int main (int argc, char* argv[]) { long correct=0,incorrect=0,no_accuracy=0; long i; double t1,runtime=0; double avgloss=0,l; FILE *predfl; STRUCTMODEL model; STRUCT_LEARN_PARM sparm; STRUCT_TEST_STATS teststats; SAMPLE testsample; LABEL y; svm_struct_classify_api_init(argc,argv); read_input_parameters(argc,argv,testfile,modelfile,predictionsfile,&sparm, &verbosity,&struct_verbosity); if(struct_verbosity>=1) { printf("Reading model..."); fflush(stdout); } model=read_struct_model(modelfile,&sparm); if(struct_verbosity>=1) { fprintf(stdout, "done.\n"); } if(model.svm_model->kernel_parm.kernel_type == LINEAR) { /* linear kernel */ /* compute weight vector */ //add_weight_vector_to_linear_model(model.svm_model); //model.w=model.svm_model->lin_weights; } if(struct_verbosity>=1) { printf("Reading test examples..."); fflush(stdout); } testsample=read_struct_examples(testfile,&sparm); if(struct_verbosity>=1) { printf("done.\n"); fflush(stdout); } if(struct_verbosity>=1) { printf("Classifying test examples..."); fflush(stdout); } if ((predfl = fopen (predictionsfile, "w")) == NULL) { perror (predictionsfile); exit (1); } for(i=0;i<testsample.n;i++) { t1=get_runtime(); y=classify_struct_example(testsample.examples[i].x,&model,&sparm); runtime+=(get_runtime()-t1); write_label(predfl,y); l=loss(testsample.examples[i].y,y,&sparm); avgloss+=l; if(l == 0) correct++; else incorrect++; eval_prediction(i,testsample.examples[i],y,&model,&sparm,&teststats); if(empty_label(testsample.examples[i].y)) { no_accuracy=1; } /* test data is not labeled */ if(struct_verbosity>=2) { if((i+1) % 100 == 0) { printf("%ld..",i+1); fflush(stdout); } } free_label(y); } avgloss/=testsample.n; fclose(predfl); if(struct_verbosity>=1) { printf("done\n"); printf("Runtime (without IO) in cpu-seconds: %.2f\n", (float)(runtime/100.0)); } if((!no_accuracy) && (struct_verbosity>=1)) { printf("Average loss on test set: %.4f\n",(float)avgloss); printf("Zero/one-error on test set: %.2f%% (%ld correct, %ld incorrect, %d total)\n",(float)100.0*incorrect/testsample.n,correct,incorrect,testsample.n); } print_struct_testing_stats(testsample,&model,&sparm,&teststats); free_struct_sample(testsample); free_struct_model(model); svm_struct_classify_api_exit(); return(0); }
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) #endif { long correct=0,incorrect=0,no_accuracy=0; long i; double t1,runtime=0; double avgloss=0,l; #ifndef COMPILE_MEX_INTERFACE FILE *predfl; #endif STRUCTMODEL model; STRUCT_LEARN_PARM sparm; STRUCT_TEST_STATS teststats; SAMPLE testsample; LABEL y; #ifdef COMPILE_MEX_INTERFACE int argc; char **argv; if (nrhs < 3) { print_help(); return; } else if (nrhs==3) { argc=1; argv=(char **)my_malloc(MAX_ARGVS*sizeof(char *)); argv[0]="OLR"; } else create_argc_argv(prhs[3],&argc,&argv); #endif svm_struct_classify_api_init(argc,argv); #ifndef COMPILE_MEX_INTERFACE read_input_parameters(argc,argv,testfile,modelfile,predictionsfile,&sparm, &verbosity,&struct_verbosity); #else read_input_parameters(argc,argv,&sparm,&verbosity,&struct_verbosity); #endif if(struct_verbosity>=1) { printf("Reading model..."); fflush(stdout); } #ifndef COMPILE_MEX_INTERFACE model=read_struct_model(modelfile,&sparm); #else model=read_struct_model(prhs[2],&sparm); #endif if(struct_verbosity>=1) { fprintf(stdout, "done.\n"); } if(model.svm_model->kernel_parm.kernel_type == LINEAR) { /* linear kernel */ /* compute weight vector */ add_weight_vector_to_linear_model(model.svm_model); model.w=model.svm_model->lin_weights; } if(struct_verbosity>=1) { printf("Reading test examples..."); fflush(stdout); } #ifndef COMPILE_MEX_INTERFACE testsample=read_struct_examples(testfile,&sparm); #else testsample=read_struct_examples(prhs,&sparm); #endif if(struct_verbosity>=1) { printf("done.\n"); fflush(stdout); } if(struct_verbosity>=1) { printf("Classifying test examples..."); fflush(stdout); } #ifndef COMPILE_MEX_INTERFACE if ((predfl = fopen (predictionsfile, "w")) == NULL) { perror (predictionsfile); exit (1); } #else mwSize rows=mxGetM(prhs[0]); mxArray *predictions=mxCreateDoubleMatrix(rows,1,mxREAL); double *pred_ptr=mxGetPr(predictions); #endif for(i=0;i<testsample.n;i++) { t1=get_runtime(); y=classify_struct_example(testsample.examples[i].x,&model,&sparm); runtime+=(get_runtime()-t1); #ifndef COMPILE_MEX_INTERFACE write_label(predfl,y); #else write_label(&pred_ptr,y); #endif l=loss(testsample.examples[i].y,y,&sparm); avgloss+=l; if(l == 0) correct++; else incorrect++; eval_prediction(i,testsample.examples[i],y,&model,&sparm,&teststats); if(empty_label(testsample.examples[i].y)) { no_accuracy=1; } /* test data is not labeled */ if(struct_verbosity>=2) { if((i+1) % 100 == 0) { printf("%ld..",i+1); fflush(stdout); } } free_label(y); } avgloss/=testsample.n; #ifndef COMPILE_MEX_INTERFACE fclose(predfl); #endif if(struct_verbosity>=1) { printf("done\n"); printf("Runtime (without IO) in cpu-seconds: %.2f\n", (float)(runtime/100.0)); } if((!no_accuracy) && (struct_verbosity>=1)) { printf("Average loss on test set: %.4f\n",(float)avgloss); printf("Zero/one-error on test set: %.2f%% (%ld correct, %ld incorrect, %d total)\n",(float)100.0*incorrect/testsample.n,correct,incorrect,testsample.n); } print_struct_testing_stats(testsample,&model,&sparm,&teststats); free_struct_sample(testsample); free_struct_model(model); svm_struct_classify_api_exit(); #ifndef COMPILE_MEX_INTERFACE return(0); #else plhs[0]=predictions; #endif }