abfd)) error (_("Can't read in HP string table.")); /* We need to determine if objfile is a dynamic executable (so we can do the right thing for ST_ENTRY vs ST_CODE symbols). There's nothing in the header which easily allows us to do this. This code used to rely upon the existence of a $SHLIB_INFO$ section to make this determination. HP claims that it is more accurate to check for a nonzero text offset, but they have not provided any information about why that test is more accurate. */ dynamic = (text_offset != 0); endbufp = buf + number_of_symbols; for (bufp = buf; bufp < endbufp; ++bufp) { enum minimal_symbol_type ms_type; unsigned int flags = bfd_getb32 (bufp->flags); unsigned int symbol_type = (flags >> SOM_SYMBOL_TYPE_SH) & SOM_SYMBOL_TYPE_MASK; unsigned int symbol_scope = (flags >> SOM_SYMBOL_SCOPE_SH) & SOM_SYMBOL_SCOPE_MASK; CORE_ADDR symbol_value = bfd_getb32 (bufp->symbol_value); asection *section = NULL; QUIT; /* Compute the section. */ switch (symbol_scope) { case SS_EXTERNAL: if (symbol_type != ST_STORAGE) section = bfd_und_section_ptr; else section = bfd_com_section_ptr; break; case SS_UNSAT: if (symbol_type != ST_STORAGE) section = bfd_und_section_ptr; else section = bfd_com_section_ptr; break; case SS_UNIVERSAL: section = bfd_section_from_som_symbol (abfd, bufp); break; case SS_LOCAL: section = bfd_section_from_som_symbol (abfd, bufp); break; } switch (symbol_scope) { case SS_UNIVERSAL: case SS_EXTERNAL: switch (symbol_type) { case ST_SYM_EXT: case ST_ARG_EXT: continue; case ST_CODE: case ST_PRI_PROG: case ST_SEC_PROG: case ST_MILLICODE: symname = bfd_getb32 (bufp->name) + stringtab; ms_type = mst_text; symbol_value += text_offset; symbol_value = gdbarch_addr_bits_remove (gdbarch, symbol_value); break; case ST_ENTRY: symname = bfd_getb32 (bufp->name) + stringtab; /* For a dynamic executable, ST_ENTRY symbols are the stubs, while the ST_CODE symbol is the real function. */ if (dynamic) ms_type = mst_solib_trampoline; else ms_type = mst_text; symbol_value += text_offset; symbol_value = gdbarch_addr_bits_remove (gdbarch, symbol_value); break; case ST_STUB: symname = bfd_getb32 (bufp->name) + stringtab; ms_type = mst_solib_trampoline; symbol_value += text_offset; symbol_value = gdbarch_addr_bits_remove (gdbarch, symbol_value); break; case ST_DATA: symname = bfd_getb32 (bufp->name) + stringtab; symbol_value += data_offset; ms_type = mst_data; break; default: continue; } break; #if 0 /* SS_GLOBAL and SS_LOCAL are two names for the same thing (!). */ case SS_GLOBAL: #endif case SS_LOCAL: switch (symbol_type) { case ST_SYM_EXT: case ST_ARG_EXT: continue; case ST_CODE: symname = bfd_getb32 (bufp->name) + stringtab; ms_type = mst_file_text; symbol_value += text_offset; symbol_value = gdbarch_addr_bits_remove (gdbarch, symbol_value); check_strange_names: /* Utah GCC 2.5, FSF GCC 2.6 and later generate correct local label prefixes for stabs, constant data, etc. So we need only filter out L$ symbols which are left in due to limitations in how GAS generates SOM relocations. When linking in the HPUX C-library the HP linker has the nasty habit of placing section symbols from the literal subspaces in the middle of the program's text. Filter those out as best we can. Check for first and last character being '$'. And finally, the newer HP compilers emit crud like $PIC_foo$N in some circumstance (PIC code I guess). It's also claimed that they emit D$ symbols too. What stupidity. */ if ((symname[0] == 'L' && symname[1] == '$') || (symname[0] == '$' && symname[strlen (symname) - 1] == '$') || (symname[0] == 'D' && symname[1] == '$') || (strncmp (symname, "L0\001", 3) == 0) || (strncmp (symname, "$PIC", 4) == 0)) continue; break; case ST_PRI_PROG: case ST_SEC_PROG: case ST_MILLICODE: symname = bfd_getb32 (bufp->name) + stringtab; ms_type = mst_file_text; symbol_value += text_offset; symbol_value = gdbarch_addr_bits_remove (gdbarch, symbol_value); break; case ST_ENTRY: symname = bfd_getb32 (bufp->name) + stringtab; /* SS_LOCAL symbols in a shared library do not have export stubs, so we do not have to worry about using mst_file_text vs mst_solib_trampoline here like we do for SS_UNIVERSAL and SS_EXTERNAL symbols above. */ ms_type = mst_file_text; symbol_value += text_offset; symbol_value = gdbarch_addr_bits_remove (gdbarch, symbol_value); break; case ST_STUB: symname = bfd_getb32 (bufp->name) + stringtab; ms_type = mst_solib_trampoline; symbol_value += text_offset; symbol_value = gdbarch_addr_bits_remove (gdbarch, symbol_value); break; case ST_DATA: symname = bfd_getb32 (bufp->name) + stringtab; symbol_value += data_offset; ms_type = mst_file_data; goto check_strange_names; default: continue; } break; /* This can happen for common symbols when -E is passed to the final link. No idea _why_ that would make the linker force common symbols to have an SS_UNSAT scope, but it does. This also happens for weak symbols, but their type is ST_DATA. */ case SS_UNSAT: switch (symbol_type) { case ST_STORAGE: case ST_DATA: symname = bfd_getb32 (bufp->name) + stringtab; symbol_value += data_offset; ms_type = mst_data; break; default: continue; } break; default: continue; } if (bfd_getb32 (bufp->name) > obj_som_stringtab_size (abfd)) error (_("Invalid symbol data; bad HP string table offset: %s"), plongest (bfd_getb32 (bufp->name))); if (bfd_is_const_section (section)) { struct obj_section *iter; ALL_OBJFILE_OSECTIONS (objfile, iter) { if (bfd_is_const_section (iter->the_bfd_section)) continue; if (obj_section_addr (iter) <= symbol_value && symbol_value < obj_section_endaddr (iter)) { section = iter->the_bfd_section; break; } } } prim_record_minimal_symbol_and_info (symname, symbol_value, ms_type, gdb_bfd_section_index (objfile->obfd, section), objfile); } do_cleanups (cleanup); }