예제 #1
0
static void __init sun8i_a33_ccu_setup(struct device_node *node)
{
	void __iomem *reg;
	u32 val;

	reg = of_io_request_and_map(node, 0, of_node_full_name(node));
	if (IS_ERR(reg)) {
		pr_err("%s: Could not map the clock registers\n",
		       of_node_full_name(node));
		return;
	}

	/* Force the PLL-Audio-1x divider to 4 */
	val = readl(reg + SUN8I_A33_PLL_AUDIO_REG);
	val &= ~GENMASK(19, 16);
	writel(val | (3 << 16), reg + SUN8I_A33_PLL_AUDIO_REG);

	/* Force PLL-MIPI to MIPI mode */
	val = readl(reg + SUN8I_A33_PLL_MIPI_REG);
	val &= ~BIT(16);
	writel(val, reg + SUN8I_A33_PLL_MIPI_REG);

	sunxi_ccu_probe(node, reg, &sun8i_a33_ccu_desc);

	ccu_mux_notifier_register(pll_cpux_clk.common.hw.clk,
				  &sun8i_a33_cpu_nb);
}
/**
 * parse_timing_property - parse timing_entry from device_node
 * @np: device_node with the property
 * @name: name of the property
 * @result: will be set to the return value
 *
 * DESCRIPTION:
 * Every display_timing can be specified with either just the typical value or
 * a range consisting of min/typ/max. This function helps handling this
 **/
static int parse_timing_property(struct device_node *np, const char *name,
			  struct timing_entry *result)
{
	struct property *prop;
	int length, cells, ret;

	prop = of_find_property(np, name, &length);
	if (!prop) {
		pr_err("%s: could not find property %s\n",
			of_node_full_name(np), name);
		return -EINVAL;
	}

	cells = length / sizeof(u32);
	if (cells == 1) {
		ret = of_property_read_u32(np, name, &result->typ);
		result->min = result->typ;
		result->max = result->typ;
	} else if (cells == 3) {
		ret = of_property_read_u32_array(np, name, &result->min, cells);
	} else {
		pr_err("%s: illegal timing specification in %s\n",
			of_node_full_name(np), name);
		return -EINVAL;
	}

	return ret;
}
static void __init sun5i_ccu_init(struct device_node *node,
				  const struct sunxi_ccu_desc *desc)
{
	void __iomem *reg;
	u32 val;

	reg = of_io_request_and_map(node, 0, of_node_full_name(node));
	if (IS_ERR(reg)) {
		pr_err("%s: Could not map the clock registers\n",
		       of_node_full_name(node));
		return;
	}

	/* Force the PLL-Audio-1x divider to 4 */
	val = readl(reg + SUN5I_PLL_AUDIO_REG);
	val &= ~GENMASK(19, 16);
	writel(val | (3 << 16), reg + SUN5I_PLL_AUDIO_REG);

	/*
	 * Use the peripheral PLL as the AHB parent, instead of CPU /
	 * AXI which have rate changes due to cpufreq.
	 *
	 * This is especially a big deal for the HS timer whose parent
	 * clock is AHB.
	 */
	val = readl(reg + SUN5I_AHB_REG);
	val &= ~GENMASK(7, 6);
	writel(val | (2 << 6), reg + SUN5I_AHB_REG);

	sunxi_ccu_probe(node, reg, desc);
}
예제 #4
0
파일: sun4i_drv.c 프로젝트: asmalldev/linux
static int compare_of(struct device *dev, void *data)
{
	DRM_DEBUG_DRIVER("Comparing of node %s with %s\n",
			 of_node_full_name(dev->of_node),
			 of_node_full_name(data));

	return dev->of_node == data;
}
예제 #5
0
static void sun8i_a23_apb0_setup(struct device_node *node)
{
	void __iomem *reg;
	struct resource res;
	struct clk *clk;

	reg = of_io_request_and_map(node, 0, of_node_full_name(node));
	if (IS_ERR(reg)) {
		/*
		 * This happens with clk nodes instantiated through mfd,
		 * as those do not have their resources assigned in the
		 * device tree. Do not print an error in this case.
		 */
		if (PTR_ERR(reg) != -EINVAL)
			pr_err("Could not get registers for a23-apb0-clk\n");

		return;
	}

	clk = sun8i_a23_apb0_register(node, reg);
	if (IS_ERR(clk))
		goto err_unmap;

	return;

err_unmap:
	iounmap(reg);
	of_address_to_resource(node, 0, &res);
	release_mem_region(res.start, resource_size(&res));
}
예제 #6
0
static void __init sun5i_timer_init(struct device_node *node)
{
	struct reset_control *rstc;
	void __iomem *timer_base;
	struct clk *clk;
	int irq;

	timer_base = of_io_request_and_map(node, 0, of_node_full_name(node));
	if (!timer_base)
		panic("Can't map registers");

	irq = irq_of_parse_and_map(node, 0);
	if (irq <= 0)
		panic("Can't parse IRQ");

	clk = of_clk_get(node, 0);
	if (IS_ERR(clk))
		panic("Can't get timer clock");

	rstc = of_reset_control_get(node, NULL);
	if (!IS_ERR(rstc))
		reset_control_deassert(rstc);

	sun5i_setup_clocksource(node, timer_base, clk, irq);
	sun5i_setup_clockevent(node, timer_base, clk, irq);
}
예제 #7
0
static int __init sun5i_timer_init(struct device_node *node)
{
	struct reset_control *rstc;
	void __iomem *timer_base;
	struct clk *clk;
	int irq, ret;

	timer_base = of_io_request_and_map(node, 0, of_node_full_name(node));
	if (IS_ERR(timer_base)) {
		pr_err("Can't map registers\n");
		return PTR_ERR(timer_base);
	}

	irq = irq_of_parse_and_map(node, 0);
	if (irq <= 0) {
		pr_err("Can't parse IRQ\n");
		return -EINVAL;
	}

	clk = of_clk_get(node, 0);
	if (IS_ERR(clk)) {
		pr_err("Can't get timer clock\n");
		return PTR_ERR(clk);
	}

	rstc = of_reset_control_get(node, NULL);
	if (!IS_ERR(rstc))
		reset_control_deassert(rstc);

	ret = sun5i_setup_clocksource(node, timer_base, clk, irq);
	if (ret)
		return ret;

	return sun5i_setup_clockevent(node, timer_base, clk, irq);
}
/**
 * of_irq_parse_one - Resolve an interrupt for a device
 * @device: the device whose interrupt is to be resolved
 * @index: index of the interrupt to resolve
 * @out_irq: structure of_irq filled by this function
 *
 * This function resolves an interrupt for a node by walking the interrupt tree,
 * finding which interrupt controller node it is attached to, and returning the
 * interrupt specifier that can be used to retrieve a Linux IRQ number.
 */
int of_irq_parse_one(struct device_node *device, int index, struct of_phandle_args *out_irq)
{
	struct device_node *p;
	const __be32 *intspec, *tmp, *addr;
	u32 intsize, intlen;
	int i, res = -EINVAL;

	pr_debug("of_irq_parse_one: dev=%s, index=%d\n", of_node_full_name(device), index);

	/* OldWorld mac stuff is "special", handle out of line */
	if (of_irq_workarounds & OF_IMAP_OLDWORLD_MAC)
		return of_irq_parse_oldworld(device, index, out_irq);

	/* Get the reg property (if any) */
	addr = of_get_property(device, "reg", NULL);

	/* Get the interrupts property */
	intspec = of_get_property(device, "interrupts", &intlen);
	if (intspec == NULL) {
		/* Try the new-style interrupts-extended */
		res = of_parse_phandle_with_args(device, "interrupts-extended",
						"#interrupt-cells", index, out_irq);
		if (res)
			return -EINVAL;
		return of_irq_parse_raw(addr, out_irq);
	}
	intlen /= sizeof(*intspec);

	pr_debug(" intspec=%d intlen=%d\n", be32_to_cpup(intspec), intlen);

	/* Look for the interrupt parent. */
	p = of_irq_find_parent(device);
	if (p == NULL)
		return -EINVAL;

	/* Get size of interrupt specifier */
	tmp = of_get_property(p, "#interrupt-cells", NULL);
	if (tmp == NULL)
		goto out;
	intsize = be32_to_cpu(*tmp);

	pr_debug(" intsize=%d intlen=%d\n", intsize, intlen);

	/* Check index */
	if ((index + 1) * intsize > intlen)
		goto out;

	/* Copy intspec into irq structure */
	intspec += index * intsize;
	out_irq->np = p;
	out_irq->args_count = intsize;
	for (i = 0; i < intsize; i++)
		out_irq->args[i] = be32_to_cpup(intspec++);

	/* Check if there are any interrupt-map translations to process */
	res = of_irq_parse_raw(addr, out_irq);
 out:
	of_node_put(p);
	return res;
}
예제 #9
0
파일: irq.c 프로젝트: Lyude/linux
/**
 * of_irq_to_resource - Decode a node's IRQ and return it as a resource
 * @dev: pointer to device tree node
 * @index: zero-based index of the irq
 * @r: pointer to resource structure to return result into.
 */
int of_irq_to_resource(struct device_node *dev, int index, struct resource *r)
{
	int irq = of_irq_get(dev, index);

	if (irq < 0)
		return irq;

	/* Only dereference the resource if both the
	 * resource and the irq are valid. */
	if (r && irq) {
		const char *name = NULL;

		memset(r, 0, sizeof(*r));
		/*
		 * Get optional "interrupt-names" property to add a name
		 * to the resource.
		 */
		of_property_read_string_index(dev, "interrupt-names", index,
					      &name);

		r->start = r->end = irq;
		r->flags = IORESOURCE_IRQ | irqd_get_trigger_type(irq_get_irq_data(irq));
		r->name = name ? name : of_node_full_name(dev);
	}

	return irq;
}
예제 #10
0
static void __init sun8i_h3_ccu_setup(struct device_node *node)
{
	void __iomem *reg;
	u32 val;

	reg = of_io_request_and_map(node, 0, of_node_full_name(node));
	if (IS_ERR(reg)) {
		pr_err("%s: Could not map the clock registers\n",
		       of_node_full_name(node));
		return;
	}

	/* Force the PLL-Audio-1x divider to 4 */
	val = readl(reg + SUN8I_H3_PLL_AUDIO_REG);
	val &= ~GENMASK(19, 16);
	writel(val | (3 << 16), reg + SUN8I_H3_PLL_AUDIO_REG);

	sunxi_ccu_probe(node, reg, &sun8i_h3_ccu_desc);
}
/* parse_display_dt_exynos
 */
static int parse_display_dt_exynos(struct device_node *np)
{
	int ret = 0;
	struct device_node *decon_np;

	if (!np) {
		pr_err("%s: device node is NULL\n", of_node_full_name(np));
		return -EINVAL;
	}
	ret = parse_fimd_platdata(np);
	if (ret < 0) {
		pr_err("parsing fimd platdata is failed.\n");
		return -EINVAL;
	}

	decon_np = of_find_node_by_name(np, "fb_variant");
	if (!decon_np) {
		pr_err("%s: could not find fb_variant node\n",
			of_node_full_name(np));
		return -EINVAL;
	}
	ret = parse_fb_variant(decon_np);
	if (ret < 0) {
		pr_err("parsing fb_variant is failed.\n");
		return -EINVAL;
	}
	ret = parse_fb_win_variants(np);
	if (ret < 0) {
		pr_err("parsing fb_win_variant is failed.\n");
		return -EINVAL;
	}
	g_fb_drvdata.win[0] = &g_fb_win_variant[0];
	g_fb_drvdata.win[1] = &g_fb_win_variant[1];
	g_fb_drvdata.win[2] = &g_fb_win_variant[2];
	g_fb_drvdata.win[3] = &g_fb_win_variant[3];
	g_fb_drvdata.win[4] = &g_fb_win_variant[4];

	return ret;
}
static void __init sun4i_mod1_clk_setup(struct device_node *node)
{
	struct clk *clk;
	struct clk_mux *mux;
	struct clk_gate *gate;
	const char *parents[4];
	const char *clk_name = node->name;
	void __iomem *reg;
	int i;

	reg = of_io_request_and_map(node, 0, of_node_full_name(node));
	if (IS_ERR(reg))
		return;

	mux = kzalloc(sizeof(*mux), GFP_KERNEL);
	if (!mux)
		goto err_unmap;

	gate = kzalloc(sizeof(*gate), GFP_KERNEL);
	if (!gate)
		goto err_free_mux;

	of_property_read_string(node, "clock-output-names", &clk_name);
	i = of_clk_parent_fill(node, parents, SUN4I_MOD1_MAX_PARENTS);

	gate->reg = reg;
	gate->bit_idx = SUN4I_MOD1_ENABLE;
	gate->lock = &mod1_lock;
	mux->reg = reg;
	mux->shift = SUN4I_MOD1_MUX;
	mux->mask = BIT(SUN4I_MOD1_MUX_WIDTH) - 1;
	mux->lock = &mod1_lock;

	clk = clk_register_composite(NULL, clk_name, parents, i,
				     &mux->hw, &clk_mux_ops,
				     NULL, NULL,
				     &gate->hw, &clk_gate_ops, CLK_SET_RATE_PARENT);
	if (IS_ERR(clk))
		goto err_free_gate;

	of_clk_add_provider(node, of_clk_src_simple_get, clk);

	return;

err_free_gate:
	kfree(gate);
err_free_mux:
	kfree(mux);
err_unmap:
	iounmap(reg);
}
static void __init sun9i_a80_pll4_setup(struct device_node *node)
{
	void __iomem *reg;

	reg = of_io_request_and_map(node, 0, of_node_full_name(node));
	if (IS_ERR(reg)) {
		pr_err("Could not get registers for a80-pll4-clk: %s\n",
		       node->name);
		return;
	}

	sunxi_factors_register(node, &sun9i_a80_pll4_data,
			       &sun9i_a80_pll4_lock, reg);
}
예제 #14
0
static void __init sun8i_r40_ccu_setup(struct device_node *node)
{
	void __iomem *reg;
	u32 val;

	reg = of_io_request_and_map(node, 0, of_node_full_name(node));
	if (IS_ERR(reg)) {
		pr_err("%s: Could not map the clock registers\n",
		       of_node_full_name(node));
		return;
	}

	/* Force the PLL-Audio-1x divider to 4 */
	val = readl(reg + SUN8I_R40_PLL_AUDIO_REG);
	val &= ~GENMASK(19, 16);
	writel(val | (3 << 16), reg + SUN8I_R40_PLL_AUDIO_REG);

	/* Force PLL-MIPI to MIPI mode */
	val = readl(reg + SUN8I_R40_PLL_MIPI_REG);
	val &= ~BIT(16);
	writel(val, reg + SUN8I_R40_PLL_MIPI_REG);

	/* Force OHCI 12M parent to 12M divided from 48M */
	val = readl(reg + SUN8I_R40_USB_CLK_REG);
	val &= ~GENMASK(25, 20);
	writel(val, reg + SUN8I_R40_USB_CLK_REG);

	sunxi_ccu_probe(node, reg, &sun8i_r40_ccu_desc);

	/* Gate then ungate PLL CPU after any rate changes */
	ccu_pll_notifier_register(&sun8i_r40_pll_cpu_nb);

	/* Reparent CPU during PLL CPU rate changes */
	ccu_mux_notifier_register(pll_cpu_clk.common.hw.clk,
				  &sun8i_r40_cpu_nb);
}
예제 #15
0
/**
 * of_irq_map_one - Resolve an interrupt for a device
 * @device: the device whose interrupt is to be resolved
 * @index: index of the interrupt to resolve
 * @out_irq: structure of_irq filled by this function
 *
 * This function resolves an interrupt, walking the tree, for a given
 * device-tree node. It's the high level pendant to of_irq_map_raw().
 */
int of_irq_map_one(struct device_node *device, int index, struct of_irq *out_irq)
{
	struct device_node *p;
	const __be32 *intspec, *tmp, *addr;
	u32 intsize, intlen;
	int res = -EINVAL;

	pr_debug("of_irq_map_one: dev=%s, index=%d\n", of_node_full_name(device), index);

	/* OldWorld mac stuff is "special", handle out of line */
	if (of_irq_workarounds & OF_IMAP_OLDWORLD_MAC)
		return of_irq_map_oldworld(device, index, out_irq);

	/* Get the interrupts property */
	intspec = of_get_property(device, "interrupts", &intlen);
	if (intspec == NULL)
		return -EINVAL;
	intlen /= sizeof(*intspec);

	pr_debug(" intspec=%d intlen=%d\n", be32_to_cpup(intspec), intlen);

	/* Get the reg property (if any) */
	addr = of_get_property(device, "reg", NULL);

	/* Look for the interrupt parent. */
	p = of_irq_find_parent(device);
	if (p == NULL)
		return -EINVAL;

	/* Get size of interrupt specifier */
	tmp = of_get_property(p, "#interrupt-cells", NULL);
	if (tmp == NULL)
		goto out;
	intsize = be32_to_cpu(*tmp);

	pr_debug(" intsize=%d intlen=%d\n", intsize, intlen);

	/* Check index */
	if ((index + 1) * intsize > intlen)
		goto out;

	/* Get new specifier and map it */
	res = of_irq_map_raw(p, intspec + index * intsize, intsize,
			     addr, out_irq);
 out:
	of_node_put(p);
	return res;
}
static inline int ivp_setup_one_onchipmem_section(struct ivp_sect_info *sect, struct device_node *np)
{
     const char *name = of_node_full_name(np);
     unsigned int settings[3] = {0};
     if (of_property_read_u32_array(np, "section_mem", settings, ARRAY_SIZE(settings))) {
         ivp_err("read reg fail.");
         return -EINVAL;
     }
     strncpy(sect->name, name, sizeof(sect->name) - 1);
     sect->ivp_addr  = settings[0];
     sect->acpu_addr = settings[1];
     sect->len       = settings[2];
     ivp_info("name = %s : acpu-addr = 0x%08lx : len = 0x%08x : ivp-addr = 0x%08x.", 
          sect->name, sect->acpu_addr, sect->len, sect->ivp_addr);
     return 0;
} 
int parse_display_dsi_dt_exynos(struct device_node *np)
{
	int ret = 0;

	if (!np) {
		pr_err("%s: no devicenode given\n", of_node_full_name(np));
		return -EINVAL;
	}
	ret = parse_dsi_drvdata(np);
	if (ret < 0) {
		pr_err("parsing MIPI DSI drvdata is failed.\n");
		goto end;
	}
end:
	return 0;
}
예제 #18
0
/**
 * of_parse_display_timing - parse display_timing entry from device_node
 * @np: device_node with the properties
 **/
static int of_parse_display_timing(const struct device_node *np,
		struct display_timing *dt)
{
	u32 val = 0;
	int ret = 0;

	memset(dt, 0, sizeof(*dt));

	ret |= parse_timing_property(np, "hback-porch", &dt->hback_porch);
	ret |= parse_timing_property(np, "hfront-porch", &dt->hfront_porch);
	ret |= parse_timing_property(np, "hactive", &dt->hactive);
	ret |= parse_timing_property(np, "hsync-len", &dt->hsync_len);
	ret |= parse_timing_property(np, "vback-porch", &dt->vback_porch);
	ret |= parse_timing_property(np, "vfront-porch", &dt->vfront_porch);
	ret |= parse_timing_property(np, "vactive", &dt->vactive);
	ret |= parse_timing_property(np, "vsync-len", &dt->vsync_len);
	ret |= parse_timing_property(np, "clock-frequency", &dt->pixelclock);

	dt->flags = 0;
	if (!of_property_read_u32(np, "vsync-active", &val))
		dt->flags |= val ? DISPLAY_FLAGS_VSYNC_HIGH :
				DISPLAY_FLAGS_VSYNC_LOW;
	if (!of_property_read_u32(np, "hsync-active", &val))
		dt->flags |= val ? DISPLAY_FLAGS_HSYNC_HIGH :
				DISPLAY_FLAGS_HSYNC_LOW;
	if (!of_property_read_u32(np, "de-active", &val))
		dt->flags |= val ? DISPLAY_FLAGS_DE_HIGH :
				DISPLAY_FLAGS_DE_LOW;
	if (!of_property_read_u32(np, "pixelclk-active", &val))
		dt->flags |= val ? DISPLAY_FLAGS_PIXDATA_POSEDGE :
				DISPLAY_FLAGS_PIXDATA_NEGEDGE;

	if (of_property_read_bool(np, "interlaced"))
		dt->flags |= DISPLAY_FLAGS_INTERLACED;
	if (of_property_read_bool(np, "doublescan"))
		dt->flags |= DISPLAY_FLAGS_DOUBLESCAN;
	if (of_property_read_bool(np, "doubleclk"))
		dt->flags |= DISPLAY_FLAGS_DOUBLECLK;

	if (ret) {
		pr_err("%s: error reading timing properties\n",
			of_node_full_name(np));
		return -EINVAL;
	}

	return 0;
}
예제 #19
0
/**
 * of_get_display_timing - parse a display_timing entry
 * @np: device_node with the timing subnode
 * @name: name of the timing node
 * @dt: display_timing struct to fill
 **/
int of_get_display_timing(struct device_node *np, const char *name,
		struct display_timing *dt)
{
	struct device_node *timing_np;

	if (!np)
		return -EINVAL;

	timing_np = of_get_child_by_name(np, name);
	if (!timing_np) {
		pr_err("%s: could not find node '%s'\n",
			of_node_full_name(np), name);
		return -ENOENT;
	}

	return of_parse_display_timing(timing_np, dt);
}
/**
 * of_get_drm_display_mode - get a drm_display_mode from devicetree
 * @np: device_node with the timing specification
 * @dmode: will be set to the return value
 * @index: index into the list of display timings in devicetree
 *
 * This function is expensive and should only be used, if only one mode is to be
 * read from DT. To get multiple modes start with of_get_display_timings and
 * work with that instead.
 */
int of_get_drm_display_mode(struct device_node *np,
			    struct drm_display_mode *dmode, int index)
{
	struct videomode vm;
	int ret;

	ret = of_get_videomode(np, &vm, index);
	if (ret)
		return ret;

	drm_display_mode_from_videomode(&vm, dmode);

	pr_debug("%s: got %dx%d display mode from %s\n",
		of_node_full_name(np), vm.hactive, vm.vactive, np->name);
	drm_mode_debug_printmodeline(dmode);

	return 0;
}
static void __init sun9i_a80_gt_setup(struct device_node *node)
{
	void __iomem *reg;
	struct clk *gt;

	reg = of_io_request_and_map(node, 0, of_node_full_name(node));
	if (IS_ERR(reg)) {
		pr_err("Could not get registers for a80-gt-clk: %s\n",
		       node->name);
		return;
	}

	gt = sunxi_factors_register(node, &sun9i_a80_gt_data,
				    &sun9i_a80_gt_lock, reg);

	/* The GT bus clock needs to be always enabled */
	__clk_get(gt);
	clk_prepare_enable(gt);
}
예제 #22
0
static int of_pmu_irq_cfg(struct platform_device *pdev)
{
    int i;
    int *irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL);

    if (!irqs)
        return -ENOMEM;

    for (i = 0; i < pdev->num_resources; ++i) {
        struct device_node *dn;
        int cpu;

        dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity",
                              i);
        if (!dn) {
            pr_warn("Failed to parse %s/interrupt-affinity[%d]\n",
                    of_node_full_name(dn), i);
            break;
        }

        for_each_possible_cpu(cpu)
        if (arch_find_n_match_cpu_physical_id(dn, cpu, NULL))
            break;

        of_node_put(dn);
        if (cpu >= nr_cpu_ids) {
            pr_warn("Failed to find logical CPU for %s\n",
                    dn->name);
            break;
        }

        irqs[i] = cpu;
    }

    if (i == pdev->num_resources)
        cpu_pmu->irq_affinity = irqs;
    else
        kfree(irqs);

    return 0;
}
예제 #23
0
static int __init of_gpio_export_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct device_node *cnp;
	u32 val;
	int nb = 0;

	for_each_child_of_node(np, cnp) {
		const char *name = NULL;
		int gpio;
		bool dmc;
		int max_gpio = 1;
		int i;

		of_property_read_string(cnp, "gpio-export,name", &name);

		if (!name)
			max_gpio = of_gpio_count(cnp);

		for (i = 0; i < max_gpio; i++) {
			gpio = of_get_gpio(cnp, i);
			if (devm_gpio_request(&pdev->dev, gpio, name ? name : of_node_full_name(np)))
				continue;

			if (!of_property_read_u32(cnp, "gpio-export,output", &val))
				gpio_direction_output(gpio, val);
			else
				gpio_direction_input(gpio);

			dmc = of_property_read_bool(np, "gpio-export,direction_may_change");
			gpio_export_with_name(gpio, dmc, name);
			nb++;
		}
	}

	dev_info(&pdev->dev, "%d gpio(s) exported\n", nb);

	return 0;
}
예제 #24
0
파일: rcar-core.c 프로젝트: mdamt/linux
static int rvin_digital_graph_init(struct rvin_dev *vin)
{
	struct v4l2_async_subdev **subdevs = NULL;
	int ret;

	ret = rvin_digital_graph_parse(vin);
	if (ret)
		return ret;

	if (!vin->digital.asd.match.fwnode.fwnode) {
		vin_dbg(vin, "No digital subdevice found\n");
		return -ENODEV;
	}

	/* Register the subdevices notifier. */
	subdevs = devm_kzalloc(vin->dev, sizeof(*subdevs), GFP_KERNEL);
	if (subdevs == NULL)
		return -ENOMEM;

	subdevs[0] = &vin->digital.asd;

	vin_dbg(vin, "Found digital subdevice %s\n",
		of_node_full_name(to_of_node(subdevs[0]->match.fwnode.fwnode)));

	vin->notifier.num_subdevs = 1;
	vin->notifier.subdevs = subdevs;
	vin->notifier.bound = rvin_digital_notify_bound;
	vin->notifier.unbind = rvin_digital_notify_unbind;
	vin->notifier.complete = rvin_digital_notify_complete;

	ret = v4l2_async_notifier_register(&vin->v4l2_dev, &vin->notifier);
	if (ret < 0) {
		vin_err(vin, "Notifier registration failed\n");
		return ret;
	}

	return 0;
}
예제 #25
0
/**
 * of_irq_to_resource - Decode a node's IRQ and return it as a resource
 * @dev: pointer to device tree node
 * @index: zero-based index of the irq
 * @r: pointer to resource structure to return result into.
 */
int of_irq_to_resource(struct device_node *dev, int index, struct resource *r)
{
	int irq = irq_of_parse_and_map(dev, index);

	/* Only dereference the resource if both the
	 * resource and the irq are valid. */
	if (r && irq) {
		const char *name = NULL;

		/*
		 * Get optional "interrupts-names" property to add a name
		 * to the resource.
		 */
		of_property_read_string_index(dev, "interrupt-names", index,
					      &name);

		r->start = r->end = irq;
		r->flags = IORESOURCE_IRQ;
		r->name = name ? name : of_node_full_name(dev);
	}

	return irq;
}
예제 #26
0
파일: gpiolib-of.c 프로젝트: Anjali05/linux
static void of_gpio_flags_quirks(struct device_node *np,
				 const char *propname,
				 enum of_gpio_flags *flags,
				 int index)
{
	/*
	 * Handle MMC "cd-inverted" and "wp-inverted" semantics.
	 */
	if (IS_ENABLED(CONFIG_MMC)) {
		/*
		 * Active low is the default according to the
		 * SDHCI specification and the device tree
		 * bindings. However the code in the current
		 * kernel was written such that the phandle
		 * flags were always respected, and "cd-inverted"
		 * would invert the flag from the device phandle.
		 */
		if (!strcmp(propname, "cd-gpios")) {
			if (of_property_read_bool(np, "cd-inverted"))
				*flags ^= OF_GPIO_ACTIVE_LOW;
		}
		if (!strcmp(propname, "wp-gpios")) {
			if (of_property_read_bool(np, "wp-inverted"))
				*flags ^= OF_GPIO_ACTIVE_LOW;
		}
	}
	/*
	 * Some GPIO fixed regulator quirks.
	 * Note that active low is the default.
	 */
	if (IS_ENABLED(CONFIG_REGULATOR) &&
	    (of_device_is_compatible(np, "regulator-fixed") ||
	     of_device_is_compatible(np, "reg-fixed-voltage") ||
	     (of_device_is_compatible(np, "regulator-gpio") &&
	      !(strcmp(propname, "enable-gpio") &&
	        strcmp(propname, "enable-gpios"))))) {
		/*
		 * The regulator GPIO handles are specified such that the
		 * presence or absence of "enable-active-high" solely controls
		 * the polarity of the GPIO line. Any phandle flags must
		 * be actively ignored.
		 */
		if (*flags & OF_GPIO_ACTIVE_LOW) {
			pr_warn("%s GPIO handle specifies active low - ignored\n",
				of_node_full_name(np));
			*flags &= ~OF_GPIO_ACTIVE_LOW;
		}
		if (!of_property_read_bool(np, "enable-active-high"))
			*flags |= OF_GPIO_ACTIVE_LOW;
	}
	/*
	 * Legacy open drain handling for fixed voltage regulators.
	 */
	if (IS_ENABLED(CONFIG_REGULATOR) &&
	    of_device_is_compatible(np, "reg-fixed-voltage") &&
	    of_property_read_bool(np, "gpio-open-drain")) {
		*flags |= (OF_GPIO_SINGLE_ENDED | OF_GPIO_OPEN_DRAIN);
		pr_info("%s uses legacy open drain flag - update the DTS if you can\n",
			of_node_full_name(np));
	}

	/*
	 * Legacy handling of SPI active high chip select. If we have a
	 * property named "cs-gpios" we need to inspect the child node
	 * to determine if the flags should have inverted semantics.
	 */
	if (IS_ENABLED(CONFIG_SPI_MASTER) &&
	    of_property_read_bool(np, "cs-gpios")) {
		struct device_node *child;
		u32 cs;
		int ret;

		for_each_child_of_node(np, child) {
			ret = of_property_read_u32(child, "reg", &cs);
			if (ret)
				continue;
			if (cs == index) {
				/*
				 * SPI children have active low chip selects
				 * by default. This can be specified negatively
				 * by just omitting "spi-cs-high" in the
				 * device node, or actively by tagging on
				 * GPIO_ACTIVE_LOW as flag in the device
				 * tree. If the line is simultaneously
				 * tagged as active low in the device tree
				 * and has the "spi-cs-high" set, we get a
				 * conflict and the "spi-cs-high" flag will
				 * take precedence.
				 */
				if (of_property_read_bool(np, "spi-cs-high")) {
					if (*flags & OF_GPIO_ACTIVE_LOW) {
						pr_warn("%s GPIO handle specifies active low - ignored\n",
							of_node_full_name(np));
						*flags &= ~OF_GPIO_ACTIVE_LOW;
					}
				} else {
					if (!(*flags & OF_GPIO_ACTIVE_LOW))
						pr_info("%s enforce active low on chipselect handle\n",
							of_node_full_name(np));
					*flags |= OF_GPIO_ACTIVE_LOW;
				}
				break;
			}
		}
	}
예제 #27
0
파일: clk-a10-pll2.c 프로젝트: avagin/linux
static void __init sun4i_pll2_setup(struct device_node *node,
				    int post_div_offset)
{
	const char *clk_name = node->name, *parent;
	struct clk **clks, *base_clk, *prediv_clk;
	struct clk_onecell_data *clk_data;
	struct clk_multiplier *mult;
	struct clk_gate *gate;
	void __iomem *reg;
	u32 val;

	reg = of_io_request_and_map(node, 0, of_node_full_name(node));
	if (IS_ERR(reg))
		return;

	clk_data = kzalloc(sizeof(*clk_data), GFP_KERNEL);
	if (!clk_data)
		goto err_unmap;

	clks = kcalloc(SUN4I_PLL2_OUTPUTS, sizeof(struct clk *), GFP_KERNEL);
	if (!clks)
		goto err_free_data;

	parent = of_clk_get_parent_name(node, 0);
	prediv_clk = clk_register_divider(NULL, "pll2-prediv",
					  parent, 0, reg,
					  SUN4I_PLL2_PRE_DIV_SHIFT,
					  SUN4I_PLL2_PRE_DIV_WIDTH,
					  CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
					  &sun4i_a10_pll2_lock);
	if (IS_ERR(prediv_clk)) {
		pr_err("Couldn't register the prediv clock\n");
		goto err_free_array;
	}

	/* Setup the gate part of the PLL2 */
	gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
	if (!gate)
		goto err_unregister_prediv;

	gate->reg = reg;
	gate->bit_idx = SUN4I_PLL2_ENABLE;
	gate->lock = &sun4i_a10_pll2_lock;

	/* Setup the multiplier part of the PLL2 */
	mult = kzalloc(sizeof(struct clk_multiplier), GFP_KERNEL);
	if (!mult)
		goto err_free_gate;

	mult->reg = reg;
	mult->shift = SUN4I_PLL2_N_SHIFT;
	mult->width = 7;
	mult->flags = CLK_MULTIPLIER_ZERO_BYPASS |
			CLK_MULTIPLIER_ROUND_CLOSEST;
	mult->lock = &sun4i_a10_pll2_lock;

	parent = __clk_get_name(prediv_clk);
	base_clk = clk_register_composite(NULL, "pll2-base",
					  &parent, 1,
					  NULL, NULL,
					  &mult->hw, &clk_multiplier_ops,
					  &gate->hw, &clk_gate_ops,
					  CLK_SET_RATE_PARENT);
	if (IS_ERR(base_clk)) {
		pr_err("Couldn't register the base multiplier clock\n");
		goto err_free_multiplier;
	}

	parent = __clk_get_name(base_clk);

	/*
	 * PLL2-1x
	 *
	 * This is supposed to have a post divider, but we won't need
	 * to use it, we just need to initialise it to 4, and use a
	 * fixed divider.
	 */
	val = readl(reg);
	val &= ~(SUN4I_PLL2_POST_DIV_MASK << SUN4I_PLL2_POST_DIV_SHIFT);
	val |= (SUN4I_PLL2_POST_DIV_VALUE - post_div_offset) << SUN4I_PLL2_POST_DIV_SHIFT;
	writel(val, reg);

	of_property_read_string_index(node, "clock-output-names",
				      SUN4I_A10_PLL2_1X, &clk_name);
	clks[SUN4I_A10_PLL2_1X] = clk_register_fixed_factor(NULL, clk_name,
							    parent,
							    CLK_SET_RATE_PARENT,
							    1,
							    SUN4I_PLL2_POST_DIV_VALUE);
	WARN_ON(IS_ERR(clks[SUN4I_A10_PLL2_1X]));

	/*
	 * PLL2-2x
	 *
	 * This clock doesn't use the post divider, and really is just
	 * a fixed divider from the PLL2 base clock.
	 */
	of_property_read_string_index(node, "clock-output-names",
				      SUN4I_A10_PLL2_2X, &clk_name);
	clks[SUN4I_A10_PLL2_2X] = clk_register_fixed_factor(NULL, clk_name,
							    parent,
							    CLK_SET_RATE_PARENT,
							    1, 2);
	WARN_ON(IS_ERR(clks[SUN4I_A10_PLL2_2X]));

	/* PLL2-4x */
	of_property_read_string_index(node, "clock-output-names",
				      SUN4I_A10_PLL2_4X, &clk_name);
	clks[SUN4I_A10_PLL2_4X] = clk_register_fixed_factor(NULL, clk_name,
							    parent,
							    CLK_SET_RATE_PARENT,
							    1, 1);
	WARN_ON(IS_ERR(clks[SUN4I_A10_PLL2_4X]));

	/* PLL2-8x */
	of_property_read_string_index(node, "clock-output-names",
				      SUN4I_A10_PLL2_8X, &clk_name);
	clks[SUN4I_A10_PLL2_8X] = clk_register_fixed_factor(NULL, clk_name,
							    parent,
							    CLK_SET_RATE_PARENT,
							    2, 1);
	WARN_ON(IS_ERR(clks[SUN4I_A10_PLL2_8X]));

	clk_data->clks = clks;
	clk_data->clk_num = SUN4I_PLL2_OUTPUTS;
	of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);

	return;

err_free_multiplier:
	kfree(mult);
err_free_gate:
	kfree(gate);
err_unregister_prediv:
	clk_unregister_divider(prediv_clk);
err_free_array:
	kfree(clks);
err_free_data:
	kfree(clk_data);
err_unmap:
	iounmap(reg);
}
예제 #28
0
파일: gpio-tb10x.c 프로젝트: 24hours/linux
static int tb10x_gpio_probe(struct platform_device *pdev)
{
	struct tb10x_gpio *tb10x_gpio;
	struct resource *mem;
	struct device_node *dn = pdev->dev.of_node;
	int ret = -EBUSY;
	u32 ngpio;

	if (!dn)
		return -EINVAL;

	if (of_property_read_u32(dn, "abilis,ngpio", &ngpio))
		return -EINVAL;

	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!mem) {
		dev_err(&pdev->dev, "No memory resource defined.\n");
		return -EINVAL;
	}

	tb10x_gpio = devm_kzalloc(&pdev->dev, sizeof(*tb10x_gpio), GFP_KERNEL);
	if (tb10x_gpio == NULL)
		return -ENOMEM;

	spin_lock_init(&tb10x_gpio->spinlock);

	tb10x_gpio->base = devm_ioremap_resource(&pdev->dev, mem);
	if (IS_ERR(tb10x_gpio->base))
		return PTR_ERR(tb10x_gpio->base);

	tb10x_gpio->gc.label		= of_node_full_name(dn);
	tb10x_gpio->gc.dev		= &pdev->dev;
	tb10x_gpio->gc.owner		= THIS_MODULE;
	tb10x_gpio->gc.direction_input	= tb10x_gpio_direction_in;
	tb10x_gpio->gc.get		= tb10x_gpio_get;
	tb10x_gpio->gc.direction_output	= tb10x_gpio_direction_out;
	tb10x_gpio->gc.set		= tb10x_gpio_set;
	tb10x_gpio->gc.request		= tb10x_gpio_request;
	tb10x_gpio->gc.free		= tb10x_gpio_free;
	tb10x_gpio->gc.base		= -1;
	tb10x_gpio->gc.ngpio		= ngpio;
	tb10x_gpio->gc.can_sleep	= false;


	ret = gpiochip_add(&tb10x_gpio->gc);
	if (ret < 0) {
		dev_err(&pdev->dev, "Could not add gpiochip.\n");
		goto fail_gpiochip_registration;
	}

	platform_set_drvdata(pdev, tb10x_gpio);

	if (of_find_property(dn, "interrupt-controller", NULL)) {
		struct irq_chip_generic *gc;

		ret = platform_get_irq(pdev, 0);
		if (ret < 0) {
			dev_err(&pdev->dev, "No interrupt specified.\n");
			goto fail_get_irq;
		}

		tb10x_gpio->gc.to_irq	= tb10x_gpio_to_irq;
		tb10x_gpio->irq		= ret;

		ret = devm_request_irq(&pdev->dev, ret, tb10x_gpio_irq_cascade,
				IRQF_TRIGGER_NONE | IRQF_SHARED,
				dev_name(&pdev->dev), tb10x_gpio);
		if (ret != 0)
			goto fail_request_irq;

		tb10x_gpio->domain = irq_domain_add_linear(dn,
						tb10x_gpio->gc.ngpio,
						&irq_generic_chip_ops, NULL);
		if (!tb10x_gpio->domain) {
			ret = -ENOMEM;
			goto fail_irq_domain;
		}

		ret = irq_alloc_domain_generic_chips(tb10x_gpio->domain,
				tb10x_gpio->gc.ngpio, 1, tb10x_gpio->gc.label,
				handle_edge_irq, IRQ_NOREQUEST, IRQ_NOPROBE,
				IRQ_GC_INIT_MASK_CACHE);
		if (ret)
			goto fail_irq_domain;

		gc = tb10x_gpio->domain->gc->gc[0];
		gc->reg_base                         = tb10x_gpio->base;
		gc->chip_types[0].type               = IRQ_TYPE_EDGE_BOTH;
		gc->chip_types[0].chip.irq_ack       = irq_gc_ack_set_bit;
		gc->chip_types[0].chip.irq_mask      = irq_gc_mask_clr_bit;
		gc->chip_types[0].chip.irq_unmask    = irq_gc_mask_set_bit;
		gc->chip_types[0].chip.irq_set_type  = tb10x_gpio_irq_set_type;
		gc->chip_types[0].regs.ack           = OFFSET_TO_REG_CHANGE;
		gc->chip_types[0].regs.mask          = OFFSET_TO_REG_INT_EN;
	}

	return 0;

fail_irq_domain:
fail_request_irq:
fail_get_irq:
	gpiochip_remove(&tb10x_gpio->gc);
fail_gpiochip_registration:
fail_ioremap:
	return ret;
}
/**
 * of_irq_parse_raw - Low level interrupt tree parsing
 * @parent:	the device interrupt parent
 * @addr:	address specifier (start of "reg" property of the device) in be32 format
 * @out_irq:	structure of_irq updated by this function
 *
 * Returns 0 on success and a negative number on error
 *
 * This function is a low-level interrupt tree walking function. It
 * can be used to do a partial walk with synthetized reg and interrupts
 * properties, for example when resolving PCI interrupts when no device
 * node exist for the parent. It takes an interrupt specifier structure as
 * input, walks the tree looking for any interrupt-map properties, translates
 * the specifier for each map, and then returns the translated map.
 */
int of_irq_parse_raw(const __be32 *addr, struct of_phandle_args *out_irq)
{
	struct device_node *ipar, *tnode, *old = NULL, *newpar = NULL;
	__be32 initial_match_array[MAX_PHANDLE_ARGS];
	const __be32 *match_array = initial_match_array;
	const __be32 *tmp, *imap, *imask, dummy_imask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
	u32 intsize = 1, addrsize, newintsize = 0, newaddrsize = 0;
	int imaplen, match, i;

#ifdef DEBUG
	of_print_phandle_args("of_irq_parse_raw: ", out_irq);
#endif

	ipar = of_node_get(out_irq->np);

	/* First get the #interrupt-cells property of the current cursor
	 * that tells us how to interpret the passed-in intspec. If there
	 * is none, we are nice and just walk up the tree
	 */
	do {
		tmp = of_get_property(ipar, "#interrupt-cells", NULL);
		if (tmp != NULL) {
			intsize = be32_to_cpu(*tmp);
			break;
		}
		tnode = ipar;
		ipar = of_irq_find_parent(ipar);
		of_node_put(tnode);
	} while (ipar);
	if (ipar == NULL) {
		pr_debug(" -> no parent found !\n");
		goto fail;
	}

	pr_debug("of_irq_parse_raw: ipar=%s, size=%d\n", of_node_full_name(ipar), intsize);

	if (out_irq->args_count != intsize)
		return -EINVAL;

	/* Look for this #address-cells. We have to implement the old linux
	 * trick of looking for the parent here as some device-trees rely on it
	 */
	old = of_node_get(ipar);
	do {
		tmp = of_get_property(old, "#address-cells", NULL);
		tnode = of_get_parent(old);
		of_node_put(old);
		old = tnode;
	} while (old && tmp == NULL);
	of_node_put(old);
	old = NULL;
	addrsize = (tmp == NULL) ? 2 : be32_to_cpu(*tmp);

	pr_debug(" -> addrsize=%d\n", addrsize);

	/* Range check so that the temporary buffer doesn't overflow */
	if (WARN_ON(addrsize + intsize > MAX_PHANDLE_ARGS))
		goto fail;

	/* Precalculate the match array - this simplifies match loop */
	for (i = 0; i < addrsize; i++)
		initial_match_array[i] = addr ? addr[i] : 0;
	for (i = 0; i < intsize; i++)
		initial_match_array[addrsize + i] = cpu_to_be32(out_irq->args[i]);

	/* Now start the actual "proper" walk of the interrupt tree */
	while (ipar != NULL) {
		/* Now check if cursor is an interrupt-controller and if it is
		 * then we are done
		 */
		if (of_get_property(ipar, "interrupt-controller", NULL) !=
				NULL) {
			pr_debug(" -> got it !\n");
			return 0;
		}

		/*
		 * interrupt-map parsing does not work without a reg
		 * property when #address-cells != 0
		 */
		if (addrsize && !addr) {
			pr_debug(" -> no reg passed in when needed !\n");
			goto fail;
		}

		/* Now look for an interrupt-map */
		imap = of_get_property(ipar, "interrupt-map", &imaplen);
		/* No interrupt map, check for an interrupt parent */
		if (imap == NULL) {
			pr_debug(" -> no map, getting parent\n");
			newpar = of_irq_find_parent(ipar);
			goto skiplevel;
		}
		imaplen /= sizeof(u32);

		/* Look for a mask */
		imask = of_get_property(ipar, "interrupt-map-mask", NULL);
		if (!imask)
			imask = dummy_imask;

		/* Parse interrupt-map */
		match = 0;
		while (imaplen > (addrsize + intsize + 1) && !match) {
			/* Compare specifiers */
			match = 1;
			for (i = 0; i < (addrsize + intsize); i++, imaplen--)
				match &= !((match_array[i] ^ *imap++) & imask[i]);

			pr_debug(" -> match=%d (imaplen=%d)\n", match, imaplen);

			/* Get the interrupt parent */
			if (of_irq_workarounds & OF_IMAP_NO_PHANDLE)
				newpar = of_node_get(of_irq_dflt_pic);
			else
				newpar = of_find_node_by_phandle(be32_to_cpup(imap));
			imap++;
			--imaplen;

			/* Check if not found */
			if (newpar == NULL) {
				pr_debug(" -> imap parent not found !\n");
				goto fail;
			}

			/* Get #interrupt-cells and #address-cells of new
			 * parent
			 */
			tmp = of_get_property(newpar, "#interrupt-cells", NULL);
			if (tmp == NULL) {
				pr_debug(" -> parent lacks #interrupt-cells!\n");
				goto fail;
			}
			newintsize = be32_to_cpu(*tmp);
			tmp = of_get_property(newpar, "#address-cells", NULL);
			newaddrsize = (tmp == NULL) ? 0 : be32_to_cpu(*tmp);

			pr_debug(" -> newintsize=%d, newaddrsize=%d\n",
			    newintsize, newaddrsize);

			/* Check for malformed properties */
			if (WARN_ON(newaddrsize + newintsize > MAX_PHANDLE_ARGS))
				goto fail;
			if (imaplen < (newaddrsize + newintsize))
				goto fail;

			imap += newaddrsize + newintsize;
			imaplen -= newaddrsize + newintsize;

			pr_debug(" -> imaplen=%d\n", imaplen);
		}
		if (!match)
			goto fail;

		/*
		 * Successfully parsed an interrrupt-map translation; copy new
		 * interrupt specifier into the out_irq structure
		 */
		out_irq->np = newpar;

		match_array = imap - newaddrsize - newintsize;
		for (i = 0; i < newintsize; i++)
			out_irq->args[i] = be32_to_cpup(imap - newintsize + i);
		out_irq->args_count = intsize = newintsize;
		addrsize = newaddrsize;

	skiplevel:
		/* Iterate again with new parent */
		pr_debug(" -> new parent: %s\n", of_node_full_name(newpar));
		of_node_put(ipar);
		ipar = newpar;
		newpar = NULL;
	}
 fail:
	of_node_put(ipar);
	of_node_put(newpar);

	return -EINVAL;
}
예제 #30
0
/**
 * of_irq_map_raw - Low level interrupt tree parsing
 * @parent:	the device interrupt parent
 * @intspec:	interrupt specifier ("interrupts" property of the device)
 * @ointsize:   size of the passed in interrupt specifier
 * @addr:	address specifier (start of "reg" property of the device)
 * @out_irq:	structure of_irq filled by this function
 *
 * Returns 0 on success and a negative number on error
 *
 * This function is a low-level interrupt tree walking function. It
 * can be used to do a partial walk with synthetized reg and interrupts
 * properties, for example when resolving PCI interrupts when no device
 * node exist for the parent.
 */
int of_irq_map_raw(struct device_node *parent, const __be32 *intspec,
		   u32 ointsize, const __be32 *addr, struct of_irq *out_irq)
{
	struct device_node *ipar, *tnode, *old = NULL, *newpar = NULL;
	const __be32 *tmp, *imap, *imask;
	u32 intsize = 1, addrsize, newintsize = 0, newaddrsize = 0;
	int imaplen, match, i;

	pr_debug("of_irq_map_raw: par=%s,intspec=[0x%08x 0x%08x...],ointsize=%d\n",
		 of_node_full_name(parent), be32_to_cpup(intspec),
		 be32_to_cpup(intspec + 1), ointsize);

	ipar = of_node_get(parent);

	/* First get the #interrupt-cells property of the current cursor
	 * that tells us how to interpret the passed-in intspec. If there
	 * is none, we are nice and just walk up the tree
	 */
	do {
		tmp = of_get_property(ipar, "#interrupt-cells", NULL);
		if (tmp != NULL) {
			intsize = be32_to_cpu(*tmp);
			break;
		}
		tnode = ipar;
		ipar = of_irq_find_parent(ipar);
		of_node_put(tnode);
	} while (ipar);
	if (ipar == NULL) {
		pr_debug(" -> no parent found !\n");
		goto fail;
	}

	pr_debug("of_irq_map_raw: ipar=%s, size=%d\n", of_node_full_name(ipar), intsize);

	if (ointsize != intsize)
		return -EINVAL;

	/* Look for this #address-cells. We have to implement the old linux
	 * trick of looking for the parent here as some device-trees rely on it
	 */
	old = of_node_get(ipar);
	do {
		tmp = of_get_property(old, "#address-cells", NULL);
		tnode = of_get_parent(old);
		of_node_put(old);
		old = tnode;
	} while (old && tmp == NULL);
	of_node_put(old);
	old = NULL;
	addrsize = (tmp == NULL) ? 2 : be32_to_cpu(*tmp);

	pr_debug(" -> addrsize=%d\n", addrsize);

	/* Now start the actual "proper" walk of the interrupt tree */
	while (ipar != NULL) {
		/* Now check if cursor is an interrupt-controller and if it is
		 * then we are done
		 */
		if (of_get_property(ipar, "interrupt-controller", NULL) !=
				NULL) {
			pr_debug(" -> got it !\n");
			for (i = 0; i < intsize; i++)
				out_irq->specifier[i] =
						of_read_number(intspec +i, 1);
			out_irq->size = intsize;
			out_irq->controller = ipar;
			of_node_put(old);
			return 0;
		}

		/* Now look for an interrupt-map */
		imap = of_get_property(ipar, "interrupt-map", &imaplen);
		/* No interrupt map, check for an interrupt parent */
		if (imap == NULL) {
			pr_debug(" -> no map, getting parent\n");
			newpar = of_irq_find_parent(ipar);
			goto skiplevel;
		}
		imaplen /= sizeof(u32);

		/* Look for a mask */
		imask = of_get_property(ipar, "interrupt-map-mask", NULL);

		/* If we were passed no "reg" property and we attempt to parse
		 * an interrupt-map, then #address-cells must be 0.
		 * Fail if it's not.
		 */
		if (addr == NULL && addrsize != 0) {
			pr_debug(" -> no reg passed in when needed !\n");
			goto fail;
		}

		/* Parse interrupt-map */
		match = 0;
		while (imaplen > (addrsize + intsize + 1) && !match) {
			/* Compare specifiers */
			match = 1;
			for (i = 0; i < addrsize && match; ++i) {
				__be32 mask = imask ? imask[i]
						    : cpu_to_be32(0xffffffffu);
				match = ((addr[i] ^ imap[i]) & mask) == 0;
			}
			for (; i < (addrsize + intsize) && match; ++i) {
				__be32 mask = imask ? imask[i]
						    : cpu_to_be32(0xffffffffu);
				match =
				   ((intspec[i-addrsize] ^ imap[i]) & mask) == 0;
			}
			imap += addrsize + intsize;
			imaplen -= addrsize + intsize;

			pr_debug(" -> match=%d (imaplen=%d)\n", match, imaplen);

			/* Get the interrupt parent */
			if (of_irq_workarounds & OF_IMAP_NO_PHANDLE)
				newpar = of_node_get(of_irq_dflt_pic);
			else
				newpar = of_find_node_by_phandle(be32_to_cpup(imap));
			imap++;
			--imaplen;

			/* Check if not found */
			if (newpar == NULL) {
				pr_debug(" -> imap parent not found !\n");
				goto fail;
			}

			/* Get #interrupt-cells and #address-cells of new
			 * parent
			 */
			tmp = of_get_property(newpar, "#interrupt-cells", NULL);
			if (tmp == NULL) {
				pr_debug(" -> parent lacks #interrupt-cells!\n");
				goto fail;
			}
			newintsize = be32_to_cpu(*tmp);
			tmp = of_get_property(newpar, "#address-cells", NULL);
			newaddrsize = (tmp == NULL) ? 0 : be32_to_cpu(*tmp);

			pr_debug(" -> newintsize=%d, newaddrsize=%d\n",
			    newintsize, newaddrsize);

			/* Check for malformed properties */
			if (imaplen < (newaddrsize + newintsize))
				goto fail;

			imap += newaddrsize + newintsize;
			imaplen -= newaddrsize + newintsize;

			pr_debug(" -> imaplen=%d\n", imaplen);
		}
		if (!match)
			goto fail;

		of_node_put(old);
		old = of_node_get(newpar);
		addrsize = newaddrsize;
		intsize = newintsize;
		intspec = imap - intsize;
		addr = intspec - addrsize;

	skiplevel:
		/* Iterate again with new parent */
		pr_debug(" -> new parent: %s\n", of_node_full_name(newpar));
		of_node_put(ipar);
		ipar = newpar;
		newpar = NULL;
	}
 fail:
	of_node_put(ipar);
	of_node_put(old);
	of_node_put(newpar);

	return -EINVAL;
}