예제 #1
0
int entropy_add_source( entropy_context *ctx,
                        f_source_ptr f_source, void *p_source,
                        size_t threshold )
{
    int index, ret = 0;

#if defined(POLARSSL_THREADING_C)
    if( ( ret = polarssl_mutex_lock( &ctx->mutex ) ) != 0 )
        return( ret );
#endif

    index = ctx->source_count;
    if( index >= ENTROPY_MAX_SOURCES )
    {
        ret = POLARSSL_ERR_ENTROPY_MAX_SOURCES;
        goto exit;
    }

    ctx->source[index].f_source = f_source;
    ctx->source[index].p_source = p_source;
    ctx->source[index].threshold = threshold;

    ctx->source_count++;

exit:
#if defined(POLARSSL_THREADING_C)
    if( polarssl_mutex_unlock( &ctx->mutex ) != 0 )
        return( POLARSSL_ERR_THREADING_MUTEX_ERROR );
#endif

    return( ret );
}
예제 #2
0
static void my_mutexed_debug( void *ctx, int level, const char *str )
{
    polarssl_mutex_lock( &debug_mutex );
    if( level < DEBUG_LEVEL )
    {
        polarssl_fprintf( (FILE *) ctx, "%s", str );
        fflush(  (FILE *) ctx  );
    }
    polarssl_mutex_unlock( &debug_mutex );
}
예제 #3
0
파일: rsa.c 프로젝트: ahawad/opensgx
/*
 * Generate or update blinding values, see section 10 of:
 *  KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA,
 *  DSS, and other systems. In : Advances in Cryptology—CRYPTO’96. Springer
 *  Berlin Heidelberg, 1996. p. 104-113.
 */
static int rsa_prepare_blinding( rsa_context *ctx, mpi *Vi, mpi *Vf,
                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
    int ret, count = 0;

#if defined(POLARSSL_THREADING_C)
    polarssl_mutex_lock( &ctx->mutex );
#endif

    if( ctx->Vf.p != NULL )
    {
        /* We already have blinding values, just update them by squaring */
        MPI_CHK( mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &ctx->Vi ) );
        MPI_CHK( mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
        MPI_CHK( mpi_mul_mpi( &ctx->Vf, &ctx->Vf, &ctx->Vf ) );
        MPI_CHK( mpi_mod_mpi( &ctx->Vf, &ctx->Vf, &ctx->N ) );

        goto done;
    }

    /* Unblinding value: Vf = random number, invertible mod N */
    do {
        if( count++ > 10 )
            return( POLARSSL_ERR_RSA_RNG_FAILED );

        MPI_CHK( mpi_fill_random( &ctx->Vf, ctx->len - 1, f_rng, p_rng ) );
        MPI_CHK( mpi_gcd( &ctx->Vi, &ctx->Vf, &ctx->N ) );
    } while( mpi_cmp_int( &ctx->Vi, 1 ) != 0 );

    /* Blinding value: Vi =  Vf^(-e) mod N */
    MPI_CHK( mpi_inv_mod( &ctx->Vi, &ctx->Vf, &ctx->N ) );
    MPI_CHK( mpi_exp_mod( &ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN ) );

done:
    if( Vi != &ctx->Vi )
    {
        MPI_CHK( mpi_copy( Vi, &ctx->Vi ) );
        MPI_CHK( mpi_copy( Vf, &ctx->Vf ) );
    }

cleanup:
#if defined(POLARSSL_THREADING_C)
    polarssl_mutex_unlock( &ctx->mutex );
#endif

    return( ret );
}
예제 #4
0
/*
 * Thread-safe wrapper for entropy_gather_internal()
 */
int entropy_gather( entropy_context *ctx )
{
    int ret;

#if defined(POLARSSL_THREADING_C)
    if( ( ret = polarssl_mutex_lock( &ctx->mutex ) ) != 0 )
        return( ret );
#endif

    ret = entropy_gather_internal( ctx );

#if defined(POLARSSL_THREADING_C)
    if( polarssl_mutex_unlock( &ctx->mutex ) != 0 )
        return( POLARSSL_ERR_THREADING_MUTEX_ERROR );
#endif

    return( ret );
}
예제 #5
0
int entropy_update_manual( entropy_context *ctx,
                           const unsigned char *data, size_t len )
{
    int ret;

#if defined(POLARSSL_THREADING_C)
    if( ( ret = polarssl_mutex_lock( &ctx->mutex ) ) != 0 )
        return( ret );
#endif

    ret = entropy_update( ctx, ENTROPY_SOURCE_MANUAL, data, len );

#if defined(POLARSSL_THREADING_C)
    if( polarssl_mutex_unlock( &ctx->mutex ) != 0 )
        return( POLARSSL_ERR_THREADING_MUTEX_ERROR );
#endif

    return( ret );
}
예제 #6
0
/*
 * Do an RSA public key operation
 */
int rsa_public( rsa_context *ctx,
                const unsigned char *input,
                unsigned char *output )
{
    int ret;
    size_t olen;
    mpi T;

    mpi_init( &T );

    MPI_CHK( mpi_read_binary( &T, input, ctx->len ) );

    if( mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
    {
        mpi_free( &T );
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
    }

#if defined(POLARSSL_THREADING_C)
    polarssl_mutex_lock( &ctx->mutex );
#endif

    olen = ctx->len;
    MPI_CHK( mpi_exp_mod( &T, &T, &ctx->E, &ctx->N, &ctx->RN ) );
    MPI_CHK( mpi_write_binary( &T, output, olen ) );

cleanup:
#if defined(POLARSSL_THREADING_C)
    polarssl_mutex_unlock( &ctx->mutex );
#endif

    mpi_free( &T );

    if( ret != 0 )
        return( POLARSSL_ERR_RSA_PUBLIC_FAILED + ret );

    return( 0 );
}
예제 #7
0
int entropy_func( void *data, unsigned char *output, size_t len )
{
    int ret, count = 0, i, reached;
    entropy_context *ctx = (entropy_context *) data;
    unsigned char buf[ENTROPY_BLOCK_SIZE];

    if( len > ENTROPY_BLOCK_SIZE )
        return( POLARSSL_ERR_ENTROPY_SOURCE_FAILED );

#if defined(POLARSSL_THREADING_C)
    if( ( ret = polarssl_mutex_lock( &ctx->mutex ) ) != 0 )
        return( ret );
#endif

    /*
     * Always gather extra entropy before a call
     */
    do
    {
        if( count++ > ENTROPY_MAX_LOOP )
        {
            ret = POLARSSL_ERR_ENTROPY_SOURCE_FAILED;
            goto exit;
        }

        if( ( ret = entropy_gather_internal( ctx ) ) != 0 )
            goto exit;

        reached = 0;

        for( i = 0; i < ctx->source_count; i++ )
            if( ctx->source[i].size >= ctx->source[i].threshold )
                reached++;
    }
    while( reached != ctx->source_count );

    memset( buf, 0, ENTROPY_BLOCK_SIZE );

#if defined(POLARSSL_ENTROPY_SHA512_ACCUMULATOR)
    sha512_finish( &ctx->accumulator, buf );

    /*
     * Reset accumulator and counters and recycle existing entropy
     */
    memset( &ctx->accumulator, 0, sizeof( sha512_context ) );
    sha512_starts( &ctx->accumulator, 0 );
    sha512_update( &ctx->accumulator, buf, ENTROPY_BLOCK_SIZE );

    /*
     * Perform second SHA-512 on entropy
     */
    sha512( buf, ENTROPY_BLOCK_SIZE, buf, 0 );
#else /* POLARSSL_ENTROPY_SHA512_ACCUMULATOR */
    sha256_finish( &ctx->accumulator, buf );

    /*
     * Reset accumulator and counters and recycle existing entropy
     */
    memset( &ctx->accumulator, 0, sizeof( sha256_context ) );
    sha256_starts( &ctx->accumulator, 0 );
    sha256_update( &ctx->accumulator, buf, ENTROPY_BLOCK_SIZE );

    /*
     * Perform second SHA-256 on entropy
     */
    sha256( buf, ENTROPY_BLOCK_SIZE, buf, 0 );
#endif /* POLARSSL_ENTROPY_SHA512_ACCUMULATOR */

    for( i = 0; i < ctx->source_count; i++ )
        ctx->source[i].size = 0;

    memcpy( output, buf, len );

    ret = 0;

exit:
#if defined(POLARSSL_THREADING_C)
    if( polarssl_mutex_unlock( &ctx->mutex ) != 0 )
        return( POLARSSL_ERR_THREADING_MUTEX_ERROR );
#endif

    return( ret );
}
예제 #8
0
int ssl_cache_get( void *data, ssl_session *session )
{
    int ret = 1;
#if defined(POLARSSL_HAVE_TIME)
    time_t t = time( NULL );
#endif
    ssl_cache_context *cache = (ssl_cache_context *) data;
    ssl_cache_entry *cur, *entry;

#if defined(POLARSSL_THREADING_C)
    if( polarssl_mutex_lock( &cache->mutex ) != 0 )
        return( 1 );
#endif

    cur = cache->chain;
    entry = NULL;

    while( cur != NULL )
    {
        entry = cur;
        cur = cur->next;

#if defined(POLARSSL_HAVE_TIME)
        if( cache->timeout != 0 &&
            (int) ( t - entry->timestamp ) > cache->timeout )
            continue;
#endif

        if( session->ciphersuite != entry->session.ciphersuite ||
            session->compression != entry->session.compression ||
            session->length != entry->session.length )
            continue;

        if( memcmp( session->id, entry->session.id,
                    entry->session.length ) != 0 )
            continue;

        memcpy( session->master, entry->session.master, 48 );

        session->verify_result = entry->session.verify_result;

#if defined(POLARSSL_X509_CRT_PARSE_C)
        /*
         * Restore peer certificate (without rest of the original chain)
         */
        if( entry->peer_cert.p != NULL )
        {
            session->peer_cert =
                (x509_crt *) polarssl_malloc( sizeof(x509_crt) );

            if( session->peer_cert == NULL )
            {
                ret = 1;
                goto exit;
            }

            x509_crt_init( session->peer_cert );
            if( x509_crt_parse( session->peer_cert, entry->peer_cert.p,
                                entry->peer_cert.len ) != 0 )
            {
                polarssl_free( session->peer_cert );
                session->peer_cert = NULL;
                ret = 1;
                goto exit;
            }
        }
#endif /* POLARSSL_X509_CRT_PARSE_C */

        ret = 0;
        goto exit;
    }

exit:
#if defined(POLARSSL_THREADING_C)
    if( polarssl_mutex_unlock( &cache->mutex ) != 0 )
        ret = 1;
#endif

    return( ret );
}
예제 #9
0
int ssl_cache_set( void *data, const ssl_session *session )
{
    int ret = 1;
#if defined(POLARSSL_HAVE_TIME)
    time_t t = time( NULL ), oldest = 0;
    ssl_cache_entry *old = NULL;
#endif
    ssl_cache_context *cache = (ssl_cache_context *) data;
    ssl_cache_entry *cur, *prv;
    int count = 0;

#if defined(POLARSSL_THREADING_C)
    if( ( ret = polarssl_mutex_lock( &cache->mutex ) ) != 0 )
        return( ret );
#endif

    cur = cache->chain;
    prv = NULL;

    while( cur != NULL )
    {
        count++;

#if defined(POLARSSL_HAVE_TIME)
        if( cache->timeout != 0 &&
            (int) ( t - cur->timestamp ) > cache->timeout )
        {
            cur->timestamp = t;
            break; /* expired, reuse this slot, update timestamp */
        }
#endif

        if( memcmp( session->id, cur->session.id, cur->session.length ) == 0 )
            break; /* client reconnected, keep timestamp for session id */

#if defined(POLARSSL_HAVE_TIME)
        if( oldest == 0 || cur->timestamp < oldest )
        {
            oldest = cur->timestamp;
            old = cur;
        }
#endif

        prv = cur;
        cur = cur->next;
    }

    if( cur == NULL )
    {
#if defined(POLARSSL_HAVE_TIME)
        /*
         * Reuse oldest entry if max_entries reached
         */
        if( count >= cache->max_entries )
        {
            if( old == NULL )
            {
                ret = 1;
                goto exit;
            }

            cur = old;
        }
#else /* POLARSSL_HAVE_TIME */
        /*
         * Reuse first entry in chain if max_entries reached,
         * but move to last place
         */
        if( count >= cache->max_entries )
        {
            if( cache->chain == NULL )
            {
                ret = 1;
                goto exit;
            }

            cur = cache->chain;
            cache->chain = cur->next;
            cur->next = NULL;
            prv->next = cur;
        }
#endif /* POLARSSL_HAVE_TIME */
        else
        {
            /*
             * max_entries not reached, create new entry
             */
            cur = (ssl_cache_entry *)
                        polarssl_malloc( sizeof(ssl_cache_entry) );
            if( cur == NULL )
            {
                ret = 1;
                goto exit;
            }

            memset( cur, 0, sizeof(ssl_cache_entry) );

            if( prv == NULL )
                cache->chain = cur;
            else
                prv->next = cur;
        }

#if defined(POLARSSL_HAVE_TIME)
        cur->timestamp = t;
#endif
    }

    memcpy( &cur->session, session, sizeof( ssl_session ) );

#if defined(POLARSSL_X509_CRT_PARSE_C)
    /*
     * If we're reusing an entry, free its certificate first
     */
    if( cur->peer_cert.p != NULL )
    {
        polarssl_free( cur->peer_cert.p );
        memset( &cur->peer_cert, 0, sizeof(x509_buf) );
    }

    /*
     * Store peer certificate
     */
    if( session->peer_cert != NULL )
    {
        cur->peer_cert.p = (unsigned char *)
                                polarssl_malloc( session->peer_cert->raw.len );
        if( cur->peer_cert.p == NULL )
        {
            ret = 1;
            goto exit;
        }

        memcpy( cur->peer_cert.p, session->peer_cert->raw.p,
                session->peer_cert->raw.len );
        cur->peer_cert.len = session->peer_cert->raw.len;

        cur->session.peer_cert = NULL;
    }
#endif /* POLARSSL_X509_CRT_PARSE_C */

    ret = 0;

exit:
#if defined(POLARSSL_THREADING_C)
    if( polarssl_mutex_unlock( &cache->mutex ) != 0 )
        ret = 1;
#endif

    return( ret );
}
예제 #10
0
/*
 * Do an RSA private key operation
 */
int rsa_private( rsa_context *ctx,
                 int (*f_rng)(void *, unsigned char *, size_t),
                 void *p_rng,
                 const unsigned char *input,
                 unsigned char *output )
{
    int ret;
    size_t olen;
    mpi T, T1, T2;
    mpi *Vi, *Vf;

    /*
     * When using the Chinese Remainder Theorem, we use blinding values.
     * Without threading, we just read them directly from the context,
     * otherwise we make a local copy in order to reduce locking contention.
     */
#if defined(POLARSSL_THREADING_C)
    mpi Vi_copy, Vf_copy;

    mpi_init( &Vi_copy ); mpi_init( &Vf_copy );
    Vi = &Vi_copy;
    Vf = &Vf_copy;
#else
    Vi = &ctx->Vi;
    Vf = &ctx->Vf;
#endif

    mpi_init( &T ); mpi_init( &T1 ); mpi_init( &T2 );

    MPI_CHK( mpi_read_binary( &T, input, ctx->len ) );
    if( mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
    {
        mpi_free( &T );
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
    }

    if( f_rng != NULL )
    {
        /*
         * Blinding
         * T = T * Vi mod N
         */
        MPI_CHK( rsa_prepare_blinding( ctx, Vi, Vf, f_rng, p_rng ) );
        MPI_CHK( mpi_mul_mpi( &T, &T, Vi ) );
        MPI_CHK( mpi_mod_mpi( &T, &T, &ctx->N ) );
    }

#if defined(POLARSSL_THREADING_C)
    polarssl_mutex_lock( &ctx->mutex );
#endif

#if defined(POLARSSL_RSA_NO_CRT)
    MPI_CHK( mpi_exp_mod( &T, &T, &ctx->D, &ctx->N, &ctx->RN ) );
#else
    /*
     * faster decryption using the CRT
     *
     * T1 = input ^ dP mod P
     * T2 = input ^ dQ mod Q
     */
    MPI_CHK( mpi_exp_mod( &T1, &T, &ctx->DP, &ctx->P, &ctx->RP ) );
    MPI_CHK( mpi_exp_mod( &T2, &T, &ctx->DQ, &ctx->Q, &ctx->RQ ) );

    /*
     * T = (T1 - T2) * (Q^-1 mod P) mod P
     */
    MPI_CHK( mpi_sub_mpi( &T, &T1, &T2 ) );
    MPI_CHK( mpi_mul_mpi( &T1, &T, &ctx->QP ) );
    MPI_CHK( mpi_mod_mpi( &T, &T1, &ctx->P ) );

    /*
     * T = T2 + T * Q
     */
    MPI_CHK( mpi_mul_mpi( &T1, &T, &ctx->Q ) );
    MPI_CHK( mpi_add_mpi( &T, &T2, &T1 ) );
#endif /* POLARSSL_RSA_NO_CRT */

    if( f_rng != NULL )
    {
        /*
         * Unblind
         * T = T * Vf mod N
         */
        MPI_CHK( mpi_mul_mpi( &T, &T, Vf ) );
        MPI_CHK( mpi_mod_mpi( &T, &T, &ctx->N ) );
    }

    olen = ctx->len;
    MPI_CHK( mpi_write_binary( &T, output, olen ) );

cleanup:
#if defined(POLARSSL_THREADING_C)
    polarssl_mutex_unlock( &ctx->mutex );
    mpi_free( &Vi_copy ); mpi_free( &Vf_copy );
#endif
    mpi_free( &T ); mpi_free( &T1 ); mpi_free( &T2 );

    if( ret != 0 )
        return( POLARSSL_ERR_RSA_PRIVATE_FAILED + ret );

    return( 0 );
}
예제 #11
0
int x509_crt_parse_path( x509_crt *chain, const char *path )
{
    int ret = 0;
#if defined(_WIN32) && !defined(EFIX64) && !defined(EFI32)
    int w_ret;
    WCHAR szDir[MAX_PATH];
    char filename[MAX_PATH];
	char *p;
    int len = (int) strlen( path );

	WIN32_FIND_DATAW file_data;
    HANDLE hFind;

    if( len > MAX_PATH - 3 )
        return( POLARSSL_ERR_X509_BAD_INPUT_DATA );

	memset( szDir, 0, sizeof(szDir) );
	memset( filename, 0, MAX_PATH );
	memcpy( filename, path, len );
	filename[len++] = '\\';
	p = filename + len;
    filename[len++] = '*';

	w_ret = MultiByteToWideChar( CP_ACP, 0, filename, len, szDir, MAX_PATH - 3 );

    hFind = FindFirstFileW( szDir, &file_data );
    if (hFind == INVALID_HANDLE_VALUE)
        return( POLARSSL_ERR_X509_FILE_IO_ERROR );

    len = MAX_PATH - len;
    do
    {
		memset( p, 0, len );

        if( file_data.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY )
            continue;

		w_ret = WideCharToMultiByte( CP_ACP, 0, file_data.cFileName,
									 lstrlenW(file_data.cFileName),
									 p, len - 1,
									 NULL, NULL );

        w_ret = x509_crt_parse_file( chain, filename );
        if( w_ret < 0 )
            ret++;
        else
            ret += w_ret;
    }
    while( FindNextFileW( hFind, &file_data ) != 0 );

    if (GetLastError() != ERROR_NO_MORE_FILES)
        ret = POLARSSL_ERR_X509_FILE_IO_ERROR;

    FindClose( hFind );
#else /* _WIN32 */
    int t_ret;
    struct stat sb;
    struct dirent *entry;
    char entry_name[255];
    DIR *dir = opendir( path );

    if( dir == NULL)
        return( POLARSSL_ERR_X509_FILE_IO_ERROR );

#if defined(POLARSSL_THREADING_PTHREAD)
    if( ( ret = polarssl_mutex_lock( &readdir_mutex ) ) != 0 )
        return( ret );
#endif

    while( ( entry = readdir( dir ) ) != NULL )
    {
        snprintf( entry_name, sizeof entry_name, "%s/%s", path, entry->d_name );

        if( stat( entry_name, &sb ) == -1 )
        {
            closedir( dir );
            ret = POLARSSL_ERR_X509_FILE_IO_ERROR;
            goto cleanup;
        }

        if( !S_ISREG( sb.st_mode ) )
            continue;

        // Ignore parse errors
        //
        t_ret = x509_crt_parse_file( chain, entry_name );
        if( t_ret < 0 )
            ret++;
        else
            ret += t_ret;
    }
    closedir( dir );

cleanup:
#if defined(POLARSSL_THREADING_PTHREAD)
    if( polarssl_mutex_unlock( &readdir_mutex ) != 0 )
        ret = POLARSSL_ERR_THREADING_MUTEX_ERROR;
#endif

#endif /* _WIN32 */

    return( ret );
}