예제 #1
0
/*!
 *  pixcmapHasColor()
 *
 *      Input:  cmap
 *              &color (<return> TRUE if cmap has color; FALSE otherwise)
 *      Return: 0 if OK, 1 on error
 */
LEPTONICA_EXPORT l_int32
pixcmapHasColor(PIXCMAP  *cmap,
                l_int32  *pcolor)
{
l_int32   n, i;
l_int32  *rmap, *gmap, *bmap;

    PROCNAME("pixcmapHasColor");

    if (!pcolor)
        return ERROR_INT("&color not defined", procName, 1);
    *pcolor = FALSE;
    if (!cmap)
        return ERROR_INT("cmap not defined", procName, 1);

    if (pixcmapToArrays(cmap, &rmap, &gmap, &bmap))
        return ERROR_INT("colormap arrays not made", procName, 1);
    n = pixcmapGetCount(cmap);
    for (i = 0; i < n; i++) {
        if ((rmap[i] != gmap[i]) || (rmap[i] != bmap[i])) {
            *pcolor = TRUE;
            break;
        }
    }

    FREE(rmap);
    FREE(gmap);
    FREE(bmap);
    return 0;
}
예제 #2
0
/*!
 *  pixcmapWriteStream()
 *
 *      Input:  stream, cmap
 *      Return: 0 if OK, 1 on error
 */
l_int32
pixcmapWriteStream(FILE     *fp,
                   PIXCMAP  *cmap)
{
l_int32  *rmap, *gmap, *bmap;
l_int32   i;

    PROCNAME("pixcmapWriteStream");

    if (!fp)
        return ERROR_INT("stream not defined", procName, 1);
    if (!cmap)
        return ERROR_INT("cmap not defined", procName, 1);

    if (pixcmapToArrays(cmap, &rmap, &gmap, &bmap))
        return ERROR_INT("colormap arrays not made", procName, 1);

    fprintf(fp, "\nPixcmap: depth = %d bpp; %d colors\n", cmap->depth, cmap->n);
    fprintf(fp, "Color    R-val    G-val    B-val\n");
    fprintf(fp, "--------------------------------\n");
    for (i = 0; i < cmap->n; i++)
        fprintf(fp, "%3d       %3d      %3d      %3d\n",
                i, rmap[i], gmap[i], bmap[i]);
    fprintf(fp, "\n");

    FREE(rmap);
    FREE(gmap);
    FREE(bmap);
    return 0;
}
예제 #3
0
int main(int    argc,
         char **argv)
{
l_uint8      *data;
l_int32       w, h, n1, n2, n, i, minval, maxval;
l_int32       ncolors, rval, gval, bval, equal;
l_int32      *rmap, *gmap, *bmap;
l_uint32      color;
l_float32     gamma;
BOX          *box;
FILE         *fp;
PIX          *pix1, *pix2, *pix3, *pix4, *pix5, *pix6;
PIX          *pixs, *pixb, *pixg, *pixc, *pixd;
PIX          *pixg2, *pixcs1, *pixcs2, *pixd1, *pixd2;
PIXA         *pixa, *pixa2, *pixa3;
PIXCMAP      *cmap, *cmap2;
RGBA_QUAD    *cta;
L_REGPARAMS  *rp;

    if (regTestSetup(argc, argv, &rp))
        return 1;

    /* ------------------------ (1) ----------------------------*/
        /* Blend with a white background */
    pix1 = pixRead("books_logo.png");
    pixDisplayWithTitle(pix1, 100, 0, NULL, rp->display);
    pix2 = pixAlphaBlendUniform(pix1, 0xffffff00);
    pixDisplayWithTitle(pix2, 100, 150, NULL, rp->display);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 0 */
    regTestWritePixAndCheck(rp, pix2, IFF_PNG);  /* 1 */

        /* Generate an alpha layer based on the white background */
    pix3 = pixSetAlphaOverWhite(pix2);
    pixSetSpp(pix3, 3);
    pixWrite("/tmp/alphaops.2.png", pix3, IFF_PNG);  /* without alpha */
    regTestCheckFile(rp, "/tmp/alphaops.2.png");   /* 2 */
    pixSetSpp(pix3, 4);
    regTestWritePixAndCheck(rp, pix3, IFF_PNG);  /* 3, with alpha */
    pixDisplayWithTitle(pix3, 100, 300, NULL, rp->display);

        /* Render on a light yellow background */
    pix4 = pixAlphaBlendUniform(pix3, 0xffffe000);
    regTestWritePixAndCheck(rp, pix4, IFF_PNG);  /* 4 */
    pixDisplayWithTitle(pix4, 100, 450, NULL, rp->display);
    pixDestroy(&pix1);
    pixDestroy(&pix2);
    pixDestroy(&pix3);
    pixDestroy(&pix4);

    /* ------------------------ (2) ----------------------------*/
    lept_rmdir("alpha");
    lept_mkdir("alpha");
        /* Make the transparency (alpha) layer.
         * pixs is the mask.  We turn it into a transparency (alpha)
         * layer by converting to 8 bpp.  A small convolution fuzzes
         * the mask edges so that you don't see the pixels. */
    pixs = pixRead("feyn-fract.tif");
    pixGetDimensions(pixs, &w, &h, NULL);
    pixg = pixConvert1To8(NULL, pixs, 0, 255);
    pixg2 = pixBlockconvGray(pixg, NULL, 1, 1);
    regTestWritePixAndCheck(rp, pixg2, IFF_JFIF_JPEG);  /* 5 */
    pixDisplayWithTitle(pixg2, 0, 0, "alpha", rp->display);

        /* Make the viewable image.
         * pixc is the image that we see where the alpha layer is
         * opaque -- i.e., greater than 0.  Scale it to the same
         * size as the mask.  To visualize what this will look like
         * when displayed over a black background, create the black
         * background image, pixb, and do the blending with pixcs1
         * explicitly using the alpha layer pixg2. */
    pixc = pixRead("tetons.jpg");
    pixcs1 = pixScaleToSize(pixc, w, h);
    regTestWritePixAndCheck(rp, pixcs1, IFF_JFIF_JPEG);  /* 6 */
    pixDisplayWithTitle(pixcs1, 300, 0, "viewable", rp->display);
    pixb = pixCreateTemplate(pixcs1);  /* black */
    pixd1 = pixBlendWithGrayMask(pixb, pixcs1, pixg2, 0, 0);
    regTestWritePixAndCheck(rp, pixd1, IFF_JFIF_JPEG);  /* 7 */
    pixDisplayWithTitle(pixd1, 600, 0, "alpha-blended 1", rp->display);

        /* Embed the alpha layer pixg2 into the color image pixc.
         * Write it out as is.  Then clean pixcs1 (to 0) under the fully
         * transparent part of the alpha layer, and write that result
         * out as well. */
    pixSetRGBComponent(pixcs1, pixg2, L_ALPHA_CHANNEL);
    pixWrite("/tmp/alpha/pixcs1.png", pixcs1, IFF_PNG);
    pixcs2 = pixSetUnderTransparency(pixcs1, 0, 0);
    pixWrite("/tmp/alpha/pixcs2.png", pixcs2, IFF_PNG);

        /* What will this look like over a black background?
         * Do the blending explicitly and display.  It should
         * look identical to the blended result pixd1 before cleaning. */
    pixd2 = pixBlendWithGrayMask(pixb, pixcs2, pixg2, 0, 0);
    regTestWritePixAndCheck(rp, pixd2, IFF_JFIF_JPEG);  /* 8 */
    pixDisplayWithTitle(pixd2, 0, 400, "alpha blended 2", rp->display);

        /* Read the two images back, ignoring the transparency layer.
         * The uncleaned image will come back identical to pixcs1.
         * However, the cleaned image will be black wherever
         * the alpha layer was fully transparent.  It will
         * look the same when viewed through the alpha layer,
         * but have much better compression. */
    pix1 = pixRead("/tmp/alpha/pixcs1.png");  /* just pixcs1 */
    pix2 = pixRead("/tmp/alpha/pixcs2.png");  /* cleaned under transparent */
    n1 = nbytesInFile("/tmp/alpha/pixcs1.png");
    n2 = nbytesInFile("/tmp/alpha/pixcs2.png");
    fprintf(stderr, " Original: %d bytes\n Cleaned: %d bytes\n", n1, n2);
    regTestWritePixAndCheck(rp, pix1, IFF_JFIF_JPEG);  /* 9 */
    regTestWritePixAndCheck(rp, pix2, IFF_JFIF_JPEG);  /* 10 */
    pixDisplayWithTitle(pix1, 300, 400, "without alpha", rp->display);
    pixDisplayWithTitle(pix2, 600, 400, "cleaned under transparent",
                        rp->display);

    pixa = pixaCreate(0);
    pixSaveTiled(pixg2, pixa, 1.0, 1, 20, 32);
    pixSaveTiled(pixcs1, pixa, 1.0, 1, 20, 0);
    pixSaveTiled(pix1, pixa, 1.0, 0, 20, 0);
    pixSaveTiled(pixd1, pixa, 1.0, 1, 20, 0);
    pixSaveTiled(pixd2, pixa, 1.0, 0, 20, 0);
    pixSaveTiled(pix2, pixa, 1.0, 1, 20, 0);
    pixd = pixaDisplay(pixa, 0, 0);
    regTestWritePixAndCheck(rp, pixd, IFF_JFIF_JPEG);  /* 11 */
    pixDisplayWithTitle(pixd, 200, 200, "composite", rp->display);
    pixWrite("/tmp/alpha/alpha.png", pixd, IFF_JFIF_JPEG);
    pixDestroy(&pixd);
    pixaDestroy(&pixa);
    pixDestroy(&pixs);
    pixDestroy(&pixb);
    pixDestroy(&pixg);
    pixDestroy(&pixg2);
    pixDestroy(&pixc);
    pixDestroy(&pixcs1);
    pixDestroy(&pixcs2);
    pixDestroy(&pixd);
    pixDestroy(&pixd1);
    pixDestroy(&pixd2);
    pixDestroy(&pix1);
    pixDestroy(&pix2);

    /* ------------------------ (3) ----------------------------*/
    color = 0xffffa000;
    gamma = 1.0;
    minval = 0;
    maxval = 200;
    box = boxCreate(0, 85, 600, 100);
    pixa = pixaCreate(6);
    pix1 = pixRead("blend-green1.jpg");
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = pixRead("blend-green2.png");
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = pixRead("blend-green3.png");
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = pixRead("blend-orange.jpg");
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = pixRead("blend-yellow.jpg");
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = pixRead("blend-red.png");
    pixaAddPix(pixa, pix1, L_INSERT);
    n = pixaGetCount(pixa);
    pixa2 = pixaCreate(n);
    pixa3 = pixaCreate(n);
    for (i = 0; i < n; i++) {
        pix1 = pixaGetPix(pixa, i, L_CLONE);
        pix2 = DoBlendTest(pix1, box, color, gamma, minval, maxval, 1);
        regTestWritePixAndCheck(rp, pix2, IFF_JFIF_JPEG);  /* 12, 14, ... 22 */
        pixDisplayWithTitle(pix2, 150 * i, 0, NULL, rp->display);
        pixaAddPix(pixa2, pix2, L_INSERT);
        pix2 = DoBlendTest(pix1, box, color, gamma, minval, maxval, 2);
        regTestWritePixAndCheck(rp, pix2, IFF_JFIF_JPEG);  /* 13, 15, ... 23 */
        pixDisplayWithTitle(pix2, 150 * i, 200, NULL, rp->display);
        pixaAddPix(pixa3, pix2, L_INSERT);
        pixDestroy(&pix1);
    }
    if (rp->display) {
        pixaConvertToPdf(pixa2, 0, 0.75, L_FLATE_ENCODE, 0, "blend 1 test",
                         "/tmp/alpha/blending1.pdf");
        pixaConvertToPdf(pixa3, 0, 0.75, L_FLATE_ENCODE, 0, "blend 2 test",
                         "/tmp/alpha/blending2.pdf");
    }
    pixaDestroy(&pixa);
    pixaDestroy(&pixa2);
    pixaDestroy(&pixa3);
    boxDestroy(&box);

    /* ------------------------ (4) ----------------------------*/
        /* Use one image as the alpha component for a second image */
    pix1 = pixRead("test24.jpg");
    pix2 = pixRead("marge.jpg");
    pix3 = pixScale(pix2, 1.9, 2.2);
    pix4 = pixConvertTo8(pix3, 0);
    pixSetRGBComponent(pix1, pix4, L_ALPHA_CHANNEL);
    regTestWritePixAndCheck(rp, pix1, IFF_PNG);  /* 24 */
    pixDisplayWithTitle(pix1, 600, 0, NULL, rp->display);

        /* Set the alpha value in a colormap to bval */
    pix5 = pixOctreeColorQuant(pix1, 128, 0);
    cmap = pixGetColormap(pix5);
    pixcmapToArrays(cmap, &rmap, &gmap, &bmap, NULL);
    n = pixcmapGetCount(cmap);
    for (i = 0; i < n; i++) {
        pixcmapGetColor(cmap, i, &rval, &gval, &bval);
        cta = (RGBA_QUAD *)cmap->array;
        cta[i].alpha = bval;
    }

        /* Test binary serialization/deserialization of colormap with alpha */
    pixcmapSerializeToMemory(cmap, 4, &ncolors, &data);
    cmap2 = pixcmapDeserializeFromMemory(data, 4, ncolors);
    CmapEqual(cmap, cmap2, &equal);
    regTestCompareValues(rp, TRUE, equal, 0.0);  /* 25 */
    pixcmapDestroy(&cmap2);
    lept_free(data);

        /* Test ascii serialization/deserialization of colormap with alpha */
    fp = fopenWriteStream("/tmp/alpha/cmap.4", "w");
    pixcmapWriteStream(fp, cmap);
    fclose(fp);
    fp = fopenReadStream("/tmp/alpha/cmap.4");
    cmap2 = pixcmapReadStream(fp);
    fclose(fp);
    CmapEqual(cmap, cmap2, &equal);
    regTestCompareValues(rp, TRUE, equal, 0.0);  /* 26 */
    pixcmapDestroy(&cmap2);

        /* Test r/w for cmapped pix with non-opaque alpha */
    pixDisplayWithTitle(pix5, 900, 0, NULL, rp->display);
    regTestWritePixAndCheck(rp, pix5, IFF_PNG);  /* 27 */
    pixWrite("/tmp/alpha/fourcomp.png", pix5, IFF_PNG);
    pix6 = pixRead("/tmp/alpha/fourcomp.png");
    regTestComparePix(rp, pix5, pix6);  /* 28 */
    pixDestroy(&pix1);
    pixDestroy(&pix2);
    pixDestroy(&pix3);
    pixDestroy(&pix4);
    pixDestroy(&pix5);
    pixDestroy(&pix6);
    lept_free(rmap);
    lept_free(gmap);
    lept_free(bmap);
    return regTestCleanup(rp);
}
예제 #4
0
파일: pngio.c 프로젝트: 0xkasun/Dummy_Tes
/*!
 *  pixWriteStreamPng()
 *
 *      Input:  stream
 *              pix
 *              gamma (use 0.0 if gamma is not defined)
 *      Return: 0 if OK; 1 on error
 *
 *  Notes:
 *      (1) If called from pixWriteStream(), the stream is positioned
 *          at the beginning of the file.
 *      (2) To do sequential writes of png format images to a stream,
 *          use pixWriteStreamPng() directly.
 *      (3) gamma is an optional png chunk.  If no gamma value is to be
 *          placed into the file, use gamma = 0.0.  Otherwise, if
 *          gamma > 0.0, its value is written into the header.
 *      (4) The use of gamma in png is highly problematic.  For an illuminating
 *          discussion, see:  http://hsivonen.iki.fi/png-gamma/
 *      (5) What is the effect/meaning of gamma in the png file?  This
 *          gamma, which we can call the 'source' gamma, is the
 *          inverse of the gamma that was used in enhance.c to brighten
 *          or darken images.  The 'source' gamma is supposed to indicate
 *          the intensity mapping that was done at the time the
 *          image was captured.  Display programs typically apply a
 *          'display' gamma of 2.2 to the output, which is intended
 *          to linearize the intensity based on the response of
 *          thermionic tubes (CRTs).  Flat panel LCDs have typically
 *          been designed to give a similar response as CRTs (call it
 *          "backward compatibility").  The 'display' gamma is
 *          in some sense the inverse of the 'source' gamma.
 *          jpeg encoders attached to scanners and cameras will lighten
 *          the pixels, applying a gamma corresponding to approximately
 *          a square-root relation of output vs input:
 *                output = input^(gamma)
 *          where gamma is often set near 0.4545  (1/gamma is 2.2).
 *          This is stored in the image file.  Then if the display
 *          program reads the gamma, it will apply a display gamma,
 *          typically about 2.2; the product is 1.0, and the
 *          display program produces a linear output.  This works because
 *          the dark colors were appropriately boosted by the scanner,
 *          as described by the 'source' gamma, so they should not
 *          be further boosted by the display program.
 *      (6) As an example, with xv and display, if no gamma is stored,
 *          the program acts as if gamma were 0.4545, multiplies this by 2.2,
 *          and does a linear rendering.  Taking this as a baseline
 *          brightness, if the stored gamma is:
 *              > 0.4545, the image is rendered lighter than baseline
 *              < 0.4545, the image is rendered darker than baseline
 *          In contrast, gqview seems to ignore the gamma chunk in png.
 *      (7) The only valid pixel depths in leptonica are 1, 2, 4, 8, 16
 *          and 32.  However, it is possible, and in some cases desirable,
 *          to write out a png file using an rgb pix that has 24 bpp.
 *          For example, the open source xpdf SplashBitmap class generates
 *          24 bpp rgb images.  Consequently, we anble writing 24 bpp pix.
 *          To generate such a pix, you can make a 24 bpp pix without data
 *          and assign the data array to the pix; e.g.,
 *              pix = pixCreateHeader(w, h, 24);
 *              pixSetData(pix, rgbdata);
 *          See pixConvert32To24() for an example, where we get rgbdata
 *          from the 32 bpp pix.  Caution: do not call pixSetPadBits(),
 *          because the alignment is wrong and you may erase part of the
 *          last pixel on each line.
 */
l_int32
pixWriteStreamPng(FILE      *fp,
                  PIX       *pix,
                  l_float32  gamma)
{
char         commentstring[] = "Comment";
l_int32      i, j, k;
l_int32      wpl, d, cmflag;
l_int32      ncolors;
l_int32     *rmap, *gmap, *bmap;
l_uint32    *data, *ppixel;
png_byte     bit_depth, color_type;
png_uint_32  w, h;
png_uint_32  xres, yres;
png_bytep   *row_pointers;
png_bytep    rowbuffer;
png_structp  png_ptr;
png_infop    info_ptr;
png_colorp   palette;
PIX         *pixt;
PIXCMAP     *cmap;
char        *text;

    PROCNAME("pixWriteStreamPng");

    if (!fp)
        return ERROR_INT("stream not open", procName, 1);
    if (!pix)
        return ERROR_INT("pix not defined", procName, 1);

        /* Allocate the 2 data structures */
    if ((png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING,
                   (png_voidp)NULL, NULL, NULL)) == NULL)
        return ERROR_INT("png_ptr not made", procName, 1);

    if ((info_ptr = png_create_info_struct(png_ptr)) == NULL) {
        png_destroy_write_struct(&png_ptr, (png_infopp)NULL);
        return ERROR_INT("info_ptr not made", procName, 1);
    }

        /* Set up png setjmp error handling */
    if (setjmp(png_jmpbuf(png_ptr))) {
        png_destroy_write_struct(&png_ptr, &info_ptr);
        return ERROR_INT("internal png error", procName, 1);
    }

    png_init_io(png_ptr, fp);

        /* With best zlib compression (9), get between 1 and 10% improvement
         * over default (5), but the compression is 3 to 10 times slower.
         * Our default compression is the zlib default (5). */
    png_set_compression_level(png_ptr, var_ZLIB_COMPRESSION);

    w = pixGetWidth(pix);
    h = pixGetHeight(pix);
    d = pixGetDepth(pix);
    if ((cmap = pixGetColormap(pix)))
        cmflag = 1;
    else
        cmflag = 0;

        /* Set the color type and bit depth. */
    if (d == 32 && var_PNG_WRITE_ALPHA == 1) {
        bit_depth = 8;
        color_type = PNG_COLOR_TYPE_RGBA;   /* 6 */
        cmflag = 0;  /* ignore if it exists */
    }
    else if (d == 24 || d == 32) {
        bit_depth = 8;
        color_type = PNG_COLOR_TYPE_RGB;   /* 2 */
        cmflag = 0;  /* ignore if it exists */
    }
    else {
        bit_depth = d;
        color_type = PNG_COLOR_TYPE_GRAY;  /* 0 */
    }
    if (cmflag)
        color_type = PNG_COLOR_TYPE_PALETTE;  /* 3 */

#if  DEBUG
    fprintf(stderr, "cmflag = %d, bit_depth = %d, color_type = %d\n",
            cmflag, bit_depth, color_type);
#endif  /* DEBUG */

    png_set_IHDR(png_ptr, info_ptr, w, h, bit_depth, color_type,
                 PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_BASE,
                 PNG_FILTER_TYPE_BASE);

        /* Store resolution in ppm, if known */
    xres = (png_uint_32)(39.37 * (l_float32)pixGetXRes(pix) + 0.5);
    yres = (png_uint_32)(39.37 * (l_float32)pixGetYRes(pix) + 0.5);
    if ((xres == 0) || (yres == 0))
        png_set_pHYs(png_ptr, info_ptr, 0, 0, PNG_RESOLUTION_UNKNOWN);
    else
        png_set_pHYs(png_ptr, info_ptr, xres, yres, PNG_RESOLUTION_METER);

    if (cmflag) {
        pixcmapToArrays(cmap, &rmap, &gmap, &bmap);
        ncolors = pixcmapGetCount(cmap);

            /* Make and save the palette */
        if ((palette = (png_colorp)(CALLOC(ncolors, sizeof(png_color))))
                == NULL)
            return ERROR_INT("palette not made", procName, 1);

        for (i = 0; i < ncolors; i++) {
            palette[i].red = (png_byte)rmap[i];
            palette[i].green = (png_byte)gmap[i];
            palette[i].blue = (png_byte)bmap[i];
        }

        png_set_PLTE(png_ptr, info_ptr, palette, (int)ncolors);
        FREE(rmap);
        FREE(gmap);
        FREE(bmap);
    }

        /* 0.4545 is treated as the default by some image
         * display programs (not gqview).  A value > 0.4545 will
         * lighten an image as displayed by xv, display, etc. */
    if (gamma > 0.0)
        png_set_gAMA(png_ptr, info_ptr, (l_float64)gamma);

    if ((text = pixGetText(pix))) {
        png_text text_chunk;
        text_chunk.compression = PNG_TEXT_COMPRESSION_NONE;
        text_chunk.key = commentstring;
        text_chunk.text = text;
        text_chunk.text_length = strlen(text);
#ifdef PNG_ITXT_SUPPORTED
        text_chunk.itxt_length = 0;
        text_chunk.lang = NULL;
        text_chunk.lang_key = NULL;
#endif
        png_set_text(png_ptr, info_ptr, &text_chunk, 1);
    }

        /* Write header and palette info */
    png_write_info(png_ptr, info_ptr);

    if ((d != 32) && (d != 24)) {  /* not rgb color */
            /* Generate a temporary pix with bytes swapped.
             * For a binary image, there are two conditions in
             * which you must first invert the data for writing png:
             *    (a) no colormap
             *    (b) colormap with BLACK set to 0
             * png writes binary with BLACK = 0, unless contradicted
             * by a colormap.  If the colormap has BLACK = "1"
             * (typ. about 255), do not invert the data.  If there
             * is no colormap, you must invert the data to store
             * in default BLACK = 0 state.  */
        if (d == 1 &&
            (!cmap || (cmap && ((l_uint8 *)(cmap->array))[0] == 0x0))) {
            pixt = pixInvert(NULL, pix);
            pixEndianByteSwap(pixt);
        }
        else
            pixt = pixEndianByteSwapNew(pix);
        if (!pixt) {
            png_destroy_write_struct(&png_ptr, &info_ptr);
            return ERROR_INT("pixt not made", procName, 1);
        }

            /* Make and assign array of image row pointers */
        if ((row_pointers = (png_bytep *)CALLOC(h, sizeof(png_bytep))) == NULL)
            return ERROR_INT("row-pointers not made", procName, 1);
        wpl = pixGetWpl(pixt);
        data = pixGetData(pixt);
        for (i = 0; i < h; i++)
            row_pointers[i] = (png_bytep)(data + i * wpl);
        png_set_rows(png_ptr, info_ptr, row_pointers);

            /* Transfer the data */
        png_write_image(png_ptr, row_pointers);
        png_write_end(png_ptr, info_ptr);

        if (cmflag)
            FREE(palette);
        FREE(row_pointers);
        pixDestroy(&pixt);
        png_destroy_write_struct(&png_ptr, &info_ptr);
        return 0;
    }

        /* For rgb, compose and write a row at a time */
    data = pixGetData(pix);
    wpl = pixGetWpl(pix);
    if (d == 24) {  /* See note 7 above: special case of 24 bpp rgb */
        for (i = 0; i < h; i++) {
            ppixel = data + i * wpl;
            png_write_rows(png_ptr, (png_bytepp)&ppixel, 1);
        }
    }
    else {  /* 32 bpp rgb and rgba */
        if ((rowbuffer = (png_bytep)CALLOC(w, 4)) == NULL)
            return ERROR_INT("rowbuffer not made", procName, 1);
        for (i = 0; i < h; i++) {
            ppixel = data + i * wpl;
            for (j = k = 0; j < w; j++) {
                rowbuffer[k++] = GET_DATA_BYTE(ppixel, COLOR_RED);
                rowbuffer[k++] = GET_DATA_BYTE(ppixel, COLOR_GREEN);
                rowbuffer[k++] = GET_DATA_BYTE(ppixel, COLOR_BLUE);
                if (var_PNG_WRITE_ALPHA == 1)
                    rowbuffer[k++] = GET_DATA_BYTE(ppixel, L_ALPHA_CHANNEL);
                ppixel++;
            }

            png_write_rows(png_ptr, &rowbuffer, 1);
        }
        FREE(rowbuffer);
    }

    png_write_end(png_ptr, info_ptr);

    if (cmflag)
        FREE(palette);
    png_destroy_write_struct(&png_ptr, &info_ptr);
    return 0;

}
예제 #5
0
/*!
 *  pixWriteStreamJpeg()
 *
 *      Input:  stream
 *              pix  (8 or 32 bpp)
 *              quality  (1 - 100; 75 is default value; 0 is also default)
 *              progressive (0 for baseline sequential; 1 for progressive)
 *      Return: 0 if OK, 1 on error
 *
 *  Notes:
 *      (1) Under the covers, the library transforms rgb to a
 *          luminence-chromaticity triple, each component of which is
 *          also 8 bits, and compresses that.  It uses 2 Huffman tables,
 *          a higher resolution one (with more quantization levels)
 *          for luminosity and a lower resolution one for the chromas.
 *      (2) Progressive encoding gives better compression, at the
 *          expense of slower encoding and decoding.
 *      (3) Standard chroma subsampling is 2x2 on both the U and V
 *          channels.  For highest quality, use no subsampling.  This
 *          option is set by l_jpegSetNoChromaSampling(1).
 *      (4) There are three possibilities:
 *          * Grayscale image, no colormap: compress as 8 bpp image.
 *          * rgb full color image: copy each line into the color
 *            line buffer, and compress as three 8 bpp images.
 *          * 8 bpp colormapped image: convert each line to three
 *            8 bpp line images in the color line buffer, and
 *            compress as three 8 bpp images.
 *      (5) The only valid pixel depths in leptonica are 1, 2, 4, 8, 16
 *          and 32 bpp.  However, it is possible, and in some cases desirable,
 *          to write out a jpeg file using an rgb pix that has 24 bpp.
 *          This can be created by appending the raster data for a 24 bpp
 *          image (with proper scanline padding) directly to a 24 bpp
 *          pix that was created without a data array.  See note in
 *          pixWriteStreamPng() for an example.
 */
l_int32
pixWriteStreamJpeg(FILE    *fp,
                   PIX     *pix,
                   l_int32  quality,
                   l_int32  progressive)
{
l_uint8                      byteval;
l_int32                      xres, yres;
l_int32                      i, j, k;
l_int32                      w, h, d, wpl, spp, colorflg, rowsamples;
l_int32                     *rmap, *gmap, *bmap;
l_uint32                    *ppixel, *line, *data;
JSAMPROW                     rowbuffer;
PIXCMAP                     *cmap;
struct jpeg_compress_struct  cinfo;
struct jpeg_error_mgr        jerr;
const char                  *text;

    PROCNAME("pixWriteStreamJpeg");

    if (!fp)
        return ERROR_INT("stream not open", procName, 1);
    if (!pix)
        return ERROR_INT("pix not defined", procName, 1);
    rewind(fp);

    if (setjmp(jpeg_jmpbuf)) {
        FREE(rowbuffer);
        if (colorflg == 1) {
            FREE(rmap);
            FREE(gmap);
            FREE(bmap);
        }
        return ERROR_INT("internal jpeg error", procName, 1);
    }

    rowbuffer = NULL;
    rmap = NULL;
    gmap = NULL;
    bmap = NULL;
    pixGetDimensions(pix, &w, &h, &d);
    if (d != 8 && d != 24 && d != 32)
        return ERROR_INT("bpp must be 8, 24 or 32", procName, 1);

    if (quality <= 0)
        quality = 75;  /* default */

    if (d == 32 || d == 24)
        colorflg = 2;    /* rgb; no colormap */
    else if ((cmap = pixGetColormap(pix)) == NULL)
        colorflg = 0;    /* 8 bpp grayscale; no colormap */
    else {
        colorflg = 1;    /* 8 bpp; colormap */
        pixcmapToArrays(cmap, &rmap, &gmap, &bmap);
    }

    cinfo.err = jpeg_std_error(&jerr);
    jerr.error_exit = jpeg_error_do_not_exit; /* catch error; do not exit! */

    jpeg_create_compress(&cinfo);
    jpeg_stdio_dest(&cinfo, fp);

    cinfo.image_width  = w;
    cinfo.image_height = h;

    if (colorflg == 0) {
        cinfo.input_components = 1;
        cinfo.in_color_space = JCS_GRAYSCALE;
    }
    else {  /* colorflg == 1 or 2 */
        cinfo.input_components = 3;
        cinfo.in_color_space = JCS_RGB;
    }

    jpeg_set_defaults(&cinfo);

        /* Setting optimize_coding to TRUE seems to improve compression
	 * by approx 2-4 percent, and increases comp time by approx 20%. */
    cinfo.optimize_coding = FALSE;

    xres = pixGetXRes(pix);
    yres = pixGetYRes(pix);
    if ((xres != 0) && (yres != 0)) {
        cinfo.density_unit = 1;  /* designates pixels per inch */
        cinfo.X_density = xres;
        cinfo.Y_density = yres;
    }

        /* Set the quality and progressive parameters */
    jpeg_set_quality(&cinfo, quality, TRUE);
    if (progressive) {
        jpeg_simple_progression(&cinfo);
    }

        /* Set the chroma subsampling parameters.  This is done in
         * YUV color space.  The Y (intensity) channel is never subsampled.
         * The standard subsampling is 2x2 on both the U and V channels.
         * Notation on this is confusing.  For a nice illustrations, see
         *   http://en.wikipedia.org/wiki/Chroma_subsampling
         * The standard subsampling is written as 4:2:0.
         * We allow high quality where there is no subsampling on the
         * chroma channels: denoted as 4:4:4.  */
    if (var_JPEG_NO_CHROMA_SAMPLING == 1) {
        cinfo.comp_info[0].h_samp_factor = 1;
        cinfo.comp_info[0].v_samp_factor = 1;
        cinfo.comp_info[1].h_samp_factor = 1;
        cinfo.comp_info[1].v_samp_factor = 1;
        cinfo.comp_info[2].h_samp_factor = 1;
        cinfo.comp_info[2].v_samp_factor = 1;
    }

    jpeg_start_compress(&cinfo, TRUE);

    if ((text = pixGetText(pix))) {
        jpeg_write_marker(&cinfo, JPEG_COM, (const JOCTET *)text, strlen(text));
    }

        /* Allocate row buffer */
    spp = cinfo.input_components;
    rowsamples = spp * w;
    if ((rowbuffer = (JSAMPROW)CALLOC(sizeof(JSAMPLE), rowsamples)) == NULL)
        return ERROR_INT("calloc fail for rowbuffer", procName, 1);

    data = pixGetData(pix);
    wpl  = pixGetWpl(pix);
    for (i = 0; i < h; i++) {
        line = data + i * wpl;
        if (colorflg == 0) {        /* 8 bpp gray */
            for (j = 0; j < w; j++)
                rowbuffer[j] = GET_DATA_BYTE(line, j);
        }
        else if (colorflg == 1) {  /* 8 bpp colormapped */
            for (j = 0; j < w; j++) {
                byteval = GET_DATA_BYTE(line, j);
                rowbuffer[3 * j + COLOR_RED] = rmap[byteval];
                rowbuffer[3 * j + COLOR_GREEN] = gmap[byteval];
                rowbuffer[3 * j + COLOR_BLUE] = bmap[byteval];
            }
        }
        else {  /* colorflg == 2 */
            if (d == 24) {  /* See note 4 above; special case of 24 bpp rgb */
                jpeg_write_scanlines(&cinfo, (JSAMPROW *)&line, 1);
            }
            else {  /* standard 32 bpp rgb */
                ppixel = line;
                for (j = k = 0; j < w; j++) {
                    rowbuffer[k++] = GET_DATA_BYTE(ppixel, COLOR_RED);
                    rowbuffer[k++] = GET_DATA_BYTE(ppixel, COLOR_GREEN);
                    rowbuffer[k++] = GET_DATA_BYTE(ppixel, COLOR_BLUE);
                    ppixel++;
                }
            }
        }
        if (d != 24)
            jpeg_write_scanlines(&cinfo, &rowbuffer, 1);
    }

    jpeg_finish_compress(&cinfo);

    FREE(rowbuffer);
    if (colorflg == 1) {
        FREE(rmap);
        FREE(gmap);
        FREE(bmap);
    }

    jpeg_destroy_compress(&cinfo);
    return 0;
}