예제 #1
0
// l2 product
double l2_product(RealFunction *fu, RealFunction *fv) {
	_F_
	Quad3D *quad = get_quadrature(MODE);

	// integrate with maximum order
	order3_t o = fu->get_fn_order() + fv->get_fn_order() + order3_t(2, 2, 2);
	o.limit();

	int np = quad->get_num_points(o);
	QuadPt3D *pt = quad->get_points(o);
	fu->precalculate(np, pt, FN_DEFAULT);
	fv->precalculate(np, pt, FN_DEFAULT);

	scalar *u0, *u1, *u2;
	u0 = fu->get_fn_values(0);
	u1 = fu->get_fn_values(1);
	u2 = fu->get_fn_values(2);

	scalar *v0, *v1, *v2;
	v0 = fv->get_fn_values(0);
	v1 = fv->get_fn_values(1);
	v2 = fv->get_fn_values(2);

	// integrating over reference brick -> jacobian is 1.0 (we do not have to bother with refmap)
	double result = 0.0;
	for (int i = 0; i < np; i++)
		result += pt[i].w * (REAL(sqr(u0[i] - v0[i]) + sqr(u1[i] - v1[i]) + sqr(u2[i] - v2[i])));

	return result;
}
예제 #2
0
bool test_lin_indep(Shapeset *shapeset) {
	_F_
	printf("I. linear independency\n");

	UMFPackMatrix mat;
	UMFPackVector rhs;
	UMFPackLinearSolver solver(&mat, &rhs);

	ShapeFunction pss_u(shapeset), pss_v(shapeset);
	int n = Hex::NUM_EDGES * shapeset->get_num_edge_fns(H3D_MAX_ELEMENT_ORDER)
		+ Hex::NUM_FACES * shapeset->get_num_face_fns(order2_t(H3D_MAX_ELEMENT_ORDER, H3D_MAX_ELEMENT_ORDER))
	    + shapeset->get_num_bubble_fns(order3_t(H3D_MAX_ELEMENT_ORDER, H3D_MAX_ELEMENT_ORDER, H3D_MAX_ELEMENT_ORDER));

	printf("number of functions = %d\n", n);

	int *fn_idx = new int[n];
	int m = 0;
	// edge fns
	for (int i = 0; i < Hex::NUM_EDGES; i++) {
		int order = H3D_MAX_ELEMENT_ORDER;
		int *edge_idx = shapeset->get_edge_indices(i, 0, order);
		for (int j = 0; j < shapeset->get_num_edge_fns(order); j++, m++)
			fn_idx[m] = edge_idx[j];
	}
	// face fns
	for (int i = 0; i < Hex::NUM_FACES; i++) {
		order2_t order(H3D_MAX_ELEMENT_ORDER, H3D_MAX_ELEMENT_ORDER);
		int *face_idx = shapeset->get_face_indices(i, 0, order);
		for (int j = 0; j < shapeset->get_num_face_fns(order); j++, m++)
			fn_idx[m] = face_idx[j];
	}
	// bubble
	order3_t order(H3D_MAX_ELEMENT_ORDER, H3D_MAX_ELEMENT_ORDER, H3D_MAX_ELEMENT_ORDER);
	int *bubble_idx = shapeset->get_bubble_indices(order);
	for (int j = 0; j < shapeset->get_num_bubble_fns(order); j++, m++)
		fn_idx[m] = bubble_idx[j];


	// precalc structure
	mat.prealloc(n);
	for (int i = 0; i < n; i++)
		for (int j = 0; j < n; j++)
			mat.pre_add_ij(i, j);
	mat.alloc();
	rhs.alloc(n);

	printf("assembling matrix ");

	for (int i = 0; i < n; i++) {
		pss_u.set_active_shape(fn_idx[i]);

		printf(".");
		fflush(stdout); // prevent caching of output (to see that it did not freeze)

		for (int j = 0; j < n; j++) {
			pss_v.set_active_shape(fn_idx[j]);

			double value = l2_product(&pss_u, &pss_v);

			mat.add(i, j, value);
		}
	}
	printf("\n");

	for (int i = 0; i < n; i++)
		rhs.add(i, 0.0);

	printf("solving matrix\n");


	// solve the system
	if (solver.solve()) {
		double *sln = solver.get_solution();
		bool indep = true;
		for (int i = 1; i < n + 1; i++) {
			if (sln[i] >= EPS) {
				indep = false;
				break;
			}
		}

		if (indep)
			printf("ok\n");
		else
			printf("Shape functions are not linearly independent\n");
	}
	else {
		printf("Shape functions are not linearly independent\n");
	}

	delete[] fn_idx;

	return true;
}
예제 #3
0
파일: main.cpp 프로젝트: hpfem/hermes3d
/***********************************************************************************
 * main program                                                                    *
************************************************************************************/
int main(int argc, char **args)
{

#ifdef WITH_PETSC
    PetscInitialize(NULL, NULL, PETSC_NULL, PETSC_NULL);
    PetscPushErrorHandler(PetscIgnoreErrorHandler, PETSC_NULL);		// Disable PETSc error handler.
#endif

    // Load the inital mesh.
    Mesh mesh;
    Mesh3DReader mesh_loader;
    mesh_loader.load("hexahedron.mesh3d", &mesh);

    // Initial uniform  mesh refinements.
    printf("Performing %d initial mesh refinements.\n", INIT_REF_NUM);
    for (int i=0; i < INIT_REF_NUM; i++) mesh.refine_all_elements(H3D_H3D_H3D_REFT_HEX_XYZ);
    Word_t (nelem) = mesh.get_num_elements();
    printf("New number of elements is %d.\n", nelem);

    //Initialize the shapeset and the cache.
    H1ShapesetLobattoHex shapeset;

    //Matrix solver.
#if defined WITH_UMFPACK
    UMFPackMatrix mat;
    UMFPackVector rhs;
    UMFPackLinearSolver solver(&mat, &rhs);
#elif defined WITH_PETSC
    PetscMatrix mat;
    PetscVector rhs;
    PetscLinearSolver solver(&mat, &rhs);
#elif defined WITH_MUMPS
    MumpsMatrix mat;
    MumpsVector rhs;
    MumpsSolver solver(&mat, &rhs);
#endif

    // Graphs of DOF convergence.
    GnuplotGraph graph;
    graph.set_captions("", "Degrees of Freedom", "Error [%]");
    graph.set_log_y();
    graph.add_row("Total error", "k", "-", "O");

    // Create H1 space to setup the problem.
    H1Space space(&mesh, &shapeset);
    space.set_bc_types(bc_types);
    space.set_essential_bc_values(essential_bc_values);
    space.set_uniform_order(order3_t(P_INIT, P_INIT, P_INIT));

    // Initialize the weak formulation.
    WeakForm wf;
    wf.add_matrix_form(biform<double, double>, biform<ord_t, ord_t>, SYM, ANY);
    wf.add_vector_form(liform<double, double>, liform<ord_t, ord_t>, ANY);

    // Initialize the coarse mesh problem.
    LinProblem lp(&wf);
    lp.set_space(&space);

    // Adaptivity loop.
    int as = 0;
    bool done = false;
    do {
        printf("\n---- Adaptivity step %d:\n", as);

        printf("\nSolving on coarse mesh:\n");

        // Procedures for coarse mesh problem.
        // Assign DOF.
        int ndof = space.assign_dofs();
        printf("  - Number of DOF: %d\n", ndof);

        // Assemble stiffness matrix and rhs.
        printf("  - Assembling... ");
        fflush(stdout);
        if (lp.assemble(&mat, &rhs))
            printf("done in %lf secs.\n", lp.get_time());
        else
            error("failed!");

        // Solve the system.
        printf("  - Solving... ");
        fflush(stdout);
        bool solved = solver.solve();
        if (solved)
            printf("done in %lf secs.\n", solver.get_time());
        else
        {
            printf("Failed.\n");
            break;
        }

        // Construct a solution.
        Solution sln(&mesh);
        sln.set_fe_solution(&space, solver.get_solution());

        // Output the orders and the solution.
        if (do_output)
        {
            out_orders(&space, "order", as);
            out_fn(&sln, "sln", as);
        }

        // Solving fine mesh problem.
        printf("Solving on fine mesh:\n");

        // Matrix solver.
#if defined WITH_UMFPACK
        UMFPackLinearSolver rsolver(&mat, &rhs);
#elif defined WITH_PETSC
        PetscLinearSolver rsolver(&mat, &rhs);
#elif defined WITH_MUMPS
        MumpsSolver rsolver(&mat, &rhs);
#endif

        // Construct the refined mesh for reference(refined) solution.
        Mesh rmesh;
        rmesh.copy(mesh);
        rmesh.refine_all_elements(H3D_H3D_H3D_REFT_HEX_XYZ);

        // Setup space for the reference (globally refined) solution.
        Space *rspace = space.dup(&rmesh);
        rspace->copy_orders(space, 1);

        // Initialize the mesh problem for reference solution.
        LinProblem rlp(&wf);
        rlp.set_space(rspace);

        // Assign DOF.
        int rndof = rspace->assign_dofs();
        printf("  - Number of DOF: %d\n", rndof);

        // Assemble stiffness matric and rhs.
        printf("  - Assembling... ");
        fflush(stdout);
        if (rlp.assemble(&mat, &rhs))
            printf("done in %lf secs.\n", rlp.get_time());
        else
            error("failed!");

        // Solve the system.
        printf("  - Solving... ");
        fflush(stdout);
        bool rsolved = rsolver.solve();
        if (rsolved)
            printf("done in %lf secs.\n", rsolver.get_time());
        else
        {
            printf("failed.\n");
            break;
        }

        // Construct the reference(refined) solution.
        Solution rsln(&rmesh);
        rsln.set_fe_solution(rspace, rsolver.get_solution());

        // Compare coarse and fine mesh.
        // Calculate the error estimate wrt. refined mesh solution.
        double err = h1_error(&sln, &rsln);
        printf("  - H1 error: % lf\n", err * 100);

        // Save it to the graph.
        graph.add_value(0, ndof, err * 100);
        if (do_output)
            graph.save("conv.gp");

        // Calculate error estimates for adaptivity.
        printf("Adaptivity\n");
        printf("  - calculating error: ");
        fflush(stdout);
        H1Adapt hp(&space);
        double err_est = hp.calc_error(&sln, &rsln) * 100;
        printf("% lf %%\n", err_est);

        // If error is too large, adapt the mesh.
        if (err_est < ERR_STOP)
        {
            printf("\nDone\n");
            break;
        }
        printf("  - adapting... ");
        fflush(stdout);
        hp.adapt(THRESHOLD);
        printf("done in %lf secs (refined %d element(s)).\n", hp.get_adapt_time(), hp.get_num_refined_elements());

        if (rndof >= NDOF_STOP)
        {
            printf("\nDone.\n");
            break;
        }

        // Clean up.
        delete rspace;

        // Next adaptivity step.
        as++;

        mat.free();
        rhs.free();
    } while (!done);

#ifdef WITH_PETSC
    PetscFinalize();
#endif

    return 1;
}
예제 #4
0
파일: main.cpp 프로젝트: andrsd/hermes3d
/***********************************************************************************
 * main program                                                                    *
 ***********************************************************************************/
int main(int argc, char **argv) {
#ifdef WITH_PETSC
  PetscInitialize(&argc, &argv, (char *) PETSC_NULL, PETSC_NULL);
  PetscPushErrorHandler(PetscIgnoreErrorHandler, PETSC_NULL);                   // Disable PETSc error handler.
#endif

  // Load the initial mesh. 
  Mesh mesh;
  Mesh3DReader mloader;
  mloader.load("l-beam.mesh3d", &mesh);

  // Initial uniform mesh refinements. 
  printf("Performing %d initial mesh refinements.\n", INIT_REF_NUM);
  for (int i=0; i < INIT_REF_NUM; i++) mesh.refine_all_elements(H3D_H3D_H3D_REFT_HEX_XYZ);
  Word_t (nelem) = mesh.get_num_elements();
  printf("New number of elements is %d.\n", (int) nelem);

  // Initialize the shapeset and the cache. 
  H1ShapesetLobattoHex shapeset;

#if defined WITH_UMFPACK
  UMFPackMatrix mat;
  UMFPackVector rhs;
  UMFPackLinearSolver solver(&mat, &rhs);
#elif defined WITH_PARDISO
  PardisoMatrix mat;
  PardisoVector rhs;
  PardisoLinearSolver solver(&mat, &rhs);
#elif defined WITH_PETSC
  PetscMatrix mat;
  PetscVector rhs;
  PetscLinearSolver solver(&mat, &rhs);
#elif defined WITH_MUMPS
  MumpsMatrix mat;
  MumpsVector rhs;
  MumpsSolver solver(&mat, &rhs);
#endif

  // Create H1 spaces x-displacement component. 
  H1Space xdisp(&mesh, &shapeset);
  xdisp.set_bc_types(bc_types_x);
  xdisp.set_uniform_order(order3_t(P_INIT, P_INIT, P_INIT));

  // Create H1 spaces y-displacement component. 
  H1Space ydisp(&mesh, &shapeset);
  ydisp.set_bc_types(bc_types_y);
  ydisp.set_uniform_order(order3_t(P_INIT, P_INIT, P_INIT));

  // Create H1 spaces z-displacement component. 
  H1Space zdisp(&mesh, &shapeset);
  zdisp.set_bc_types(bc_types_z);
  zdisp.set_uniform_order(order3_t(P_INIT, P_INIT, P_INIT));

  // Assign DOF. 
  int ndofs = 0;
  ndofs += xdisp.assign_dofs(ndofs);
  ndofs += ydisp.assign_dofs(ndofs);
  ndofs += zdisp.assign_dofs(ndofs);
  printf("  - Number of DOFs: %d\n", ndofs);

  // Initialized the Weak formulation.
  WeakForm wf(3);
  wf.add_matrix_form(0, 0, bilinear_form_0_0<double, scalar>, bilinear_form_0_0<ord_t, ord_t>, SYM);
  wf.add_matrix_form(0, 1, bilinear_form_0_1<double, scalar>, bilinear_form_0_1<ord_t, ord_t>, SYM);
  wf.add_matrix_form(0, 2, bilinear_form_0_2<double, scalar>, bilinear_form_0_2<ord_t, ord_t>, SYM);
  wf.add_vector_form_surf(0, surf_linear_form_0<double, scalar>, surf_linear_form_0<ord_t, ord_t>);

  wf.add_matrix_form(1, 1, bilinear_form_1_1<double, scalar>, bilinear_form_1_1<ord_t, ord_t>, SYM);
  wf.add_matrix_form(1, 2, bilinear_form_1_2<double, scalar>, bilinear_form_1_2<ord_t, ord_t>, SYM);
  wf.add_vector_form_surf(1, surf_linear_form_1<double, scalar>, surf_linear_form_1<ord_t, ord_t>);

  wf.add_matrix_form(2, 2, bilinear_form_2_2<double, scalar>, bilinear_form_2_2<ord_t, ord_t>, SYM);
  wf.add_vector_form_surf(2, surf_linear_form_2<double, scalar>, surf_linear_form_2<ord_t, ord_t>, 5);

  // Initialize the mesh problem.
  LinearProblem lp(&wf);
  lp.set_spaces(Tuple<Space *>(&xdisp, &ydisp, &zdisp));

  // Assemble stiffness matrix
  printf("  - Assembling... "); fflush(stdout);
  Timer tmr_assemble;
  tmr_assemble.start();
  bool assembled = lp.assemble(&mat, &rhs);
  tmr_assemble.stop();
  if (assembled)
    printf("done in %s (%lf secs)\n", tmr_assemble.get_human_time(), tmr_assemble.get_seconds());
  else
    error("failed!");

  // Solve the stiffness matrix.
  printf("  - Solving... "); fflush(stdout);
  Timer tmr_solve;
  tmr_solve.start();
  bool solved = solver.solve();
  tmr_solve.stop();
  if (solved)
    printf("done in %s (%lf secs)\n", tmr_solve.get_human_time(), tmr_solve.get_seconds());
  else {
    printf("failed\n");
  }

  // Construct a solution. 
  double *s = solver.get_solution();
  Solution xsln(&mesh), ysln(&mesh), zsln(&mesh);
  xsln.set_fe_solution(&xdisp, s);
  ysln.set_fe_solution(&ydisp, s);
  zsln.set_fe_solution(&zdisp, s);

  // Output the solutions. 
  printf("  - Output... "); fflush(stdout);
  out_fn(&xsln, &ysln, &zsln, "disp");
  printf("done\n");

#ifdef WITH_PETSC
  mat.free();
  rhs.free();
  PetscFinalize();
#endif

  return 1;
}
예제 #5
0
파일: main.cpp 프로젝트: MathPhys/hermes
int main(int argc, char **args)
{
	set_verbose(false);

	if (argc < 3) error("Not enough parameters");

	char *type = args[1];

	Mesh mesh;
	Mesh3DReader mesh_loader;
	if (!mesh_loader.load(args[2], &mesh)) error("Loading mesh file '%s'\n", args[2]);

	if (strcmp(type, "sln") == 0) {
		// Testing on Exact solution which always gives the same value (values from Solution may differ by epsilon)
		ExactSolution ex_sln(&mesh, exact_solution);
		output.out(&ex_sln, "U");
	}
	else if (strcmp(type, "vec-sln") == 0) {
		// Testing on Exact solution which always gives the same value (values from Solution may differ by epsilon)
		ExactSolution ex_sln(&mesh, exact_vec_solution);
		output.out(&ex_sln, "U");
	}
	else if (strcmp(type, "3sln") == 0) {
		// Testing on Exact solution which always gives the same value (values from Solution may differ by epsilon)
		ExactSolution ex_sln0(&mesh, exact_solution0);
		ExactSolution ex_sln1(&mesh, exact_solution1);
		ExactSolution ex_sln2(&mesh, exact_solution2);
		output.out(&ex_sln0, &ex_sln1, &ex_sln2, "U");
	}
	else if (strcmp(type, "ord") == 0) {
		H1ShapesetLobattoHex shapeset;

		H1Space space(&mesh, &shapeset);
		space.set_bc_types(bc_types);
		space.set_essential_bc_values(essential_bc_values);

		order3_t order;
		if (mesh.elements[1]->get_mode() == MODE_HEXAHEDRON)
			order = order3_t(2, 3, 4);
		else if (mesh.elements[1]->get_mode() == MODE_TETRAHEDRON)
			order = order3_t(3);
		else
			error(H3D_ERR_NOT_IMPLEMENTED);
		space.set_uniform_order(order);

		output.out_orders(&space, "orders");
	}
	else if (strcmp(type, "bc") == 0) {
		output.out_bc(&mesh);
	}
	else if (strcmp(type, "mat") == 0) {
		StiffMatrix mat;
		test_mat(&mesh, mat);
		output.out(&mat);
	}
	else if (strcmp(type, "mm") == 0) {
		test_mm(&mesh);
	}

	return 0;
}