예제 #1
0
파일: db.c 프로젝트: luxyer/redis-storage
int expireIfNeeded(redisDb *db, robj *key) {
    long long when = getExpire(db,key);

    if (when < 0) return 0; /* No expire for this key */

    /* Don't expire anything while loading. It will be done later. */
    if (server.loading) return 0;

    /* If we are running in the context of a slave, return ASAP:
     * the slave key expiration is controlled by the master that will
     * send us synthesized DEL operations for expired keys.
     *
     * Still we try to return the right information to the caller, 
     * that is, 0 if we think the key should be still valid, 1 if
     * we think the key is expired at this time. */
    if (server.masterhost != NULL) {
        return mstime() > when;
    }

    /* Return when this key has not expired */
    if (mstime() <= when) return 0;

    /* Delete the key */
    server.stat_expiredkeys++;
    propagateExpire(db,key);
    return dbDelete(db,key);
}
예제 #2
0
파일: db.c 프로젝트: slfs007/ZZ-Redis
int expireIfNeeded(redisDb *db, robj *key) {
    mstime_t when = getExpire(db,key);
    mstime_t now;

    if (when < 0) return 0; /* No expire for this key */

    /* Don't expire anything while loading. It will be done later. */
    if (server.loading) return 0;

    /* If we are in the context of a Lua script, we claim that time is
     * blocked to when the Lua script started. This way a key can expire
     * only the first time it is accessed and not in the middle of the
     * script execution, making propagation to slaves / AOF consistent.
     * See issue #1525 on Github for more information. */
    now = server.lua_caller ? server.lua_time_start : mstime();

    /* If we are running in the context of a slave, return ASAP:
     * the slave key expiration is controlled by the master that will
     * send us synthesized DEL operations for expired keys.
     *
     * Still we try to return the right information to the caller,
     * that is, 0 if we think the key should be still valid, 1 if
     * we think the key is expired at this time. */
    if (server.masterhost != NULL) return now > when;

    /* Return when this key has not expired */
    if (now <= when) return 0;

    /* Delete the key */
    server.stat_expiredkeys++;
    propagateExpire(db,key);
    notifyKeyspaceEvent(NOTIFY_EXPIRED,
        "expired",key,db->id);
    return dbDelete(db,key);
}
예제 #3
0
파일: evict.c 프로젝트: Xwuming/misc
int freeMemoryIfNeeded(void) {
    size_t mem_reported, mem_used, mem_tofree, mem_freed;
    int slaves = listLength(server.slaves);
    mstime_t latency, eviction_latency;
    long long delta;

    /* Check if we are over the memory usage limit. If we are not, no need
     * to subtract the slaves output buffers. We can just return ASAP. */
    mem_reported = zmalloc_used_memory();
    if (mem_reported <= server.maxmemory) return C_OK;

    /* Remove the size of slaves output buffers and AOF buffer from the
     * count of used memory. */
    mem_used = mem_reported;
    if (slaves) {
        listIter li;
        listNode *ln;

        listRewind(server.slaves,&li);
        while((ln = listNext(&li))) {
            client *slave = listNodeValue(ln);
            unsigned long obuf_bytes = getClientOutputBufferMemoryUsage(slave);
            if (obuf_bytes > mem_used)
                mem_used = 0;
            else
                mem_used -= obuf_bytes;
        }
    }
    if (server.aof_state != AOF_OFF) {
        mem_used -= sdslen(server.aof_buf);
        mem_used -= aofRewriteBufferSize();
    }

    /* Check if we are still over the memory limit. */
    if (mem_used <= server.maxmemory) return C_OK;

    /* Compute how much memory we need to free. */
    mem_tofree = mem_used - server.maxmemory;
    mem_freed = 0;

    if (server.maxmemory_policy == MAXMEMORY_NO_EVICTION)
        goto cant_free; /* We need to free memory, but policy forbids. */

    latencyStartMonitor(latency);
    while (mem_freed < mem_tofree) {
        int j, k, i, keys_freed = 0;
        static int next_db = 0;
        sds bestkey = NULL;
        int bestdbid;
        redisDb *db;
        dict *dict;
        dictEntry *de;

        if (server.maxmemory_policy == MAXMEMORY_ALLKEYS_LRU ||
            server.maxmemory_policy == MAXMEMORY_VOLATILE_LRU)
        {
            struct evictionPoolEntry *pool = EvictionPoolLRU;

            while(bestkey == NULL) {
                unsigned long total_keys = 0, keys;

                /* We don't want to make local-db choices when expiring keys,
                 * so to start populate the eviction pool sampling keys from
                 * every DB. */
                for (i = 0; i < server.dbnum; i++) {
                    db = server.db+i;
                    dict = (server.maxmemory_policy == MAXMEMORY_ALLKEYS_LRU) ?
                            db->dict : db->expires;
                    if ((keys = dictSize(dict)) != 0) {
                        evictionPoolPopulate(i, dict, db->dict, pool);
                        total_keys += keys;
                    }
                }
                if (!total_keys) break; /* No keys to evict. */

                /* Go backward from best to worst element to evict. */
                for (k = EVPOOL_SIZE-1; k >= 0; k--) {
                    if (pool[k].key == NULL) continue;
                    bestdbid = pool[k].dbid;

                    if (server.maxmemory_policy == MAXMEMORY_ALLKEYS_LRU) {
                        de = dictFind(server.db[pool[k].dbid].dict,
                            pool[k].key);
                    } else {
                        de = dictFind(server.db[pool[k].dbid].expires,
                            pool[k].key);
                    }

                    /* Remove the entry from the pool. */
                    if (pool[k].key != pool[k].cached)
                        sdsfree(pool[k].key);
                    pool[k].key = NULL;
                    pool[k].idle = 0;

                    /* If the key exists, is our pick. Otherwise it is
                     * a ghost and we need to try the next element. */
                    if (de) {
                        bestkey = dictGetKey(de);
                        break;
                    } else {
                        /* Ghost... Iterate again. */
                    }
                }
            }
        }

        /* volatile-random and allkeys-random policy */
        else if (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM ||
                 server.maxmemory_policy == MAXMEMORY_VOLATILE_RANDOM)
        {
            /* When evicting a random key, we try to evict a key for
             * each DB, so we use the static 'next_db' variable to
             * incrementally visit all DBs. */
            for (i = 0; i < server.dbnum; i++) {
                j = (++next_db) % server.dbnum;
                db = server.db+j;
                dict = (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM) ?
                        db->dict : db->expires;
                if (dictSize(dict) != 0) {
                    de = dictGetRandomKey(dict);
                    bestkey = dictGetKey(de);
                    bestdbid = j;
                    break;
                }
            }
        }

        /* volatile-ttl */
        else if (server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL) {
            long bestttl = 0; /* Initialized to avoid warning. */

            /* In this policy we scan a single DB per iteration (visiting
             * a different DB per call), expiring the key with the smallest
             * TTL among the few sampled.
             *
             * Note that this algorithm makes local-DB choices, and should
             * use a pool and code more similr to the one used in the
             * LRU eviction policies in the future. */
            for (i = 0; i < server.dbnum; i++) {
                j = (++next_db) % server.dbnum;
                db = server.db+j;
                dict = db->expires;
                if (dictSize(dict) != 0) {
                    for (k = 0; k < server.maxmemory_samples; k++) {
                        sds thiskey;
                        long thisttl;

                        de = dictGetRandomKey(dict);
                        thiskey = dictGetKey(de);
                        thisttl = (long) dictGetVal(de);

                        /* Keys expiring sooner (smaller unix timestamp) are
                         * better candidates for deletion */
                        if (bestkey == NULL || thisttl < bestttl) {
                            bestkey = thiskey;
                            bestttl = thisttl;
                            bestdbid = j;
                        }
                    }
                }
            }
        }

        /* Finally remove the selected key. */
        if (bestkey) {
            db = server.db+bestdbid;
            robj *keyobj = createStringObject(bestkey,sdslen(bestkey));
            propagateExpire(db,keyobj,server.lazyfree_lazy_eviction);
            /* We compute the amount of memory freed by db*Delete() alone.
             * It is possible that actually the memory needed to propagate
             * the DEL in AOF and replication link is greater than the one
             * we are freeing removing the key, but we can't account for
             * that otherwise we would never exit the loop.
             *
             * AOF and Output buffer memory will be freed eventually so
             * we only care about memory used by the key space. */
            delta = (long long) zmalloc_used_memory();
            latencyStartMonitor(eviction_latency);
            if (server.lazyfree_lazy_eviction)
                dbAsyncDelete(db,keyobj);
            else
                dbSyncDelete(db,keyobj);
            latencyEndMonitor(eviction_latency);
            latencyAddSampleIfNeeded("eviction-del",eviction_latency);
            latencyRemoveNestedEvent(latency,eviction_latency);
            delta -= (long long) zmalloc_used_memory();
            mem_freed += delta;
            server.stat_evictedkeys++;
            notifyKeyspaceEvent(NOTIFY_EVICTED, "evicted",
                keyobj, db->id);
            decrRefCount(keyobj);
            keys_freed++;

            /* When the memory to free starts to be big enough, we may
             * start spending so much time here that is impossible to
             * deliver data to the slaves fast enough, so we force the
             * transmission here inside the loop. */
            if (slaves) flushSlavesOutputBuffers();
        }

        if (!keys_freed) {
            latencyEndMonitor(latency);
            latencyAddSampleIfNeeded("eviction-cycle",latency);
            goto cant_free; /* nothing to free... */
        }
    }
    latencyEndMonitor(latency);
    latencyAddSampleIfNeeded("eviction-cycle",latency);
    return C_OK;

cant_free:
    /* We are here if we are not able to reclaim memory. There is only one
     * last thing we can try: check if the lazyfree thread has jobs in queue
     * and wait... */
    while(bioPendingJobsOfType(BIO_LAZY_FREE)) {
        if (((mem_reported - zmalloc_used_memory()) + mem_freed) >= mem_tofree)
            break;
        usleep(1000);
    }
    return C_ERR;
}
예제 #4
0
파일: evict.c 프로젝트: kguidi10/sample_app
int freeMemoryIfNeeded(void) {
    size_t mem_reported, mem_used, mem_tofree, mem_freed;
    mstime_t latency, eviction_latency;
    long long delta;
    int slaves = listLength(server.slaves);

    /* When clients are paused the dataset should be static not just from the
     * POV of clients not being able to write, but also from the POV of
     * expires and evictions of keys not being performed. */
    if (clientsArePaused()) return C_OK;

    /* Check if we are over the memory usage limit. If we are not, no need
     * to subtract the slaves output buffers. We can just return ASAP. */
    mem_reported = zmalloc_used_memory();
    if (mem_reported <= server.maxmemory) return C_OK;

    /* Remove the size of slaves output buffers and AOF buffer from the
     * count of used memory. */
    mem_used = mem_reported;
    size_t overhead = freeMemoryGetNotCountedMemory();
    mem_used = (mem_used > overhead) ? mem_used-overhead : 0;

    /* Check if we are still over the memory limit. */
    if (mem_used <= server.maxmemory) return C_OK;

    /* Compute how much memory we need to free. */
    mem_tofree = mem_used - server.maxmemory;
    mem_freed = 0;

    if (server.maxmemory_policy == MAXMEMORY_NO_EVICTION)
        goto cant_free; /* We need to free memory, but policy forbids. */

    latencyStartMonitor(latency);
    while (mem_freed < mem_tofree) {
        int j, k, i, keys_freed = 0;
        static int next_db = 0;
        sds bestkey = NULL;
        int bestdbid;
        redisDb *db;
        dict *dict;
        dictEntry *de;

        if (server.maxmemory_policy & (MAXMEMORY_FLAG_LRU|MAXMEMORY_FLAG_LFU) ||
            server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL)
        {
            struct evictionPoolEntry *pool = EvictionPoolLRU;

            while(bestkey == NULL) {
                unsigned long total_keys = 0, keys;

                /* We don't want to make local-db choices when expiring keys,
                 * so to start populate the eviction pool sampling keys from
                 * every DB. */
                for (i = 0; i < server.dbnum; i++) {
                    db = server.db+i;
                    dict = (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) ?
                            db->dict : db->expires;
                    if ((keys = dictSize(dict)) != 0) {
                        evictionPoolPopulate(i, dict, db->dict, pool);
                        total_keys += keys;
                    }
                }
                if (!total_keys) break; /* No keys to evict. */

                /* Go backward from best to worst element to evict. */
                for (k = EVPOOL_SIZE-1; k >= 0; k--) {
                    if (pool[k].key == NULL) continue;
                    bestdbid = pool[k].dbid;

                    if (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) {
                        de = dictFind(server.db[pool[k].dbid].dict,
                            pool[k].key);
                    } else {
                        de = dictFind(server.db[pool[k].dbid].expires,
                            pool[k].key);
                    }

                    /* Remove the entry from the pool. */
                    if (pool[k].key != pool[k].cached)
                        sdsfree(pool[k].key);
                    pool[k].key = NULL;
                    pool[k].idle = 0;

                    /* If the key exists, is our pick. Otherwise it is
                     * a ghost and we need to try the next element. */
                    if (de) {
                        bestkey = dictGetKey(de);
                        break;
                    } else {
                        /* Ghost... Iterate again. */
                    }
                }
            }
        }

        /* volatile-random and allkeys-random policy */
        else if (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM ||
                 server.maxmemory_policy == MAXMEMORY_VOLATILE_RANDOM)
        {
            /* When evicting a random key, we try to evict a key for
             * each DB, so we use the static 'next_db' variable to
             * incrementally visit all DBs. */
            for (i = 0; i < server.dbnum; i++) {
                j = (++next_db) % server.dbnum;
                db = server.db+j;
                dict = (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM) ?
                        db->dict : db->expires;
                if (dictSize(dict) != 0) {
                    de = dictGetRandomKey(dict);
                    bestkey = dictGetKey(de);
                    bestdbid = j;
                    break;
                }
            }
        }

        /* Finally remove the selected key. */
        if (bestkey) {
            db = server.db+bestdbid;
            robj *keyobj = createStringObject(bestkey,sdslen(bestkey));
            propagateExpire(db,keyobj,server.lazyfree_lazy_eviction);
            /* We compute the amount of memory freed by db*Delete() alone.
             * It is possible that actually the memory needed to propagate
             * the DEL in AOF and replication link is greater than the one
             * we are freeing removing the key, but we can't account for
             * that otherwise we would never exit the loop.
             *
             * AOF and Output buffer memory will be freed eventually so
             * we only care about memory used by the key space. */
            delta = (long long) zmalloc_used_memory();
            latencyStartMonitor(eviction_latency);
            if (server.lazyfree_lazy_eviction)
                dbAsyncDelete(db,keyobj);
            else
                dbSyncDelete(db,keyobj);
            latencyEndMonitor(eviction_latency);
            latencyAddSampleIfNeeded("eviction-del",eviction_latency);
            latencyRemoveNestedEvent(latency,eviction_latency);
            delta -= (long long) zmalloc_used_memory();
            mem_freed += delta;
            server.stat_evictedkeys++;
            notifyKeyspaceEvent(NOTIFY_EVICTED, "evicted",
                keyobj, db->id);
            decrRefCount(keyobj);
            keys_freed++;

            /* When the memory to free starts to be big enough, we may
             * start spending so much time here that is impossible to
             * deliver data to the slaves fast enough, so we force the
             * transmission here inside the loop. */
            if (slaves) flushSlavesOutputBuffers();

            /* Normally our stop condition is the ability to release
             * a fixed, pre-computed amount of memory. However when we
             * are deleting objects in another thread, it's better to
             * check, from time to time, if we already reached our target
             * memory, since the "mem_freed" amount is computed only
             * across the dbAsyncDelete() call, while the thread can
             * release the memory all the time. */
            if (server.lazyfree_lazy_eviction && !(keys_freed % 16)) {
                overhead = freeMemoryGetNotCountedMemory();
                mem_used = zmalloc_used_memory();
                mem_used = (mem_used > overhead) ? mem_used-overhead : 0;
                if (mem_used <= server.maxmemory) {
                    mem_freed = mem_tofree;
                }
            }
        }

        if (!keys_freed) {
            latencyEndMonitor(latency);
            latencyAddSampleIfNeeded("eviction-cycle",latency);
            goto cant_free; /* nothing to free... */
        }
    }
    latencyEndMonitor(latency);
    latencyAddSampleIfNeeded("eviction-cycle",latency);
    return C_OK;

cant_free:
    /* We are here if we are not able to reclaim memory. There is only one
     * last thing we can try: check if the lazyfree thread has jobs in queue
     * and wait... */
    while(bioPendingJobsOfType(BIO_LAZY_FREE)) {
        if (((mem_reported - zmalloc_used_memory()) + mem_freed) >= mem_tofree)
            break;
        usleep(1000);
    }
    return C_ERR;
}