void create_accelobs(accelobs * obs, infodata * idata, Cmdline * cmd, int usemmap) { int ii, rootlen, input_shorts = 0; { int hassuffix = 0; char *suffix; hassuffix = split_root_suffix(cmd->argv[0], &(obs->rootfilenm), &suffix); if (hassuffix) { if (strcmp(suffix, "fft") != 0 && strcmp(suffix, "dat") != 0 && strcmp(suffix, "sdat") != 0) { printf("\nInput file ('%s') must be an '.fft' or '.[s]dat' file!\n\n", cmd->argv[0]); free(suffix); exit(0); } /* If the input file is a time series */ if (strcmp(suffix, "dat") == 0 || strcmp(suffix, "sdat") == 0) { obs->dat_input = 1; obs->mmap_file = 0; if (strcmp(suffix, "sdat") == 0) input_shorts = 1; } else { obs->dat_input = 0; } free(suffix); } else { printf("\nInput file ('%s') must be an '.fft' or '.[s]dat' file!\n\n", cmd->argv[0]); exit(0); } } if (cmd->noharmpolishP) obs->use_harmonic_polishing = 0; else obs->use_harmonic_polishing = 1; // now default /* Read the info file */ readinf(idata, obs->rootfilenm); if (idata->object) { printf("Analyzing %s data from '%s'.\n\n", remove_whitespace(idata->object), cmd->argv[0]); } else { printf("Analyzing data from '%s'.\n\n", cmd->argv[0]); } /* Prepare the input time series if required */ if (obs->dat_input) { FILE *datfile; long long filelen; float *ftmp; printf("Reading and FFTing the time series..."); fflush(NULL); datfile = chkfopen(cmd->argv[0], "rb"); /* Check the length of the file to see if we can handle it */ filelen = chkfilelen(datfile, sizeof(float)); if (input_shorts) filelen *= 2; if (filelen > 67108864) { /* Small since we need memory for the templates */ printf("\nThe input time series is too large. Use 'realfft' first.\n\n"); exit(0); } /* Read the time series into a temporary buffer */ /* Note: The padding allows us to search very short time series */ /* using correlations without having to worry about */ /* accessing data before or after the valid FFT freqs. */ if (input_shorts) { short *stmp = gen_svect(filelen); ftmp = gen_fvect(filelen+2*ACCEL_PADDING); for (ii = 0; ii < ACCEL_PADDING; ii++) { ftmp[ii] = 0.0; ftmp[ii+filelen+ACCEL_PADDING] = 0.0; } chkfread(stmp, sizeof(short), filelen, datfile); for (ii = 0; ii < filelen; ii++) ftmp[ii+ACCEL_PADDING] = (float) stmp[ii]; free(stmp); } else { ftmp = read_float_file(datfile, -ACCEL_PADDING, filelen+2*ACCEL_PADDING); } /* Now, offset the pointer so that we are pointing at the first */ /* bits of valid data. */ ftmp += ACCEL_PADDING; fclose(datfile); /* FFT it */ realfft(ftmp, filelen, -1); obs->fftfile = NULL; obs->fft = (fcomplex *) ftmp; obs->numbins = filelen / 2; printf("done.\n"); /* De-redden it */ printf("Removing red-noise..."); deredden(obs->fft, obs->numbins); printf("done.\n\n"); } /* Determine the output filenames */ rootlen = strlen(obs->rootfilenm) + 25; obs->candnm = (char *) calloc(rootlen, 1); obs->accelnm = (char *) calloc(rootlen, 1); obs->workfilenm = (char *) calloc(rootlen, 1); sprintf(obs->candnm, "%s_ACCEL_%d.cand", obs->rootfilenm, cmd->zmax); sprintf(obs->accelnm, "%s_ACCEL_%d", obs->rootfilenm, cmd->zmax); sprintf(obs->workfilenm, "%s_ACCEL_%d.txtcand", obs->rootfilenm, cmd->zmax); /* Open the FFT file if it exists appropriately */ if (!obs->dat_input) { obs->fftfile = chkfopen(cmd->argv[0], "rb"); obs->numbins = chkfilelen(obs->fftfile, sizeof(fcomplex)); if (usemmap) { fclose(obs->fftfile); obs->fftfile = NULL; printf("Memory mapping the input FFT. This may take a while...\n"); obs->mmap_file = open(cmd->argv[0], O_RDONLY); if (obs->mmap_file == -1) { perror("\nError in open() in accel_utils.c"); printf("\n"); exit(-1); } obs->fft = (fcomplex *) mmap(0, sizeof(fcomplex) * obs->numbins, PROT_READ, MAP_SHARED, obs->mmap_file, 0); if (obs->fft == MAP_FAILED) { perror("\nError in mmap() in accel_utils.c"); printf("Falling back to a non-mmaped approach\n"); obs->fftfile = chkfopen(cmd->argv[0], "rb"); obs->mmap_file = 0; } } else { obs->mmap_file = 0; } } /* Determine the other parameters */ if (cmd->zmax % ACCEL_DZ) cmd->zmax = (cmd->zmax / ACCEL_DZ + 1) * ACCEL_DZ; if (!obs->dat_input) obs->workfile = chkfopen(obs->workfilenm, "w"); obs->N = (long long) idata->N; if (cmd->photonP) { if (obs->mmap_file || obs->dat_input) { obs->nph = obs->fft[0].r; } else { obs->nph = get_numphotons(obs->fftfile); } printf("Normalizing powers using %.0f photons.\n\n", obs->nph); } else { obs->nph = 0.0; /* For short FFTs insure that we don't pick up the DC */ /* or Nyquist component as part of the interpolation */ /* for higher frequencies. */ if (cmd->locpowP) { obs->norm_type = 1; printf("Normalizing powers using local-power determination.\n\n"); } else if (cmd->medianP) { obs->norm_type = 0; printf("Normalizing powers using median-blocks.\n\n"); } else { obs->norm_type = 0; printf("Normalizing powers using median-blocks (default).\n\n"); } if (obs->dat_input) { obs->fft[0].r = 1.0; obs->fft[0].i = 1.0; } } obs->lobin = cmd->lobin; if (obs->lobin > 0) { obs->nph = 0.0; if (cmd->lobin > obs->numbins - 1) { printf("\n'lobin' is greater than the total number of\n"); printf(" frequencies in the data set. Exiting.\n\n"); exit(1); } } if (cmd->numharm != 1 && cmd->numharm != 2 && cmd->numharm != 4 && cmd->numharm != 8 && cmd->numharm != 16) { printf("\n'numharm' = %d must be a power-of-two! Exiting\n\n", cmd->numharm); exit(1); } obs->numharmstages = twon_to_index(cmd->numharm) + 1; obs->dz = ACCEL_DZ; obs->numz = cmd->zmax * 2 + 1; obs->numbetween = ACCEL_NUMBETWEEN; obs->dt = idata->dt; obs->T = idata->dt * idata->N; if (cmd->floP) { obs->rlo = floor(cmd->flo * obs->T); if (obs->rlo < obs->lobin) obs->rlo = obs->lobin; if (obs->rlo > obs->numbins - 1) { printf("\nLow frequency to search 'flo' is greater than\n"); printf(" the highest available frequency. Exiting.\n\n"); exit(1); } } else { if (cmd->rloP) obs->rlo = cmd->rlo; else obs->rlo = 1.0; if (obs->rlo < obs->lobin) obs->rlo = obs->lobin; if (obs->rlo > obs->numbins - 1) { printf("\nLow frequency to search 'rlo' is greater than\n"); printf(" the available number of points. Exiting.\n\n"); exit(1); } } obs->highestbin = obs->numbins - 1; if (cmd->fhiP) { obs->highestbin = ceil(cmd->fhi * obs->T); if (obs->highestbin > obs->numbins - 1) obs->highestbin = obs->numbins - 1; obs->rhi = obs->highestbin; if (obs->highestbin < obs->rlo) { printf("\nHigh frequency to search 'fhi' is less than\n"); printf(" the lowest frequency to search 'flo'. Exiting.\n\n"); exit(1); } } else if (cmd->rhiP) { obs->highestbin = cmd->rhi; if (obs->highestbin > obs->numbins - 1) obs->highestbin = obs->numbins - 1; obs->rhi = obs->highestbin; if (obs->highestbin < obs->rlo) { printf("\nHigh frequency to search 'rhi' is less than\n"); printf(" the lowest frequency to search 'rlo'. Exiting.\n\n"); exit(1); } } obs->dr = ACCEL_DR; obs->zhi = cmd->zmax; obs->zlo = -cmd->zmax; obs->sigma = cmd->sigma; obs->powcut = (float *) malloc(obs->numharmstages * sizeof(float)); obs->numindep = (long long *) malloc(obs->numharmstages * sizeof(long long)); for (ii = 0; ii < obs->numharmstages; ii++) { if (obs->numz == 1) obs->numindep[ii] = (obs->rhi - obs->rlo) / index_to_twon(ii); else /* The numz+1 takes care of the small amount of */ /* search we get above zmax and below zmin. */ obs->numindep[ii] = (obs->rhi - obs->rlo) * (obs->numz + 1) * (obs->dz / 6.95) / index_to_twon(ii); obs->powcut[ii] = power_for_sigma(obs->sigma, index_to_twon(ii), obs->numindep[ii]); } obs->numzap = 0; /* if (zapfile!=NULL) obs->numzap = get_birdies(cmd->zapfile, obs->T, obs->baryv, &(obs->lobins), &(obs->hibins)); else obs->numzap = 0; */ }
void search_minifft(fcomplex * minifft, int numminifft, double min_orb_p, double max_orb_p, rawbincand * cands, int numcands, int numharmsum, int numbetween, double numfullfft, double timefullfft, double lorfullfft, presto_interptype interptype, presto_checkaliased checkaliased) /* This routine searches a short FFT (usually produced using the */ /* MiniFFT binary search method) and returns a candidte vector */ /* containing information about the best binary candidates found. */ /* The routine uses either interbinning or interpolation as well */ /* as harmonic summing during the search. */ /* Arguments: */ /* 'minifft' is the FFT to search (complex valued) */ /* 'numminifft' is the number of complex points in 'minifft' */ /* 'min_orb_p' is the minimum orbital period (s) to search */ /* 'max_orb_p' is the maximum orbital period (s) to search */ /* 'cands' is a pre-allocated vector of rawbincand type in which */ /* the sorted (in decreasing sigma) candidates are returned */ /* 'numcands' is the length of the 'cands' vector */ /* 'numharmsum' the number of harmonics to sum during the search */ /* 'numbetween' the points to interpolate per bin */ /* 'numfullfft' the number of points in the original long FFT */ /* 'timefullfft' the duration of the original time series (s) */ /* 'lorfullfft' the 1st bin of the long FFT that was miniFFT'd */ /* 'interptype' is either INTERBIN or INTERPOLATE. */ /* INTERBIN = (interbinning) is fast but less sensitive. */ /* NOTE: INTERBINNING is conducted by this routine! */ /* INTERPOLATE = (Fourier interpolation) is slower but more */ /* sensitive. */ /* NOTE: The interpolation is assumed to ALREADY have been */ /* completed by the calling function! The easiest */ /* way is by zero-padding to 2*numminifft and FFTing. */ /* If you use this method, make sure numminifft is the*/ /* original length rather than the interpolated */ /* length and also make sure numbetween is correct. */ /* 'checkaliased' is either CHECK_ALIASED or NO_CHECK_ALIASED. */ /* NO_CHECK_ALIASED = harmonic summing does not include */ /* aliased freqs making it faster but less sensitive. */ /* CHECK_ALIASED = harmonic summing includes aliased freqs */ /* making it slower but more sensitive. */ { int ii, jj, fftlen, offset, numtosearch = 0, lobin, hibin, numspread = 0; float powargr, powargi, *fullpows = NULL, *sumpows; double twobypi, minpow, minsig, dr, numindep; fcomplex *spread; /* Override the value of numbetween if interbinning */ if (interptype == INTERBIN) numbetween = 2; /* Prep some other values we will need */ dr = 1.0 / (double) numbetween; twobypi = 2.0 / PI; fftlen = numminifft * numbetween; for (ii = 0; ii < numcands; ii++) { cands[ii].mini_sigma = 0.0; cands[ii].mini_power = 0.0; } lobin = ceil(2 * numminifft * min_orb_p / timefullfft); if (lobin <= 0) lobin = 1; hibin = floor(2 * numminifft * max_orb_p / timefullfft); if (hibin >= 2 * numminifft) hibin = 2 * numminifft - 1; lobin *= numbetween; hibin *= numbetween; /* Spread and interpolate the fft */ numtosearch = (checkaliased == CHECK_ALIASED) ? 2 * fftlen : fftlen; numspread = numminifft * numbetween + 1; if (interptype == INTERPOLATE) { /* INTERPOLATE */ spread = minifft; } else { /* INTERBIN */ spread = gen_cvect(numspread); spread_with_pad(minifft, numminifft, spread, numspread, numbetween, 0); for (ii = 1; ii < fftlen; ii += 2) { spread[ii].r = twobypi * (spread[ii - 1].r - spread[ii + 1].r); spread[ii].i = twobypi * (spread[ii - 1].i - spread[ii + 1].i); } } spread[0].r = spread[fftlen].r = 1.0; spread[0].i = spread[fftlen].i = 0.0; fullpows = gen_fvect(numtosearch); fullpows[0] = 1.0; if (checkaliased == CHECK_ALIASED) fullpows[fftlen] = 1.0; /* used to be nyquist^2 */ /* The following wraps the data around the Nyquist freq such that */ /* we consider aliased frequencies as well (If CHECK_ALIASED). */ if (checkaliased == CHECK_ALIASED) for (ii = 1, jj = numtosearch - 1; ii < fftlen; ii++, jj--) fullpows[ii] = fullpows[jj] = POWER(spread[ii].r, spread[ii].i); else for (ii = 1; ii < numtosearch; ii++) fullpows[ii] = POWER(spread[ii].r, spread[ii].i); if (interptype == INTERBIN) vect_free(spread); /* Search the raw powers */ numindep = hibin - lobin + 1.0; minpow = power_for_sigma(MINRETURNSIG, 1, numindep); for (ii = lobin; ii < hibin; ii++) { if (fullpows[ii] > minpow) { cands[numcands - 1].mini_r = dr * (double) ii; cands[numcands - 1].mini_power = fullpows[ii]; cands[numcands - 1].mini_numsum = 1.0; cands[numcands - 1].mini_sigma = candidate_sigma(fullpows[ii], 1, numindep); minsig = percolate_rawbincands(cands, numcands); if (cands[numcands - 1].mini_power > minpow) minpow = cands[numcands - 1].mini_power; } } /* If needed, sum and search the harmonics */ if (numharmsum > 1) { sumpows = gen_fvect(numtosearch); memcpy(sumpows, fullpows, sizeof(float) * numtosearch); for (ii = 2; ii <= numharmsum; ii++) { offset = ii / 2; numindep = (hibin - lobin + 1.0) / (double) ii; if (cands[numcands - 1].mini_sigma < MINRETURNSIG) minsig = MINRETURNSIG; else minsig = cands[numcands - 1].mini_sigma; minpow = power_for_sigma(minsig, ii, numindep); for (jj = lobin * ii; jj < hibin; jj++) { sumpows[jj] += fullpows[(jj + offset) / ii]; if (sumpows[jj] > minpow) { cands[numcands - 1].mini_r = (dr * (double) jj) / ii; cands[numcands - 1].mini_power = sumpows[jj]; cands[numcands - 1].mini_numsum = (double) ii; cands[numcands - 1].mini_sigma = candidate_sigma(sumpows[jj], ii, numindep); minsig = percolate_rawbincands(cands, numcands); if (minsig > MINRETURNSIG) minpow = power_for_sigma(minsig, ii, numindep); } } } vect_free(sumpows); } vect_free(fullpows); /* Add the rest of the rawbincand data to the candidate array */ for (ii = 0; ii < numcands; ii++) { cands[ii].full_N = numfullfft; cands[ii].full_T = timefullfft; cands[ii].full_lo_r = lorfullfft; cands[ii].mini_N = 2 * numminifft; /* # of real points */ cands[ii].psr_p = timefullfft / (lorfullfft + numminifft); cands[ii].orb_p = timefullfft * cands[ii].mini_r / cands[ii].mini_N; } }
void rfifind_plot(int numchan, int numint, int ptsperint, float timesigma, float freqsigma, float inttrigfrac, float chantrigfrac, float **dataavg, float **datastd, float **datapow, int *userchan, int numuserchan, int *userints, int numuserints, infodata * idata, unsigned char **bytemask, mask * oldmask, mask * newmask, rfi * rfivect, int numrfi, int rfixwin, int rfips, int xwin) /* Make the beautiful multi-page rfifind plots */ { int ii, jj, ct, loops = 1; float *freqs, *chans, *times, *ints; float *avg_chan_avg, *std_chan_avg, *pow_chan_avg; float *avg_chan_med, *std_chan_med, *pow_chan_med; float *avg_chan_std, *std_chan_std, *pow_chan_std; float *avg_int_avg, *std_int_avg, *pow_int_avg; float *avg_int_med, *std_int_med, *pow_int_med; float *avg_int_std, *std_int_std, *pow_int_std; float dataavg_avg, datastd_avg, datapow_avg; float dataavg_med, datastd_med, datapow_med; float dataavg_std, datastd_std, datapow_std; float avg_reject, std_reject, pow_reject; double inttim, T, lof, hif; inttim = ptsperint * idata->dt; T = inttim * numint; lof = idata->freq - 0.5 * idata->chan_wid; hif = lof + idata->freqband; avg_chan_avg = gen_fvect(numchan); std_chan_avg = gen_fvect(numchan); pow_chan_avg = gen_fvect(numchan); avg_int_avg = gen_fvect(numint); std_int_avg = gen_fvect(numint); pow_int_avg = gen_fvect(numint); avg_chan_med = gen_fvect(numchan); std_chan_med = gen_fvect(numchan); pow_chan_med = gen_fvect(numchan); avg_int_med = gen_fvect(numint); std_int_med = gen_fvect(numint); pow_int_med = gen_fvect(numint); avg_chan_std = gen_fvect(numchan); std_chan_std = gen_fvect(numchan); pow_chan_std = gen_fvect(numchan); avg_int_std = gen_fvect(numint); std_int_std = gen_fvect(numint); pow_int_std = gen_fvect(numint); chans = gen_fvect(numchan); freqs = gen_fvect(numchan); for (ii = 0; ii < numchan; ii++) { chans[ii] = ii; freqs[ii] = idata->freq + ii * idata->chan_wid; } ints = gen_fvect(numint); times = gen_fvect(numint); for (ii = 0; ii < numint; ii++) { ints[ii] = ii; times[ii] = 0.0 + ii * inttim; } /* Calculate the statistics of the full set */ ct = numchan * numint; calc_avgmedstd(dataavg[0], ct, 0.8, 1, &dataavg_avg, &dataavg_med, &dataavg_std); calc_avgmedstd(datastd[0], ct, 0.8, 1, &datastd_avg, &datastd_med, &datastd_std); calc_avgmedstd(datapow[0], ct, 0.5, 1, &datapow_avg, &datapow_med, &datapow_std); avg_reject = timesigma * dataavg_std; std_reject = timesigma * datastd_std; pow_reject = power_for_sigma(freqsigma, 1, ptsperint / 2); /* Calculate the channel/integration statistics vectors */ for (ii = 0; ii < numint; ii++) { calc_avgmedstd(dataavg[0] + ii * numchan, numchan, 0.8, 1, avg_int_avg + ii, avg_int_med + ii, avg_int_std + ii); calc_avgmedstd(datastd[0] + ii * numchan, numchan, 0.8, 1, std_int_avg + ii, std_int_med + ii, std_int_std + ii); calc_avgmedstd(datapow[0] + ii * numchan, numchan, 0.5, 1, pow_int_avg + ii, pow_int_med + ii, pow_int_std + ii); } for (ii = 0; ii < numchan; ii++) { calc_avgmedstd(dataavg[0] + ii, numint, 0.8, numchan, avg_chan_avg + ii, avg_chan_med + ii, avg_chan_std + ii); calc_avgmedstd(datastd[0] + ii, numint, 0.8, numchan, std_chan_avg + ii, std_chan_med + ii, std_chan_std + ii); calc_avgmedstd(datapow[0] + ii, numint, 0.5, numchan, pow_chan_avg + ii, pow_chan_med + ii, pow_chan_std + ii); /* fprintf(stderr, "%12.7g %12.7g %12.7g %12.7g %12.7g %12.7g %12.7g %12.7g %12.7g \n", avg_chan_avg[ii], avg_chan_med[ii], avg_chan_std[ii], std_chan_avg[ii], std_chan_med[ii], std_chan_std[ii], pow_chan_avg[ii], pow_chan_med[ii], pow_chan_std[ii]); */ } /* Generate the byte mask */ /* Set the channels/intervals picked by the user */ if (numuserints) for (ii = 0; ii < numuserints; ii++) if (userints[ii] >= 0 && userints[ii] < numint) for (jj = 0; jj < numchan; jj++) bytemask[userints[ii]][jj] |= USERINTS; if (numuserchan) for (ii = 0; ii < numuserchan; ii++) if (userchan[ii] >= 0 && userchan[ii] < numchan) for (jj = 0; jj < numint; jj++) bytemask[jj][userchan[ii]] |= USERCHAN; /* Compare each point in an interval (or channel) with */ /* the interval's (or channel's) median and the overall */ /* standard deviation. If the channel/integration */ /* medians are more than sigma different than the global */ /* value, set them to the global. */ { float int_med, chan_med; for (ii = 0; ii < numint; ii++) { for (jj = 0; jj < numchan; jj++) { { /* Powers */ if (datapow[ii][jj] > pow_reject) if (!(bytemask[ii][jj] & PADDING)) bytemask[ii][jj] |= BAD_POW; } { /* Averages */ if (fabs(avg_int_med[ii] - dataavg_med) > timesigma * dataavg_std) int_med = dataavg_med; else int_med = avg_int_med[ii]; if (fabs(avg_chan_med[jj] - dataavg_med) > timesigma * dataavg_std) chan_med = dataavg_med; else chan_med = avg_chan_med[jj]; if (fabs(dataavg[ii][jj] - int_med) > avg_reject || fabs(dataavg[ii][jj] - chan_med) > avg_reject) if (!(bytemask[ii][jj] & PADDING)) bytemask[ii][jj] |= BAD_AVG; } { /* Standard Deviations */ if (fabs(std_int_med[ii] - datastd_med) > timesigma * datastd_std) int_med = datastd_med; else int_med = std_int_med[ii]; if (fabs(std_chan_med[jj] - datastd_med) > timesigma * datastd_std) chan_med = datastd_med; else chan_med = std_chan_med[jj]; if (fabs(datastd[ii][jj] - int_med) > std_reject || fabs(datastd[ii][jj] - chan_med) > std_reject) if (!(bytemask[ii][jj] & PADDING)) bytemask[ii][jj] |= BAD_STD; } } } } /* Step over the intervals and channels and count how many are set "bad". */ /* For a given interval, if the number of bad channels is greater than */ /* chantrigfrac*numchan then reject the whole interval. */ /* For a given channel, if the number of bad intervals is greater than */ /* inttrigfrac*numint then reject the whole channel. */ { int badnum, trignum; /* Loop over the intervals */ trignum = (int) (numchan * chantrigfrac); for (ii = 0; ii < numint; ii++) { if (!(bytemask[ii][0] & USERINTS)) { badnum = 0; for (jj = 0; jj < numchan; jj++) if (bytemask[ii][jj] & BADDATA) badnum++; if (badnum > trignum) { userints[numuserints++] = ii; for (jj = 0; jj < numchan; jj++) bytemask[ii][jj] |= USERINTS; } } } /* Loop over the channels */ trignum = (int) (numint * inttrigfrac); for (ii = 0; ii < numchan; ii++) { if (!(bytemask[0][ii] & USERCHAN)) { badnum = 0; for (jj = 0; jj < numint; jj++) if (bytemask[jj][ii] & BADDATA) badnum++; if (badnum > trignum) { userchan[numuserchan++] = ii; for (jj = 0; jj < numint; jj++) bytemask[jj][ii] |= USERCHAN; } } } } /* Generate the New Mask */ fill_mask(timesigma, freqsigma, idata->mjd_i + idata->mjd_f, ptsperint * idata->dt, idata->freq, idata->chan_wid, numchan, numint, ptsperint, numuserchan, userchan, numuserints, userints, bytemask, newmask); /* Place the oldmask over the newmask for plotting purposes */ if (oldmask->numchan) set_oldmask_bits(oldmask, bytemask); /* * Now plot the results */ if (xwin) loops = 2; for (ct = 0; ct < loops; ct++) { /* PS/XWIN Plot Loop */ float min, max, tr[6], locut, hicut; float left, right, top, bottom; float xl, xh, yl, yh; float tt, ft, th, fh; /* thin and fat thicknesses and heights */ float lm, rm, tm, bm; /* LRTB margins */ float xarr[2], yarr[2]; char outdev[100]; int ii, mincol, maxcol, numcol; /*Set the PGPLOT device to an X-Window */ if (ct == 1) strcpy(outdev, "/XWIN"); else sprintf(outdev, "%s.ps/CPS", idata->name); /* Open and prep our device */ cpgopen(outdev); cpgpap(10.25, 8.5 / 11.0); cpgpage(); cpgiden(); cpgsch(0.7); cpgqcir(&mincol, &maxcol); numcol = maxcol - mincol + 1; for (ii = mincol; ii <= maxcol; ii++) { float color; color = (float) (maxcol - ii) / (float) numcol; cpgscr(ii, color, color, color); } /* Set thicknesses and margins */ lm = 0.04; rm = 0.04; bm = 0.08; tm = 0.05; ft = 3.0; /* This sets fat thickness = 3 x thin thickness */ tt = 0.92 / (6.0 + 4.0 * ft); ft *= tt; fh = 0.55; th = tt * 11.0 / 8.5; { /* Powers Histogram */ float *theo, *hist, *hpows, *tpows, maxhist = 0.0, maxtheo = 0.0; int numhist = 40, numtheo = 200, bin, numpows; double dtheo, dhist, spacing; /* Calculate the predicted distribution of max powers */ numpows = numint * numchan; find_min_max_arr(numpows, datapow[0], &min, &max); min = (min < 5.0) ? log10(5.0 * 0.95) : log10(min * 0.95); max = log10(max * 1.05); dhist = (max - min) / numhist; theo = gen_fvect(numtheo); tpows = gen_fvect(numtheo); hist = gen_fvect(numhist); hpows = gen_fvect(numhist); for (ii = 0; ii < numhist; ii++) { hist[ii] = 0.0; hpows[ii] = min + ii * dhist; } for (ii = 0; ii < numpows; ii++) { bin = (*(datapow[0] + ii) == 0.0) ? 0 : (log10(*(datapow[0] + ii)) - min) / dhist; if (bin < 0) bin = 0; if (bin >= numhist) bin = numhist; hist[bin] += 1.0; } for (ii = 0; ii < numhist; ii++) if (hist[ii] > maxhist) maxhist = hist[ii]; maxhist *= 1.1; dtheo = (max - min) / (double) (numtheo - 1); for (ii = 0; ii < numtheo; ii++) { tpows[ii] = min + ii * dtheo; theo[ii] = single_power_pdf(pow(10.0, tpows[ii]), ptsperint / 2) * numpows; spacing = (pow(10.0, tpows[ii] + dhist) - pow(10.0, tpows[ii])); theo[ii] *= spacing; if (theo[ii] > maxtheo) maxtheo = theo[ii]; } maxtheo *= 1.1; if (maxtheo > maxhist) maxhist = maxtheo; left = lm; right = lm + ft + tt; bottom = 0.80; top = 0.96; cpgsvp(left, right, bottom, top); xl = min; xh = max; yl = 0.0; yh = maxhist; cpgswin(xl, xh, yl, yh); cpgmtxt("L", 1.1, 0.5, 0.5, "Number"); cpgmtxt("B", 2.1, 0.5, 0.5, "Max Power"); cpgbin(numhist, hpows, hist, 0); cpgscr(maxcol, 0.5, 0.5, 0.5); cpgsci(maxcol); /* Grey */ cpgline(numtheo, tpows, theo); xarr[0] = log10(power_for_sigma(freqsigma, 1, ptsperint / 2)); xarr[1] = xarr[0]; yarr[0] = yl; yarr[1] = yh; cpgsls(4); /* Dotted line */ cpgscr(maxcol, 1.0, 0.0, 0.0); cpgsci(maxcol); /* Red */ cpgline(2, xarr, yarr); cpgsls(1); /* Solid line */ cpgsci(1); /* Default color */ cpgbox("BCLNST", 0.0, 0, "BC", 0.0, 0); vect_free(hist); vect_free(theo); vect_free(tpows); vect_free(hpows); } /* Maximum Powers */ left = lm; right = lm + ft; bottom = bm; top = bm + fh; xl = 0.0; xh = numchan; yl = 0.0; yh = T; cpgsvp(left, right, bottom, top); cpgswin(xl, xh, yl, yh); cpgscr(maxcol, 1.0, 0.0, 0.0); /* Red */ locut = 0.0; hicut = pow_reject; tr[2] = tr[4] = 0.0; tr[1] = (xh - xl) / numchan; tr[0] = xl - (tr[1] / 2); tr[5] = (yh - yl) / numint; tr[3] = yl - (tr[5] / 2); cpgimag(datapow[0], numchan, numint, 1, numchan, 1, numint, locut, hicut, tr); cpgswin(xl, xh, yl, yh); cpgbox("BNST", 0.0, 0, "BNST", 0.0, 0); cpgmtxt("B", 2.6, 0.5, 0.5, "Channel"); cpgmtxt("L", 2.1, 0.5, 0.5, "Time (s)"); xl = lof; xh = hif; yl = 0.0; yh = numint; cpgswin(xl, xh, yl, yh); cpgbox("CST", 0.0, 0, "CST", 0.0, 0); /* Max Power Label */ left = lm + ft; right = lm + ft + tt; bottom = bm + fh; top = bm + fh + th; cpgsvp(left, right, bottom, top); cpgswin(0.0, 1.0, 0.0, 1.0); cpgscr(maxcol, 1.0, 0.0, 0.0); cpgsci(maxcol); /* Red */ cpgptxt(0.5, 0.7, 0.0, 0.5, "Max"); cpgptxt(0.5, 0.3, 0.0, 0.5, "Power"); cpgsci(1); /* Default color */ /* Max Power versus Time */ left = lm + ft; right = lm + ft + tt; bottom = bm; top = bm + fh; cpgsvp(left, right, bottom, top); find_min_max_arr(numint, pow_int_med, &min, &max); xl = 0.0; xh = 1.5 * pow_reject; yl = 0.0; yh = T; cpgswin(xl, xh, yl, yh); cpgbox("BCST", 0.0, 0, "BST", 0.0, 0); cpgscr(maxcol, 1.0, 0.0, 0.0); cpgsci(maxcol); /* Red */ yarr[0] = yl; yarr[1] = yh; xarr[0] = xarr[1] = datapow_med; cpgline(2, xarr, yarr); cpgsls(4); /* Dotted line */ xarr[0] = xarr[1] = pow_reject; cpgline(2, xarr, yarr); cpgsls(1); /* Solid line */ cpgsci(1); /* Default color */ cpgline(numint, pow_int_med, times); yl = 0.0; yh = numint; cpgswin(xl, xh, yl, yh); cpgbox("", 0.0, 0, "CMST", 0.0, 0); /* cpgmtxt("R", 2.3, 0.5, 0.5, "Interval Number"); */ /* Max Power versus Channel */ left = lm; right = lm + ft; bottom = bm + fh; top = bm + fh + th; cpgsvp(left, right, bottom, top); find_min_max_arr(numchan, pow_chan_med, &min, &max); xl = 0.0; xh = numchan; yl = 0.0; yh = 1.5 * pow_reject; cpgswin(xl, xh, yl, yh); cpgbox("BST", 0.0, 0, "BCST", 0.0, 0); cpgscr(maxcol, 1.0, 0.0, 0.0); cpgsci(maxcol); /* Red */ xarr[0] = xl; xarr[1] = xh; yarr[0] = yarr[1] = datapow_med; cpgline(2, xarr, yarr); cpgsls(4); /* Dotted line */ yarr[0] = yarr[1] = pow_reject; cpgline(2, xarr, yarr); cpgsls(1); /* Solid line */ cpgsci(1); /* Default color */ cpgline(numchan, chans, pow_chan_med); xl = lof; xh = hif; cpgswin(xl, xh, yl, yh); cpgbox("CMST", 0.0, 0, "", 0.0, 0); cpgmtxt("T", 1.8, 0.5, 0.5, "Frequency (MHz)"); /* Standard Deviations */ left = lm + ft + 2.0 * tt; right = lm + 2.0 * ft + 2.0 * tt; bottom = bm; top = bm + fh; xl = 0.0; xh = numchan; yl = 0.0; yh = T; cpgsvp(left, right, bottom, top); cpgswin(xl, xh, yl, yh); cpgscr(mincol, 0.7, 1.0, 0.7); /* Light Green */ cpgscr(maxcol, 0.3, 1.0, 0.3); /* Dark Green */ locut = datastd_med - timesigma * datastd_std; hicut = datastd_med + timesigma * datastd_std; tr[2] = tr[4] = 0.0; tr[1] = (xh - xl) / numchan; tr[0] = xl - (tr[1] / 2); tr[5] = (yh - yl) / numint; tr[3] = yl - (tr[5] / 2); cpgimag(datastd[0], numchan, numint, 1, numchan, 1, numint, locut, hicut, tr); cpgswin(xl, xh, yl, yh); cpgbox("BNST", 0.0, 0, "BNST", 0.0, 0); cpgmtxt("B", 2.6, 0.5, 0.5, "Channel"); xl = lof; xh = hif; yl = 0.0; yh = numint; cpgswin(xl, xh, yl, yh); cpgbox("CST", 0.0, 0, "CST", 0.0, 0); /* Data Sigma Label */ left = lm + 2.0 * ft + 2.0 * tt; right = lm + 2.0 * ft + 3.0 * tt; bottom = bm + fh; top = bm + fh + th; cpgsvp(left, right, bottom, top); cpgswin(0.0, 1.0, 0.0, 1.0); cpgscr(maxcol, 0.0, 1.0, 0.0); cpgsci(maxcol); /* Green */ cpgptxt(0.5, 0.7, 0.0, 0.5, "Data"); cpgptxt(0.5, 0.3, 0.0, 0.5, "Sigma"); cpgsci(1); /* Default color */ /* Data Sigma versus Time */ left = lm + 2.0 * ft + 2.0 * tt; right = lm + 2.0 * ft + 3.0 * tt; bottom = bm; top = bm + fh; cpgsvp(left, right, bottom, top); xl = datastd_med - 2.0 * std_reject; xh = datastd_med + 2.0 * std_reject; yl = 0.0; yh = T; cpgswin(xl, xh, yl, yh); cpgbox("BCST", 0.0, 0, "BST", 0.0, 0); cpgscr(maxcol, 0.0, 1.0, 0.0); cpgsci(maxcol); /* Green */ yarr[0] = yl; yarr[1] = yh; xarr[0] = xarr[1] = datastd_med; cpgline(2, xarr, yarr); cpgsls(4); /* Dotted line */ xarr[0] = xarr[1] = datastd_med + std_reject; cpgline(2, xarr, yarr); xarr[0] = xarr[1] = datastd_med - std_reject; cpgline(2, xarr, yarr); cpgsls(1); /* Solid line */ cpgsci(1); /* Default color */ cpgline(numint, std_int_med, times); yl = 0.0; yh = numint; cpgswin(xl, xh, yl, yh); cpgbox("", 0.0, 0, "CMST", 0.0, 0); /* cpgmtxt("R", 2.3, 0.5, 0.5, "Interval Number"); */ /* Data Sigma versus Channel */ left = lm + ft + 2.0 * tt; right = lm + 2.0 * ft + 2.0 * tt; bottom = bm + fh; top = bm + fh + th; cpgsvp(left, right, bottom, top); xl = 0.0; xh = numchan; yl = datastd_med - 2.0 * std_reject; yh = datastd_med + 2.0 * std_reject; cpgswin(xl, xh, yl, yh); cpgbox("BST", 0.0, 0, "BCST", 0.0, 0); cpgscr(maxcol, 0.0, 1.0, 0.0); cpgsci(maxcol); /* Green */ xarr[0] = xl; xarr[1] = xh; yarr[0] = yarr[1] = datastd_med; cpgline(2, xarr, yarr); cpgsls(4); /* Dotted line */ yarr[0] = yarr[1] = datastd_med + std_reject; cpgline(2, xarr, yarr); yarr[0] = yarr[1] = datastd_med - std_reject; cpgline(2, xarr, yarr); cpgsls(1); /* Solid line */ cpgsci(1); /* Default color */ cpgline(numchan, chans, std_chan_med); xl = lof; xh = hif; cpgswin(xl, xh, yl, yh); cpgbox("CMST", 0.0, 0, "", 0.0, 0); cpgmtxt("T", 1.8, 0.5, 0.5, "Frequency (MHz)"); /* Data Mean */ left = lm + 2.0 * ft + 4.0 * tt; right = lm + 3.0 * ft + 4.0 * tt; bottom = bm; top = bm + fh; xl = 0.0; xh = numchan; yl = 0.0; yh = T; cpgsvp(left, right, bottom, top); cpgswin(xl, xh, yl, yh); cpgscr(mincol, 0.7, 0.7, 1.0); /* Light Blue */ cpgscr(maxcol, 0.3, 0.3, 1.0); /* Dark Blue */ locut = dataavg_med - timesigma * dataavg_std; hicut = dataavg_med + timesigma * dataavg_std; tr[2] = tr[4] = 0.0; tr[1] = (xh - xl) / numchan; tr[0] = xl - (tr[1] / 2); tr[5] = (yh - yl) / numint; tr[3] = yl - (tr[5] / 2); cpgimag(dataavg[0], numchan, numint, 1, numchan, 1, numint, locut, hicut, tr); cpgswin(xl, xh, yl, yh); cpgbox("BNST", 0.0, 0, "BNST", 0.0, 0); cpgmtxt("B", 2.6, 0.5, 0.5, "Channel"); xl = lof; xh = hif; yl = 0.0; yh = numint; cpgswin(xl, xh, yl, yh); cpgbox("CST", 0.0, 0, "CST", 0.0, 0); /* Data Mean Label */ left = lm + 3.0 * ft + 4.0 * tt; right = lm + 3.0 * ft + 5.0 * tt; bottom = bm + fh; top = bm + fh + th; cpgsvp(left, right, bottom, top); cpgswin(0.0, 1.0, 0.0, 1.0); cpgscr(maxcol, 0.0, 0.0, 1.0); cpgsci(maxcol); /* Blue */ cpgptxt(0.5, 0.7, 0.0, 0.5, "Data"); cpgptxt(0.5, 0.3, 0.0, 0.5, "Mean"); cpgsci(1); /* Default color */ /* Data Mean versus Time */ left = lm + 3.0 * ft + 4.0 * tt; right = lm + 3.0 * ft + 5.0 * tt; bottom = bm; top = bm + fh; cpgsvp(left, right, bottom, top); xl = dataavg_med - 2.0 * avg_reject; xh = dataavg_med + 2.0 * avg_reject; yl = 0.0; yh = T; cpgswin(xl, xh, yl, yh); cpgbox("BCST", 0.0, 0, "BST", 0.0, 0); cpgscr(maxcol, 0.0, 0.0, 1.0); cpgsci(maxcol); /* Blue */ yarr[0] = yl; yarr[1] = yh; xarr[0] = xarr[1] = dataavg_med; cpgline(2, xarr, yarr); cpgsls(4); /* Dotted line */ xarr[0] = xarr[1] = dataavg_med + avg_reject; cpgline(2, xarr, yarr); xarr[0] = xarr[1] = dataavg_med - avg_reject; cpgline(2, xarr, yarr); cpgsls(1); /* Solid line */ cpgsci(1); /* Default color */ cpgline(numint, avg_int_med, times); yl = 0.0; yh = numint; cpgswin(xl, xh, yl, yh); cpgbox("", 0.0, 0, "CMST", 0.0, 0); /* Data Mean versus Channel */ left = lm + 2.0 * ft + 4.0 * tt; right = lm + 3.0 * ft + 4.0 * tt; bottom = bm + fh; top = bm + fh + th; cpgsvp(left, right, bottom, top); xl = 0.0; xh = numchan; yl = dataavg_med - 2.0 * avg_reject; yh = dataavg_med + 2.0 * avg_reject; cpgswin(xl, xh, yl, yh); cpgbox("BST", 0.0, 0, "BCST", 0.0, 0); cpgscr(maxcol, 0.0, 0.0, 1.0); cpgsci(maxcol); /* Blue */ xarr[0] = xl; xarr[1] = xh; yarr[0] = yarr[1] = dataavg_med; cpgline(2, xarr, yarr); cpgsls(4); /* Dotted line */ yarr[0] = yarr[1] = dataavg_med + avg_reject; cpgline(2, xarr, yarr); yarr[0] = yarr[1] = dataavg_med - avg_reject; cpgline(2, xarr, yarr); cpgsls(1); /* Solid line */ cpgsci(1); /* Default color */ cpgline(numchan, chans, avg_chan_med); xl = lof; xh = hif; cpgswin(xl, xh, yl, yh); cpgbox("CMST", 0.0, 0, "", 0.0, 0); cpgmtxt("T", 1.8, 0.5, 0.5, "Frequency (MHz)"); { /* Add the Data Info area */ char out[200], out2[100]; float dy = 0.025; cpgsvp(0.0, 1.0, 0.0, 1.0); cpgswin(0.0, 1.0, 0.0, 1.0); left = lm + ft + 1.5 * tt; top = 1.0 - tm; cpgsch(1.0); sprintf(out, "%-s", idata->name); cpgptxt(0.5, 1.0 - 0.5 * tm, 0.0, 0.5, out); cpgsch(0.8); sprintf(out, "Object:"); cpgtext(left + 0.0, top - 0 * dy, out); sprintf(out, "%-s", idata->object); cpgtext(left + 0.1, top - 0 * dy, out); sprintf(out, "Telescope:"); cpgtext(left + 0.0, top - 1 * dy, out); sprintf(out, "%-s", idata->telescope); cpgtext(left + 0.1, top - 1 * dy, out); sprintf(out, "Instrument:"); cpgtext(left + 0.0, top - 2 * dy, out); sprintf(out, "%-s", idata->instrument); cpgtext(left + 0.1, top - 2 * dy, out); ra_dec_to_string(out2, idata->ra_h, idata->ra_m, idata->ra_s); sprintf(out, "RA\\dJ2000\\u"); cpgtext(left + 0.0, top - 3 * dy, out); sprintf(out, "= %-s", out2); cpgtext(left + 0.08, top - 3 * dy, out); ra_dec_to_string(out2, idata->dec_d, idata->dec_m, idata->dec_s); sprintf(out, "DEC\\dJ2000\\u"); cpgtext(left + 0.0, top - 4 * dy, out); sprintf(out, "= %-s", out2); cpgtext(left + 0.08, top - 4 * dy, out); sprintf(out, "Epoch\\dtopo\\u"); cpgtext(left + 0.0, top - 5 * dy, out); sprintf(out, "= %-.11f", idata->mjd_i + idata->mjd_f); cpgtext(left + 0.08, top - 5 * dy, out); sprintf(out, "T\\dsample\\u (s)"); cpgtext(left + 0.0, top - 6 * dy, out); sprintf(out, "= %g", idata->dt); cpgtext(left + 0.08, top - 6 * dy, out); sprintf(out, "T\\dtotal\\u (s)"); cpgtext(left + 0.0, top - 7 * dy, out); sprintf(out, "= %g", T); cpgtext(left + 0.08, top - 7 * dy, out); left = lm + ft + 7.8 * tt; sprintf(out, "Num channels"); cpgtext(left + 0.0, top - 0 * dy, out); sprintf(out, "= %-d", numchan); cpgtext(left + 0.12, top - 0 * dy, out); sprintf(out, "Pts per int"); cpgtext(left + 0.19, top - 0 * dy, out); sprintf(out, "= %-d", ptsperint); cpgtext(left + 0.29, top - 0 * dy, out); sprintf(out, "Num intervals"); cpgtext(left + 0.0, top - 1 * dy, out); sprintf(out, "= %-d", numint); cpgtext(left + 0.12, top - 1 * dy, out); sprintf(out, "Time per int"); cpgtext(left + 0.19, top - 1 * dy, out); sprintf(out, "= %-g", inttim); cpgtext(left + 0.29, top - 1 * dy, out); sprintf(out, "Power:"); cpgtext(left + 0.0, top - 2 * dy, out); sprintf(out, "median"); cpgtext(left + 0.06, top - 2 * dy, out); sprintf(out, "= %-.3f", datapow_med); cpgtext(left + 0.12, top - 2 * dy, out); sprintf(out, "\\gs"); cpgtext(left + 0.21, top - 2 * dy, out); sprintf(out, "= %-.3g", datapow_std); cpgtext(left + 0.245, top - 2 * dy, out); find_min_max_arr(numint * numchan, datapow[0], &min, &max); sprintf(out, "min"); cpgtext(left + 0.06, top - 3 * dy, out); sprintf(out, "= %-.3f", min); cpgtext(left + 0.12, top - 3 * dy, out); sprintf(out, "max"); cpgtext(left + 0.21, top - 3 * dy, out); sprintf(out, "= %-.3f", max); cpgtext(left + 0.245, top - 3 * dy, out); sprintf(out, "Sigma:"); cpgtext(left + 0.0, top - 4 * dy, out); sprintf(out, "median"); cpgtext(left + 0.06, top - 4 * dy, out); sprintf(out, "= %-.3f", datastd_med); cpgtext(left + 0.12, top - 4 * dy, out); sprintf(out, "\\gs"); cpgtext(left + 0.21, top - 4 * dy, out); sprintf(out, "= %-.3g", datastd_std); cpgtext(left + 0.245, top - 4 * dy, out); find_min_max_arr(numint * numchan, datastd[0], &min, &max); sprintf(out, "min"); cpgtext(left + 0.06, top - 5 * dy, out); sprintf(out, "= %-.3f", min); cpgtext(left + 0.12, top - 5 * dy, out); sprintf(out, "max"); cpgtext(left + 0.21, top - 5 * dy, out); sprintf(out, "= %-.3f", max); cpgtext(left + 0.245, top - 5 * dy, out); sprintf(out, "Mean:"); cpgtext(left + 0.0, top - 6 * dy, out); sprintf(out, "median"); cpgtext(left + 0.06, top - 6 * dy, out); sprintf(out, "= %-.3f", dataavg_med); cpgtext(left + 0.12, top - 6 * dy, out); sprintf(out, "\\gs"); cpgtext(left + 0.21, top - 6 * dy, out); sprintf(out, "= %-.3g", dataavg_std); cpgtext(left + 0.245, top - 6 * dy, out); find_min_max_arr(numint * numchan, dataavg[0], &min, &max); sprintf(out, "min"); cpgtext(left + 0.06, top - 7 * dy, out); sprintf(out, "= %-.3f", min); cpgtext(left + 0.12, top - 7 * dy, out); sprintf(out, "max"); cpgtext(left + 0.21, top - 7 * dy, out); sprintf(out, "= %-.3f", max); cpgtext(left + 0.245, top - 7 * dy, out); } { /* Plot the Mask */ unsigned char byte; char temp[200]; float **plotmask, rr, gg, bb, page; plotmask = gen_fmatrix(numint, numchan); for (ii = 0; ii < numint; ii++) { for (jj = 0; jj < numchan; jj++) { byte = bytemask[ii][jj]; plotmask[ii][jj] = 0.0; if (byte & PADDING) plotmask[ii][jj] = 1.0; if (byte & OLDMASK) plotmask[ii][jj] = 2.0; if (byte & USERZAP) plotmask[ii][jj] = 3.0; if (byte & BAD_POW) plotmask[ii][jj] = 4.0; else if (byte & BAD_AVG) plotmask[ii][jj] = 5.0; else if (byte & BAD_STD) plotmask[ii][jj] = 6.0; } } /* Set the colors */ numcol = 7; maxcol = mincol + numcol - 1; cpgscir(mincol, maxcol); cpgqcr(0, &rr, &gg, &bb); cpgscr(mincol + 0, rr, gg, bb); /* GOODDATA = background */ cpgscr(mincol + 1, 0.7, 0.7, 0.7); /* PADDING = light grey */ cpgscr(mincol + 2, 0.3, 0.3, 0.3); /* OLDMASK = dark grey */ cpgqcr(1, &rr, &gg, &bb); cpgscr(mincol + 3, rr, gg, bb); /* USERZAP = foreground */ cpgscr(mincol + 4, 1.0, 0.0, 0.0); /* BAD+POW = red */ cpgscr(mincol + 5, 0.0, 0.0, 1.0); /* BAD+AVG = blue */ cpgscr(mincol + 6, 0.0, 1.0, 0.0); /* BAD+STD = green */ /* Prep the image */ for (page = 0; page <= 1; page++) { xl = 0.0; xh = numchan; yl = 0.0; yh = T; locut = 0.0; hicut = 6.0; tr[2] = tr[4] = 0.0; tr[1] = (xh - xl) / numchan; tr[0] = xl - (tr[1] / 2); tr[5] = (yh - yl) / numint; tr[3] = yl - (tr[5] / 2); if (page == 0) { left = lm + 3.0 * ft + 6.0 * tt; right = lm + 4.0 * ft + 6.0 * tt; bottom = bm; top = bm + fh; } else { cpgpage(); cpgiden(); left = 0.06; right = 0.94; bottom = 0.06; top = 0.88; } cpgsvp(left, right, bottom, top); cpgswin(xl, xh, yl, yh); cpgimag(plotmask[0], numchan, numint, 1, numchan, 1, numint, locut, hicut, tr); cpgswin(xl, xh, yl, yh); cpgbox("BNST", 0.0, 0, "BNST", 0.0, 0); cpgmtxt("B", 2.6, 0.5, 0.5, "Channel"); if (page) cpgmtxt("L", 2.1, 0.5, 0.5, "Time (s)"); xl = lof; xh = hif; yl = 0.0; yh = numint; cpgswin(xl, xh, yl, yh); cpgbox("CMST", 0.0, 0, "CMST", 0.0, 0); cpgmtxt("T", 1.8, 0.5, 0.5, "Frequency (MHz)"); cpgmtxt("R", 2.3, 0.5, 0.5, "Interval Number"); /* Add the Labels */ cpgsvp(0.0, 1.0, 0.0, 1.0); cpgswin(0.0, 1.0, 0.0, 1.0); cpgsch(0.8); if (page == 0) { cpgsci(mincol + 1); cpgptxt(left, top + 0.1, 0.0, 0.0, "Padding"); cpgsci(mincol + 2); cpgptxt(left, top + 0.08, 0.0, 0.0, "Old Mask"); cpgsci(mincol + 3); cpgptxt(left, top + 0.06, 0.0, 0.0, "User Zap"); cpgsci(mincol + 4); cpgptxt(right, top + 0.1, 0.0, 1.0, "Power"); cpgsci(mincol + 6); cpgptxt(right, top + 0.08, 0.0, 1.0, "Sigma"); cpgsci(mincol + 5); cpgptxt(right, top + 0.06, 0.0, 1.0, "Mean"); cpgsci(1); } else { cpgsci(mincol + 1); cpgptxt(1.0 / 12.0, 0.955, 0.0, 0.5, "Padding"); cpgsci(mincol + 2); cpgptxt(3.0 / 12.0, 0.955, 0.0, 0.5, "Old Mask"); cpgsci(mincol + 3); cpgptxt(5.0 / 12.0, 0.955, 0.0, 0.5, "User Zap"); cpgsci(mincol + 4); cpgptxt(7.0 / 12.0, 0.955, 0.0, 0.5, "Max Power"); cpgsci(mincol + 6); cpgptxt(9.0 / 12.0, 0.955, 0.0, 0.5, "Data Sigma"); cpgsci(mincol + 5); cpgptxt(11.0 / 12.0, 0.955, 0.0, 0.5, "Data Mean"); cpgsci(1); cpgsch(0.9); sprintf(temp, "Recommended Mask for '%-s'", idata->name); cpgptxt(0.5, 0.985, 0.0, 0.5, temp); } } vect_free(plotmask[0]); vect_free(plotmask); } if (ct == 0) printf("There are %d RFI instances.\n\n", numrfi); if ((ct == 0 && rfips) || (ct == 1 && rfixwin)) { /* Plot the RFI instances */ int maxcol, mincol, numperpage = 25, numtoplot; float dy = 0.035, top = 0.95, rr, gg, bb; char temp[200]; qsort(rfivect, numrfi, sizeof(rfi), compare_rfi_freq); /* qsort(rfivect, numrfi, sizeof(rfi), compare_rfi_sigma); */ for (ii = 0; ii <= (numrfi - 1) / numperpage; ii++) { cpgpage(); cpgiden(); cpgsvp(0.0, 1.0, 0.0, 1.0); cpgswin(0.0, 1.0, 0.0, 1.0); cpgsch(0.8); sprintf(temp, "%-s", idata->name); cpgtext(0.05, 0.985, temp); cpgsch(0.6); sprintf(temp, "Freq (Hz)"); cpgptxt(0.03, 0.96, 0.0, 0.0, temp); sprintf(temp, "Period (ms)"); cpgptxt(0.12, 0.96, 0.0, 0.0, temp); sprintf(temp, "Sigma"); cpgptxt(0.21, 0.96, 0.0, 0.0, temp); sprintf(temp, "Number"); cpgptxt(0.27, 0.96, 0.0, 0.0, temp); cpgsvp(0.33, 0.64, top - dy, top); cpgswin(lof, hif, 0.0, 1.0); cpgbox("CIMST", 0.0, 0, "", 0.0, 0); cpgmtxt("T", 2.5, 0.5, 0.5, "Frequency (MHz)"); cpgsvp(0.65, 0.96, top - dy, top); cpgswin(0.0, T, 0.0, 1.0); cpgbox("CIMST", 0.0, 0, "", 0.0, 0); cpgmtxt("T", 2.5, 0.5, 0.5, "Time (s)"); cpgqcir(&mincol, &maxcol); maxcol = mincol + 1; cpgscir(mincol, maxcol); cpgqcr(0, &rr, &gg, &bb); cpgscr(mincol, rr, gg, bb); /* background */ cpgqcr(1, &rr, &gg, &bb); /* cpgscr(maxcol, rr, gg, bb); foreground */ cpgscr(maxcol, 0.5, 0.5, 0.5); /* grey */ if (ii == (numrfi - 1) / numperpage) numtoplot = numrfi % numperpage; else numtoplot = numperpage; for (jj = 0; jj < numtoplot; jj++) plot_rfi(rfivect + ii * numperpage + jj, top - jj * dy, numint, numchan, T, lof, hif); cpgsvp(0.33, 0.64, top - jj * dy, top - (jj - 1) * dy); cpgswin(0.0, numchan, 0.0, 1.0); cpgbox("BINST", 0.0, 0, "", 0.0, 0); cpgmtxt("B", 2.5, 0.5, 0.5, "Channel"); cpgsvp(0.65, 0.96, top - jj * dy, top - (jj - 1) * dy); cpgswin(0.0, numint, 0.0, 1.0); cpgbox("BINST", 0.0, 0, "", 0.0, 0); cpgmtxt("B", 2.5, 0.5, 0.5, "Interval"); } } cpgclos(); } /* Plot for loop */ /* Free our arrays */ vect_free(freqs); vect_free(chans); vect_free(times); vect_free(ints); vect_free(avg_chan_avg); vect_free(std_chan_avg); vect_free(pow_chan_avg); vect_free(avg_int_avg); vect_free(std_int_avg); vect_free(pow_int_avg); vect_free(avg_chan_med); vect_free(std_chan_med); vect_free(pow_chan_med); vect_free(avg_int_med); vect_free(std_int_med); vect_free(pow_int_med); vect_free(avg_chan_std); vect_free(std_chan_std); vect_free(pow_chan_std); vect_free(avg_int_std); vect_free(std_int_std); vect_free(pow_int_std); }
fftcand *search_fft(fcomplex * fft, int numfft, int lobin, int hibin, int numharmsum, int numbetween, presto_interptype interptype, float norm, float sigmacutoff, int *numcands, float *powavg, float *powvar, float *powmax) /* This routine searches a short FFT of 'numfft' complex freqs */ /* and returns a candidate vector of fftcand structures containing */ /* information about the best candidates found. */ /* The routine uses either interbinning or interpolation as well */ /* as harmonic summing during the search. */ /* The number of candidates returned is either 'numcands' if != 0, */ /* or is determined automatically by 'sigmacutoff' -- which */ /* takes into account the number of bins searched. */ /* The returned vector is sorted in order of decreasing power. */ /* Arguments: */ /* 'fft' is the FFT to search (complex valued) */ /* 'numfft' is the number of complex points in 'fft' */ /* 'lobin' is the lowest Fourier freq to search */ /* 'hibin' is the highest Fourier freq to search */ /* 'numharmsum' the number of harmonics to sum during the search */ /* 'numbetween' the points to interpolate per bin */ /* 'interptype' is either INTERBIN or INTERPOLATE. */ /* INTERBIN = (interbinning) is fast but less sensitive. */ /* NOTE: INTERBINNING is conducted by this routine! */ /* INTERPOLATE = (Fourier interpolation) is slower but more */ /* sensitive. */ /* NOTE: The interpolation is assumed to ALREADY have been */ /* completed by the calling function! The easiest */ /* way is by zero-padding to 2*numfft and FFTing. */ /* If you use this method, make sure numfft is the */ /* original length rather than the interpolated */ /* length and also make sure numbetween is correct. */ /* 'norm' is the normalization constant to multiply each power by */ /* 'sigmacutoff' if the number of candidates will be determined */ /* automatically, is the minimum Gaussian significance of */ /* candidates to keep -- taking into account the number of */ /* bins searched */ /* 'numcands' if !0, is the number of candates to return. */ /* if 0, is a return value giving the number of candidates. */ /* 'powavg' is a return value giving the average power level */ /* 'powvar' is a return value giving the power level variance */ /* 'powmax' is a return value giving the maximum power */ { int ii, jj, offset, numtosearch, dynamic = 0; int numspread = 0, nc = 0, startnc = 10; float powargr, powargi, *fullpows = NULL, *sumpows, ftmp; double twobypi, minpow = 0.0, tmpminsig = 0.0, dr, davg, dvar; fftcand *cands, newcand; fcomplex *spread; /* Override the value of numbetween if interbinning */ if (interptype == INTERBIN) numbetween = 2; norm = 1.0 / norm; *powmax = 0.0; /* Decide if we will manage the number of candidates */ if (*numcands > 0) startnc = *numcands; else { dynamic = 1; minpow = power_for_sigma(sigmacutoff, 1, hibin - lobin); } cands = (fftcand *) malloc(startnc * sizeof(fftcand)); for (ii = 0; ii < startnc; ii++) cands[ii].sig = 0.0; /* Prep some other values we will need */ dr = 1.0 / (double) numbetween; twobypi = 2.0 / PI; numtosearch = numfft * numbetween; /* Spread and interpolate the fft */ numspread = numfft * numbetween + 1; if (interptype == INTERPOLATE) { /* INTERPOLATE */ spread = fft; } else { /* INTERBIN */ spread = gen_cvect(numspread); spread_with_pad(fft, numfft, spread, numspread, numbetween, 0); for (ii = 1; ii < numtosearch; ii += 2) { spread[ii].r = twobypi * (spread[ii - 1].r - spread[ii + 1].r); spread[ii].i = twobypi * (spread[ii - 1].i - spread[ii + 1].i); } } spread[0].r = spread[numtosearch].r = 1.0; spread[0].i = spread[numtosearch].i = 0.0; /* First generate the original powers in order to */ /* calculate the statistics. Yes, this is inefficient... */ fullpows = gen_fvect(numtosearch); for (ii = lobin, jj = 0; ii < hibin; ii++, jj++) { ftmp = POWER(fft[ii].r, fft[ii].i) * norm; fullpows[jj] = ftmp; if (ftmp > *powmax) *powmax = ftmp; } avg_var(fullpows, hibin - lobin, &davg, &dvar); *powavg = davg; *powvar = dvar; fullpows[0] = 1.0; for (ii = 1; ii < numtosearch; ii++) fullpows[ii] = POWER(spread[ii].r, spread[ii].i) * norm; if (interptype == INTERBIN) vect_free(spread); /* Search the raw powers */ for (ii = lobin * numbetween; ii < hibin * numbetween; ii++) { if (fullpows[ii] > minpow) { newcand.r = dr * (double) ii; newcand.p = fullpows[ii]; newcand.sig = candidate_sigma(fullpows[ii], 1, hibin - lobin); newcand.nsum = 1; cands[startnc - 1] = newcand; tmpminsig = percolate_fftcands(cands, startnc); if (dynamic) { nc++; if (nc == startnc) { startnc *= 2; cands = (fftcand *) realloc(cands, startnc * sizeof(fftcand)); for (jj = nc; jj < startnc; jj++) cands[jj].sig = 0.0; } } else { minpow = cands[startnc - 1].p; if (nc < startnc) nc++; } } } /* If needed, sum and search the harmonics */ if (numharmsum > 1) { sumpows = gen_fvect(numtosearch); memcpy(sumpows, fullpows, sizeof(float) * numtosearch); for (ii = 2; ii <= numharmsum; ii++) { offset = ii / 2; if (dynamic) minpow = power_for_sigma(sigmacutoff, ii, hibin - lobin); else minpow = power_for_sigma(tmpminsig, ii, hibin - lobin); for (jj = lobin * numbetween; jj < numtosearch; jj++) { sumpows[jj] += fullpows[(jj + offset) / ii]; if (sumpows[jj] > minpow) { newcand.r = dr * (double) jj; newcand.p = sumpows[jj]; newcand.sig = candidate_sigma(sumpows[jj], ii, hibin - lobin); newcand.nsum = ii; cands[startnc - 1] = newcand; tmpminsig = percolate_fftcands(cands, startnc); if (dynamic) { nc++; if (nc == startnc) { startnc *= 2; cands = (fftcand *) realloc(cands, startnc * sizeof(fftcand)); for (jj = nc; jj < startnc; jj++) cands[jj].sig = 0.0; } } else { minpow = power_for_sigma(tmpminsig, ii, hibin - lobin); if (nc < startnc) nc++; } } } } vect_free(sumpows); } vect_free(fullpows); /* Chop off the unused parts of the dynamic array */ if (dynamic) cands = (fftcand *) realloc(cands, nc * sizeof(fftcand)); *numcands = nc; return cands; }