/*const*/ BIGNUM *Bank::SignRequest(PublicCoinRequest &req) { InitCTX(); BIGNUM *BtoA=BN_new(); BN_mod_exp(BtoA,req.Request(),priv_key(),p(),m_ctx); DumpNumber("B->A= ",BtoA); return BtoA; }
std::pair<secure_vector<uint8_t>, std::vector<uint8_t>> TLS::Callbacks::tls_ecdh_agree( const std::string& curve_name, const std::vector<uint8_t>& peer_public_value, const Policy& policy, RandomNumberGenerator& rng, bool compressed) { secure_vector<uint8_t> ecdh_secret; std::vector<uint8_t> our_public_value; if(curve_name == "x25519") { #if defined(BOTAN_HAS_CURVE_25519) if(peer_public_value.size() != 32) { throw TLS_Exception(Alert::HANDSHAKE_FAILURE, "Invalid X25519 key size"); } Curve25519_PublicKey peer_key(peer_public_value); policy.check_peer_key_acceptable(peer_key); Curve25519_PrivateKey priv_key(rng); PK_Key_Agreement ka(priv_key, rng, "Raw"); ecdh_secret = ka.derive_key(0, peer_key.public_value()).bits_of(); // X25519 is always compressed but sent as "uncompressed" in TLS our_public_value = priv_key.public_value(); #else throw Internal_Error("Negotiated X25519 somehow, but it is disabled"); #endif } else { EC_Group group(OIDS::lookup(curve_name)); ECDH_PublicKey peer_key(group, group.OS2ECP(peer_public_value)); policy.check_peer_key_acceptable(peer_key); ECDH_PrivateKey priv_key(rng, group); PK_Key_Agreement ka(priv_key, rng, "Raw"); ecdh_secret = ka.derive_key(0, peer_key.public_value()).bits_of(); our_public_value = priv_key.public_value(compressed ? PointGFp::COMPRESSED : PointGFp::UNCOMPRESSED); } return std::make_pair(ecdh_secret, our_public_value); }
void Console::RestoreWallet(const utils::StringVector &args) { std::string password; if (args.size() > 2) { std::string private_key = args[2]; PrivateKey priv_key(private_key); if (!priv_key.IsValid()) { std::cout << "error, private key not valid" << std::endl; return; } CreateKestore(args, private_key); } else { return; } }
LAURIE_BOOLEAN Bank::Verify(Coin &coin) { InitCTX(); BIGNUM *t=BN_new(); if(!coin.GenerateCoinNumber(t,*this)) return false; BN_mod_exp(t,t,priv_key(),p(),m_ctx); DumpNumber("y^k= ",t); BN_sub(t,t,coin.Signature()); LAURIE_BOOLEAN bRet=BN_is_zero(t); BN_free(t); return bRet; }
std::pair<secure_vector<uint8_t>, std::vector<uint8_t>> TLS::Callbacks::tls_dh_agree( const std::vector<uint8_t>& modulus, const std::vector<uint8_t>& generator, const std::vector<uint8_t>& peer_public_value, const Policy& policy, RandomNumberGenerator& rng) { BigInt p = BigInt::decode(modulus); BigInt g = BigInt::decode(generator); BigInt Y = BigInt::decode(peer_public_value); /* * A basic check for key validity. As we do not know q here we * cannot check that Y is in the right subgroup. However since * our key is ephemeral there does not seem to be any * advantage to bogus keys anyway. */ if(Y <= 1 || Y >= p - 1) throw TLS_Exception(Alert::ILLEGAL_PARAMETER, "Server sent bad DH key for DHE exchange"); DL_Group group(p, g); if(!group.verify_group(rng, false)) throw TLS_Exception(Alert::INSUFFICIENT_SECURITY, "DH group validation failed"); DH_PublicKey peer_key(group, Y); policy.check_peer_key_acceptable(peer_key); DH_PrivateKey priv_key(rng, group); PK_Key_Agreement ka(priv_key, rng, "Raw"); secure_vector<uint8_t> dh_secret = CT::strip_leading_zeros( ka.derive_key(0, peer_key.public_value()).bits_of()); return std::make_pair(dh_secret, priv_key.public_value()); }
void Bank::WriteBIO(BIO *bio) { PublicBank::WriteBIO(bio); DumpNumber(bio,"private=",priv_key()); }
/* * Create a new Client Key Exchange message */ Client_Key_Exchange::Client_Key_Exchange(Handshake_IO& io, Handshake_State& state, const Policy& policy, Credentials_Manager& creds, const Public_Key* server_public_key, const std::string& hostname, RandomNumberGenerator& rng) { const std::string kex_algo = state.ciphersuite().kex_algo(); if(kex_algo == "PSK") { std::string identity_hint = ""; if(state.server_kex()) { TLS_Data_Reader reader("ClientKeyExchange", state.server_kex()->params()); identity_hint = reader.get_string(2, 0, 65535); } const std::string psk_identity = creds.psk_identity("tls-client", hostname, identity_hint); append_tls_length_value(m_key_material, psk_identity, 2); SymmetricKey psk = creds.psk("tls-client", hostname, psk_identity); std::vector<byte> zeros(psk.length()); append_tls_length_value(m_pre_master, zeros, 2); append_tls_length_value(m_pre_master, psk.bits_of(), 2); } else if(state.server_kex()) { TLS_Data_Reader reader("ClientKeyExchange", state.server_kex()->params()); SymmetricKey psk; if(kex_algo == "DHE_PSK" || kex_algo == "ECDHE_PSK") { std::string identity_hint = reader.get_string(2, 0, 65535); const std::string psk_identity = creds.psk_identity("tls-client", hostname, identity_hint); append_tls_length_value(m_key_material, psk_identity, 2); psk = creds.psk("tls-client", hostname, psk_identity); } if(kex_algo == "DH" || kex_algo == "DHE_PSK") { BigInt p = BigInt::decode(reader.get_range<byte>(2, 1, 65535)); BigInt g = BigInt::decode(reader.get_range<byte>(2, 1, 65535)); BigInt Y = BigInt::decode(reader.get_range<byte>(2, 1, 65535)); if(reader.remaining_bytes()) throw Decoding_Error("Bad params size for DH key exchange"); if(p.bits() < policy.minimum_dh_group_size()) throw TLS_Exception(Alert::INSUFFICIENT_SECURITY, "Server sent DH group of " + std::to_string(p.bits()) + " bits, policy requires at least " + std::to_string(policy.minimum_dh_group_size())); /* * A basic check for key validity. As we do not know q here we * cannot check that Y is in the right subgroup. However since * our key is ephemeral there does not seem to be any * advantage to bogus keys anyway. */ if(Y <= 1 || Y >= p - 1) throw TLS_Exception(Alert::INSUFFICIENT_SECURITY, "Server sent bad DH key for DHE exchange"); DL_Group group(p, g); if(!group.verify_group(rng, false)) throw TLS_Exception(Alert::INSUFFICIENT_SECURITY, "DH group validation failed"); DH_PublicKey counterparty_key(group, Y); DH_PrivateKey priv_key(rng, group); PK_Key_Agreement ka(priv_key, "Raw"); secure_vector<byte> dh_secret = CT::strip_leading_zeros( ka.derive_key(0, counterparty_key.public_value()).bits_of()); if(kex_algo == "DH") m_pre_master = dh_secret; else { append_tls_length_value(m_pre_master, dh_secret, 2); append_tls_length_value(m_pre_master, psk.bits_of(), 2); } append_tls_length_value(m_key_material, priv_key.public_value(), 2); } else if(kex_algo == "ECDH" || kex_algo == "ECDHE_PSK") { const byte curve_type = reader.get_byte(); if(curve_type != 3) throw Decoding_Error("Server sent non-named ECC curve"); const u16bit curve_id = reader.get_u16bit(); const std::string name = Supported_Elliptic_Curves::curve_id_to_name(curve_id); if(name == "") throw Decoding_Error("Server sent unknown named curve " + std::to_string(curve_id)); EC_Group group(name); std::vector<byte> ecdh_key = reader.get_range<byte>(1, 1, 255); ECDH_PublicKey counterparty_key(group, OS2ECP(ecdh_key, group.get_curve())); ECDH_PrivateKey priv_key(rng, group); PK_Key_Agreement ka(priv_key, "Raw"); secure_vector<byte> ecdh_secret = ka.derive_key(0, counterparty_key.public_value()).bits_of(); if(kex_algo == "ECDH") m_pre_master = ecdh_secret; else { append_tls_length_value(m_pre_master, ecdh_secret, 2); append_tls_length_value(m_pre_master, psk.bits_of(), 2); } append_tls_length_value(m_key_material, priv_key.public_value(), 1); } #if defined(BOTAN_HAS_SRP6) else if(kex_algo == "SRP_SHA") { const BigInt N = BigInt::decode(reader.get_range<byte>(2, 1, 65535)); const BigInt g = BigInt::decode(reader.get_range<byte>(2, 1, 65535)); std::vector<byte> salt = reader.get_range<byte>(1, 1, 255); const BigInt B = BigInt::decode(reader.get_range<byte>(2, 1, 65535)); const std::string srp_group = srp6_group_identifier(N, g); const std::string srp_identifier = creds.srp_identifier("tls-client", hostname); const std::string srp_password = creds.srp_password("tls-client", hostname, srp_identifier); std::pair<BigInt, SymmetricKey> srp_vals = srp6_client_agree(srp_identifier, srp_password, srp_group, "SHA-1", salt, B, rng); append_tls_length_value(m_key_material, BigInt::encode(srp_vals.first), 2); m_pre_master = srp_vals.second.bits_of(); } #endif else { throw Internal_Error("Client_Key_Exchange: Unknown kex " + kex_algo); } reader.assert_done(); } else { // No server key exchange msg better mean RSA kex + RSA key in cert if(kex_algo != "RSA") throw Unexpected_Message("No server kex but negotiated kex " + kex_algo); if(!server_public_key) throw Internal_Error("No server public key for RSA exchange"); if(auto rsa_pub = dynamic_cast<const RSA_PublicKey*>(server_public_key)) { const Protocol_Version offered_version = state.client_hello()->version(); m_pre_master = rng.random_vec(48); m_pre_master[0] = offered_version.major_version(); m_pre_master[1] = offered_version.minor_version(); PK_Encryptor_EME encryptor(*rsa_pub, "PKCS1v15"); const std::vector<byte> encrypted_key = encryptor.encrypt(m_pre_master, rng); append_tls_length_value(m_key_material, encrypted_key, 2); } else throw TLS_Exception(Alert::HANDSHAKE_FAILURE, "Expected a RSA key in server cert but got " + server_public_key->algo_name()); } state.hash().update(io.send(*this)); }