void print_tree_post(node *a) { if( a == NULL ) return; print_tree_post(a->left); print_tree_post(a->right); printf("%d\n", a->data); }
int main_test_tree(int argc, char **argv) { unsigned int maxloop = 1; if (argc > 1) maxloop = atoi(argv[1]); for (unsigned int j = 0; j < maxloop; ++j) { tree<std::string> tr9; tr9.set_head("hi"); tr9.insert(tr9.begin().begin(), "0"); tr9.insert(tr9.begin().begin(), "1"); print_tree(tr9, tr9.begin(), tr9.end()); tree<std::string> tr; tree<std::string>::pre_order_iterator html, body, h1, h3, bh1, mv1; std::cout << "empty tree to begin with:" << std::endl; print_tree(tr, tr.begin(), tr.end()); html = tr.insert(tr.begin(), "html"); tr.insert(html, "extra"); // tr.insert(html,"zextra2"); body = tr.append_child(html, "body"); h1 = tr.append_child(body, "h1"); std::cout << tr.index(h1) << std::endl; bh1 = tr.insert(h1, "before h1"); tr.append_child(h1, "some text"); tree<std::string>::sibling_iterator more_text = tr.append_child(body, "more text"); std::cout << " 'more text' is sibling " << tr.index(more_text) << " in its sibling range" << std::endl; std::cout << "filled tree:" << std::endl; print_tree(tr, tr.begin(), tr.end()); std::cout << "filled tree, post-order traversal:" << std::endl; print_tree_post(tr, tr.begin_post(), tr.end_post()); tr.swap(bh1); std::cout << "swapped elements:" << std::endl; print_tree(tr, tr.begin(), tr.end()); tr.swap(h1); std::cout << "swapped back:" << std::endl; print_tree(tr, tr.begin(), tr.end()); tree<std::string> copytree(h1); std::cout << "copied tree:" << std::endl; print_tree(copytree, copytree.begin(), copytree.end()); // Now test the STL algorithms std::cout << "result of search for h1 and kasper:" << std::endl; tree<std::string>::pre_order_iterator it; it = std::find(tr.begin(), tr.end(), std::string("h1")); if (it != tr.end()) print_tree(tr, it, tr.next_sibling(it)); else std::cout << "h1 not found" << std::endl; it = std::find(tr.begin(), tr.end(), std::string("kasper")); if (it != tr.end()) print_tree(tr, it, tr.next_sibling(it)); else std::cout << "kasper not found" << std::endl; std::cout << std::endl; // remove the h1, replace it with new subtree tree<std::string> replacement; h3 = replacement.insert(replacement.begin(), "h3"); replacement.append_child(h3, "text in h3"); std::cout << "replacement tree:" << std::endl; print_tree(replacement, replacement.begin(), replacement.end()); print_tree(tr, tr.begin(), tr.end()); h1 = tr.replace(tree<std::string>::sibling_iterator(h1), tr.next_sibling(h1), tree<std::string>::sibling_iterator(h3), tr.next_sibling(h3)); std::cout << "filled tree with replacement done:" << std::endl; print_tree(tr, tr.begin(), tr.end()); // replace h3 node while keeping children h1 = tr.replace(h1, "<foobar>"); print_tree(tr, tr.begin(), tr.end()); // add a sibling to the head tr.insert_after(h1, "more"); // Copy object. tree<std::string> tr2 = tr; print_tree(tr2, tr2.begin(), tr2.end()); tree<std::string> tr3(tr); // reparent "before h1" to h3 node tr.reparent(h1, bh1, tr.next_sibling(bh1)); std::cout << "moved content:" << std::endl; print_tree(tr, tr.begin(), tr.end()); // iterate over children only tree<std::string>::sibling_iterator ch = tr.begin(h1); std::cout << "children of h1:" << std::endl; while (ch != tr.end(h1)) { std::cout << (*ch) << std::endl; ++ch; } std::cout << std::endl; // flatten the h3 node tr.flatten(h1); std::cout << "flattened (at h3) tree:" << std::endl; print_tree(tr, tr.begin(), tr.end()); // Erase the subtree of tr below body. tr.erase_children(body); std::cout << "children of body erased:" << std::endl; print_tree(tr, tr.begin(), tr.end()); it = std::find(tr.begin(), tr.end(), "h1"); if (it != tr.end()) print_tree(tr, it, tr.next_sibling(it)); else std::cout << "h1 not found" << std::endl; // Erase everything tr.erase(tr.begin()); std::cout << "erased tree:" << std::endl; print_tree(tr, tr.begin(), tr.end()); // The copies are deep, ie. all nodes have been copied. std::cout << "copies still exist:" << std::endl; print_tree(tr2, tr2.begin(), tr2.end()); print_tree(tr3, tr3.begin(), tr3.end()); // Test comparison std::cout << "testing comparison functions:" << std::endl; std::cout << std::equal(tr2.begin(), tr2.end(), tr3.begin(), std::equal_to<std::string>()) << " (should be 1)" << std::endl; // modify content but not structure tree<std::string>::pre_order_iterator fl3 = tr3.begin(); fl3 += 4; // pointing to "<foobar>" node std::cout << (*fl3) << std::endl; std::string tmpfl3 = (*fl3); (*fl3) = "modified"; std::cout << std::equal(tr2.begin(), tr2.end(), tr3.begin(), std::equal_to<std::string>()) << " (should be 0)" << std::endl; std::cout << tr2.equal(tr2.begin(), tr2.end(), tr3.begin(), std::equal_to<std::string>()) << " (should be 0)" << std::endl; std::cout << tr2.equal(tr2.begin(), tr2.end(), tr3.begin(), truefunc) << " (should be 1)" << std::endl; // modify tr3 structure (but not content) (*fl3) = tmpfl3; tr3.flatten(fl3); std::cout << "tree flattened, test again" << std::endl; print_tree(tr3, tr3.begin(), tr3.end()); // Test comparison again std::cout << tr2.equal(tr2.begin(), tr2.end(), tr3.begin(), std::equal_to<std::string>()) << " (should be 0)" << std::endl; std::cout << std::equal(tr2.begin(), tr2.end(), tr3.begin(), std::equal_to<std::string>()) << " (should be 1)" << std::endl; // Change content (*fl3) = "modified"; // Test comparison again std::cout << std::equal(tr2.begin(), tr2.end(), tr3.begin(), std::equal_to<std::string>()) << " (should be 0)" << std::endl; std::cout << tr2.equal(tr2.begin(), tr2.end(), tr3.begin(), std::equal_to<std::string>()) << " (should be 0)" << std::endl; // Testing sort. First add a subtree to one leaf tree<std::string>::pre_order_iterator txx3 = tr3.begin(); txx3 += 5; tr3.append_child(txx3, "ccc"); tr3.append_child(txx3, "bbb"); tr3.append_child(txx3, "bbb"); tr3.append_child(txx3, "aaa"); std::less<std::string> comp; tree<std::string>::pre_order_iterator bdy = tr3.begin(); bdy += 2; assert(tr.is_valid(bdy)); std::cout << "unsorted subtree:" << std::endl; print_tree(tr3, tr3.begin(), tr3.end()); tree<std::string>::sibling_iterator sortit1 = tr3.begin(bdy), sortit2 = tr3.begin(bdy); sortit1 += 2; sortit2 += 4; assert(tr.is_valid(sortit1)); assert(tr.is_valid(sortit2)); std::cout << "partially sorted subtree: (" << "sorted from " << (*sortit1) << " to " << (*sortit2) << ", excluding the last element)" << std::endl; mv1 = tr3.begin(); ++mv1; tr3.sort(sortit1, sortit2); print_tree(tr3, tr3.begin(), tr3.end()); tr3.sort(tr3.begin(bdy), tr3.end(bdy), comp, true); // false: no sorting of subtrees // Sorting the entire tree, level by level, is much simpler: // tr3.sort(tr3.begin(), tr3.end(), true); std::cout << "sorted subtree:" << std::endl; print_tree(tr3, tr3.begin(), tr3.end()); // Michael's problem // std::cout << mv1.node << ", " << tr3.feet << ", " << tr3.feet->prev_sibling << std::endl; // std::cout << mv1.node->next_sibling << ", " << tr3.feet->prev_sibling << ", " << tr3.end().node << std::endl; // tr3.sort(tr3.begin(), tr3.end(), true); // std::cout << mv1.node << ", " << tr3.feet << ", " << tr3.feet->prev_sibling << std::endl; // std::cout << mv1.node->next_sibling << ", " << tr3.feet->prev_sibling << ", " << tr3.end().node << std::endl; // print_tree(tr3, tr3.begin(), tr3.end()); // tr3.sort(tr3.begin(), tr3.end(), true); // std::cout << mv1.node << ", " << tr3.feet << ", " << tr3.feet->prev_sibling << std::endl; // std::cout << mv1.node->next_sibling << ", " << tr3.feet->prev_sibling << ", " << tr3.end().node << std::endl; // print_tree(tr3, tr3.begin(), tr3.end()); // return 1; // Test merge algorithm. std::cout << "test merge" << std::endl; tree<std::string> mtree; tree<std::string>::pre_order_iterator mt1, mt2, mt3; mt1 = mtree.insert(mtree.begin(), "html"); mt2 = mtree.append_child(mt1, "head"); mt3 = mtree.append_child(mt1, "body"); // Adding it without head having any children tests whether we can // insert at the end of an empty list of children. mtree.append_child(mt2, "title"); mtree.append_child(mt3, "h1"); mtree.append_child(mt3, "h1"); tree<std::string> mtBree; tree<std::string>::pre_order_iterator mtB1, mtB2; mtB1 = mtBree.insert(mtBree.begin(), "head"); mtB2 = mtBree.append_child(mtB1, "another title"); print_tree(mtree, mtree.begin(), mtree.end()); print_tree(mtBree, mtBree.begin(), mtBree.end()); mtree.merge(mtree.begin(), mtree.end(), mtBree.begin(), mtBree.end(), true); print_tree(mtree, mtree.begin(), mtree.end()); mtree.merge(mtree.begin(mtree.begin()), mtree.end(mtree.begin()), mtBree.begin(), mtBree.end(), true); print_tree(mtree, mtree.begin(), mtree.end()); // Print tree in reverse (test operator--) print_tree_rev(mtree, mtree.end(), mtree.begin()); print_tree_rev_post(mtree, mtree.end_post(), mtree.begin_post()); // Breadth-first tree<std::string> bft; tree<std::string>::iterator bfB, bfC, bfD; bft.set_head("A"); bfB = bft.append_child(bft.begin(), "B"); bfC = bft.append_child(bft.begin(), "C"); bfD = bft.append_child(bft.begin(), "D"); bft.append_child(bfB, "E"); bft.append_child(bfB, "F"); bft.append_child(bfC, "G"); bft.append_child(bfC, "H"); bft.append_child(bfD, "I"); tree<std::string>::breadth_first_queued_iterator bfq = bft.begin_breadth_first(); while (bfq != bft.end_breadth_first()) { std::cout << *bfq << std::endl; ++bfq; } print_tree(bft, bft.begin(), bft.end()); bft.wrap(bfD, "wrap"); print_tree(bft, bft.begin(), bft.end()); tree<std::string>::leaf_iterator li = tr.begin_leaf(bfC); while (li != tr.end_leaf(bfC)) { std::cout << *li << std::endl; ++li; } // test_move_constructor(); } return 0; }