/* Subroutine */ int sgbbrd_(char *vect, integer *m, integer *n, integer *ncc, integer *kl, integer *ku, real *ab, integer *ldab, real *d__, real * e, real *q, integer *ldq, real *pt, integer *ldpt, real *c__, integer *ldc, real *work, integer *info) { /* -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= SGBBRD reduces a real general m-by-n band matrix A to upper bidiagonal form B by an orthogonal transformation: Q' * A * P = B. The routine computes B, and optionally forms Q or P', or computes Q'*C for a given matrix C. Arguments ========= VECT (input) CHARACTER*1 Specifies whether or not the matrices Q and P' are to be formed. = 'N': do not form Q or P'; = 'Q': form Q only; = 'P': form P' only; = 'B': form both. M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. NCC (input) INTEGER The number of columns of the matrix C. NCC >= 0. KL (input) INTEGER The number of subdiagonals of the matrix A. KL >= 0. KU (input) INTEGER The number of superdiagonals of the matrix A. KU >= 0. AB (input/output) REAL array, dimension (LDAB,N) On entry, the m-by-n band matrix A, stored in rows 1 to KL+KU+1. The j-th column of A is stored in the j-th column of the array AB as follows: AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl). On exit, A is overwritten by values generated during the reduction. LDAB (input) INTEGER The leading dimension of the array A. LDAB >= KL+KU+1. D (output) REAL array, dimension (min(M,N)) The diagonal elements of the bidiagonal matrix B. E (output) REAL array, dimension (min(M,N)-1) The superdiagonal elements of the bidiagonal matrix B. Q (output) REAL array, dimension (LDQ,M) If VECT = 'Q' or 'B', the m-by-m orthogonal matrix Q. If VECT = 'N' or 'P', the array Q is not referenced. LDQ (input) INTEGER The leading dimension of the array Q. LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise. PT (output) REAL array, dimension (LDPT,N) If VECT = 'P' or 'B', the n-by-n orthogonal matrix P'. If VECT = 'N' or 'Q', the array PT is not referenced. LDPT (input) INTEGER The leading dimension of the array PT. LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise. C (input/output) REAL array, dimension (LDC,NCC) On entry, an m-by-ncc matrix C. On exit, C is overwritten by Q'*C. C is not referenced if NCC = 0. LDC (input) INTEGER The leading dimension of the array C. LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0. WORK (workspace) REAL array, dimension (2*max(M,N)) INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. ===================================================================== Test the input parameters Parameter adjustments */ /* Table of constant values */ static real c_b8 = 0.f; static real c_b9 = 1.f; static integer c__1 = 1; /* System generated locals */ integer ab_dim1, ab_offset, c_dim1, c_offset, pt_dim1, pt_offset, q_dim1, q_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7; /* Local variables */ static integer inca; extern /* Subroutine */ int srot_(integer *, real *, integer *, real *, integer *, real *, real *); static integer i__, j, l; extern logical lsame_(char *, char *); static logical wantb, wantc; static integer minmn; static logical wantq; static integer j1, j2, kb; static real ra, rb, rc; static integer kk, ml, mn, nr, mu; static real rs; extern /* Subroutine */ int xerbla_(char *, integer *), slaset_( char *, integer *, integer *, real *, real *, real *, integer *), slartg_(real *, real *, real *, real *, real *); static integer kb1; extern /* Subroutine */ int slargv_(integer *, real *, integer *, real *, integer *, real *, integer *); static integer ml0; extern /* Subroutine */ int slartv_(integer *, real *, integer *, real *, integer *, real *, real *, integer *); static logical wantpt; static integer mu0, klm, kun, nrt, klu1; #define c___ref(a_1,a_2) c__[(a_2)*c_dim1 + a_1] #define q_ref(a_1,a_2) q[(a_2)*q_dim1 + a_1] #define ab_ref(a_1,a_2) ab[(a_2)*ab_dim1 + a_1] #define pt_ref(a_1,a_2) pt[(a_2)*pt_dim1 + a_1] ab_dim1 = *ldab; ab_offset = 1 + ab_dim1 * 1; ab -= ab_offset; --d__; --e; q_dim1 = *ldq; q_offset = 1 + q_dim1 * 1; q -= q_offset; pt_dim1 = *ldpt; pt_offset = 1 + pt_dim1 * 1; pt -= pt_offset; c_dim1 = *ldc; c_offset = 1 + c_dim1 * 1; c__ -= c_offset; --work; /* Function Body */ wantb = lsame_(vect, "B"); wantq = lsame_(vect, "Q") || wantb; wantpt = lsame_(vect, "P") || wantb; wantc = *ncc > 0; klu1 = *kl + *ku + 1; *info = 0; if (! wantq && ! wantpt && ! lsame_(vect, "N")) { *info = -1; } else if (*m < 0) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*ncc < 0) { *info = -4; } else if (*kl < 0) { *info = -5; } else if (*ku < 0) { *info = -6; } else if (*ldab < klu1) { *info = -8; } else if (*ldq < 1 || wantq && *ldq < max(1,*m)) { *info = -12; } else if (*ldpt < 1 || wantpt && *ldpt < max(1,*n)) { *info = -14; } else if (*ldc < 1 || wantc && *ldc < max(1,*m)) { *info = -16; } if (*info != 0) { i__1 = -(*info); xerbla_("SGBBRD", &i__1); return 0; } /* Initialize Q and P' to the unit matrix, if needed */ if (wantq) { slaset_("Full", m, m, &c_b8, &c_b9, &q[q_offset], ldq); } if (wantpt) { slaset_("Full", n, n, &c_b8, &c_b9, &pt[pt_offset], ldpt); } /* Quick return if possible. */ if (*m == 0 || *n == 0) { return 0; } minmn = min(*m,*n); if (*kl + *ku > 1) { /* Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce first to lower bidiagonal form and then transform to upper bidiagonal */ if (*ku > 0) { ml0 = 1; mu0 = 2; } else { ml0 = 2; mu0 = 1; } /* Wherever possible, plane rotations are generated and applied in vector operations of length NR over the index set J1:J2:KLU1. The sines of the plane rotations are stored in WORK(1:max(m,n)) and the cosines in WORK(max(m,n)+1:2*max(m,n)). */ mn = max(*m,*n); /* Computing MIN */ i__1 = *m - 1; klm = min(i__1,*kl); /* Computing MIN */ i__1 = *n - 1; kun = min(i__1,*ku); kb = klm + kun; kb1 = kb + 1; inca = kb1 * *ldab; nr = 0; j1 = klm + 2; j2 = 1 - kun; i__1 = minmn; for (i__ = 1; i__ <= i__1; ++i__) { /* Reduce i-th column and i-th row of matrix to bidiagonal form */ ml = klm + 1; mu = kun + 1; i__2 = kb; for (kk = 1; kk <= i__2; ++kk) { j1 += kb; j2 += kb; /* generate plane rotations to annihilate nonzero elements which have been created below the band */ if (nr > 0) { slargv_(&nr, &ab_ref(klu1, j1 - klm - 1), &inca, &work[j1] , &kb1, &work[mn + j1], &kb1); } /* apply plane rotations from the left */ i__3 = kb; for (l = 1; l <= i__3; ++l) { if (j2 - klm + l - 1 > *n) { nrt = nr - 1; } else { nrt = nr; } if (nrt > 0) { slartv_(&nrt, &ab_ref(klu1 - l, j1 - klm + l - 1), & inca, &ab_ref(klu1 - l + 1, j1 - klm + l - 1), &inca, &work[mn + j1], &work[j1], &kb1); } /* L10: */ } if (ml > ml0) { if (ml <= *m - i__ + 1) { /* generate plane rotation to annihilate a(i+ml-1,i) within the band, and apply rotation from the left */ slartg_(&ab_ref(*ku + ml - 1, i__), &ab_ref(*ku + ml, i__), &work[mn + i__ + ml - 1], &work[i__ + ml - 1], &ra); ab_ref(*ku + ml - 1, i__) = ra; if (i__ < *n) { /* Computing MIN */ i__4 = *ku + ml - 2, i__5 = *n - i__; i__3 = min(i__4,i__5); i__6 = *ldab - 1; i__7 = *ldab - 1; srot_(&i__3, &ab_ref(*ku + ml - 2, i__ + 1), & i__6, &ab_ref(*ku + ml - 1, i__ + 1), & i__7, &work[mn + i__ + ml - 1], &work[i__ + ml - 1]); } } ++nr; j1 -= kb1; } if (wantq) { /* accumulate product of plane rotations in Q */ i__3 = j2; i__4 = kb1; for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) { srot_(m, &q_ref(1, j - 1), &c__1, &q_ref(1, j), &c__1, &work[mn + j], &work[j]); /* L20: */ } } if (wantc) { /* apply plane rotations to C */ i__4 = j2; i__3 = kb1; for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) { srot_(ncc, &c___ref(j - 1, 1), ldc, &c___ref(j, 1), ldc, &work[mn + j], &work[j]); /* L30: */ } } if (j2 + kun > *n) { /* adjust J2 to keep within the bounds of the matrix */ --nr; j2 -= kb1; } i__3 = j2; i__4 = kb1; for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) { /* create nonzero element a(j-1,j+ku) above the band and store it in WORK(n+1:2*n) */ work[j + kun] = work[j] * ab_ref(1, j + kun); ab_ref(1, j + kun) = work[mn + j] * ab_ref(1, j + kun); /* L40: */ } /* generate plane rotations to annihilate nonzero elements which have been generated above the band */ if (nr > 0) { slargv_(&nr, &ab_ref(1, j1 + kun - 1), &inca, &work[j1 + kun], &kb1, &work[mn + j1 + kun], &kb1); } /* apply plane rotations from the right */ i__4 = kb; for (l = 1; l <= i__4; ++l) { if (j2 + l - 1 > *m) { nrt = nr - 1; } else { nrt = nr; } if (nrt > 0) { slartv_(&nrt, &ab_ref(l + 1, j1 + kun - 1), &inca, & ab_ref(l, j1 + kun), &inca, &work[mn + j1 + kun], &work[j1 + kun], &kb1); } /* L50: */ } if (ml == ml0 && mu > mu0) { if (mu <= *n - i__ + 1) { /* generate plane rotation to annihilate a(i,i+mu-1) within the band, and apply rotation from the right */ slartg_(&ab_ref(*ku - mu + 3, i__ + mu - 2), &ab_ref(* ku - mu + 2, i__ + mu - 1), &work[mn + i__ + mu - 1], &work[i__ + mu - 1], &ra); ab_ref(*ku - mu + 3, i__ + mu - 2) = ra; /* Computing MIN */ i__3 = *kl + mu - 2, i__5 = *m - i__; i__4 = min(i__3,i__5); srot_(&i__4, &ab_ref(*ku - mu + 4, i__ + mu - 2), & c__1, &ab_ref(*ku - mu + 3, i__ + mu - 1), & c__1, &work[mn + i__ + mu - 1], &work[i__ + mu - 1]); } ++nr; j1 -= kb1; } if (wantpt) { /* accumulate product of plane rotations in P' */ i__4 = j2; i__3 = kb1; for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) { srot_(n, &pt_ref(j + kun - 1, 1), ldpt, &pt_ref(j + kun, 1), ldpt, &work[mn + j + kun], &work[j + kun]); /* L60: */ } } if (j2 + kb > *m) { /* adjust J2 to keep within the bounds of the matrix */ --nr; j2 -= kb1; } i__3 = j2; i__4 = kb1; for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) { /* create nonzero element a(j+kl+ku,j+ku-1) below the band and store it in WORK(1:n) */ work[j + kb] = work[j + kun] * ab_ref(klu1, j + kun); ab_ref(klu1, j + kun) = work[mn + j + kun] * ab_ref(klu1, j + kun); /* L70: */ } if (ml > ml0) { --ml; } else { --mu; } /* L80: */ } /* L90: */ } } if (*ku == 0 && *kl > 0) { /* A has been reduced to lower bidiagonal form Transform lower bidiagonal form to upper bidiagonal by applying plane rotations from the left, storing diagonal elements in D and off-diagonal elements in E Computing MIN */ i__2 = *m - 1; i__1 = min(i__2,*n); for (i__ = 1; i__ <= i__1; ++i__) { slartg_(&ab_ref(1, i__), &ab_ref(2, i__), &rc, &rs, &ra); d__[i__] = ra; if (i__ < *n) { e[i__] = rs * ab_ref(1, i__ + 1); ab_ref(1, i__ + 1) = rc * ab_ref(1, i__ + 1); } if (wantq) { srot_(m, &q_ref(1, i__), &c__1, &q_ref(1, i__ + 1), &c__1, & rc, &rs); } if (wantc) { srot_(ncc, &c___ref(i__, 1), ldc, &c___ref(i__ + 1, 1), ldc, & rc, &rs); } /* L100: */ } if (*m <= *n) { d__[*m] = ab_ref(1, *m); } } else if (*ku > 0) { /* A has been reduced to upper bidiagonal form */ if (*m < *n) { /* Annihilate a(m,m+1) by applying plane rotations from the right, storing diagonal elements in D and off-diagonal elements in E */ rb = ab_ref(*ku, *m + 1); for (i__ = *m; i__ >= 1; --i__) { slartg_(&ab_ref(*ku + 1, i__), &rb, &rc, &rs, &ra); d__[i__] = ra; if (i__ > 1) { rb = -rs * ab_ref(*ku, i__); e[i__ - 1] = rc * ab_ref(*ku, i__); } if (wantpt) { srot_(n, &pt_ref(i__, 1), ldpt, &pt_ref(*m + 1, 1), ldpt, &rc, &rs); } /* L110: */ } } else { /* Copy off-diagonal elements to E and diagonal elements to D */ i__1 = minmn - 1; for (i__ = 1; i__ <= i__1; ++i__) { e[i__] = ab_ref(*ku, i__ + 1); /* L120: */ } i__1 = minmn; for (i__ = 1; i__ <= i__1; ++i__) { d__[i__] = ab_ref(*ku + 1, i__); /* L130: */ } } } else { /* A is diagonal. Set elements of E to zero and copy diagonal elements to D. */ i__1 = minmn - 1; for (i__ = 1; i__ <= i__1; ++i__) { e[i__] = 0.f; /* L140: */ } i__1 = minmn; for (i__ = 1; i__ <= i__1; ++i__) { d__[i__] = ab_ref(1, i__); /* L150: */ } } return 0; /* End of SGBBRD */ } /* sgbbrd_ */
void evaluation_test() { typedef eli::geom::curve::pseudo::explicit_bezier<data_type> explicit_bezier_curve_type; explicit_bezier_curve_type ebcu(7), ebcl(7); curve_type cst(7); control_point_type cp[8]; data_type dte(0.01), t[6]; point_type pt_out, pt_ref; index_type i; // set the control points cp[0] << static_cast<data_type>(0.170987592880629); cp[1] << static_cast<data_type>(0.157286894410384); cp[2] << static_cast<data_type>(0.162311658384540); cp[3] << static_cast<data_type>(0.143623187913493); cp[4] << static_cast<data_type>(0.149218456400780); cp[5] << static_cast<data_type>(0.137218405082418); cp[6] << static_cast<data_type>(0.140720628655908); cp[7] << static_cast<data_type>(0.141104769355436); for (i=0; i<=cst.upper_degree(); ++i) { ebcu.set_control_point(cp[i], i); cst.set_upper_control_point(cp[i], i); ebcl.set_control_point(-cp[i], i); cst.set_lower_control_point(-cp[i], i); } // set the trailing edge thickness of CST airfoil cst.set_trailing_edge_thickness(dte); // set the parameters to evaluate the tests t[0] = static_cast<data_type>(0); t[1] = static_cast<data_type>(0.1); t[2] = static_cast<data_type>(0.27); t[3] = static_cast<data_type>(0.5); t[4] = static_cast<data_type>(0.73); t[5] = static_cast<data_type>(1); // evaluate the points on lower surface i=1; pt_out = cst.f(-t[i]); pt_ref = ebcu.f(t[i]); pt_ref(1) = -(std::sqrt(t[i])*(1-t[i])*pt_ref(1)+t[i]*dte/2); TEST_ASSERT(tol.approximately_equal(pt_out, pt_ref)); i=2; pt_out = cst.f(-t[i]); pt_ref = ebcu.f(t[i]); pt_ref(1) = -(std::sqrt(t[i])*(1-t[i])*pt_ref(1)+t[i]*dte/2); TEST_ASSERT(tol.approximately_equal(pt_out, pt_ref)); i=3; pt_out = cst.f(-t[i]); pt_ref = ebcu.f(t[i]); pt_ref(1) = -(std::sqrt(t[i])*(1-t[i])*pt_ref(1)+t[i]*dte/2); TEST_ASSERT(tol.approximately_equal(pt_out, pt_ref)); i=4; pt_out = cst.f(-t[i]); pt_ref = ebcu.f(t[i]); pt_ref(1) = -(std::sqrt(t[i])*(1-t[i])*pt_ref(1)+t[i]*dte/2); TEST_ASSERT(tol.approximately_equal(pt_out, pt_ref)); i=5; pt_out = cst.f(-t[i]); pt_ref = ebcu.f(t[i]); pt_ref(1) = -(std::sqrt(t[i])*(1-t[i])*pt_ref(1)+t[i]*dte/2); TEST_ASSERT(tol.approximately_equal(pt_out, pt_ref)); // evaluate the points on upper surface i=0; pt_out = cst.f(t[i]); pt_ref = ebcu.f(t[i]); pt_ref(1) = std::sqrt(t[i])*(1-t[i])*pt_ref(1)+t[i]*dte/2; TEST_ASSERT(tol.approximately_equal(pt_out, pt_ref)); i=1; pt_out = cst.f(t[i]); pt_ref = ebcu.f(t[i]); pt_ref(1) = std::sqrt(t[i])*(1-t[i])*pt_ref(1)+t[i]*dte/2; TEST_ASSERT(tol.approximately_equal(pt_out, pt_ref)); i=2; pt_out = cst.f(t[i]); pt_ref = ebcu.f(t[i]); pt_ref(1) = std::sqrt(t[i])*(1-t[i])*pt_ref(1)+t[i]*dte/2; TEST_ASSERT(tol.approximately_equal(pt_out, pt_ref)); i=3; pt_out = cst.f(t[i]); pt_ref = ebcu.f(t[i]); pt_ref(1) = std::sqrt(t[i])*(1-t[i])*pt_ref(1)+t[i]*dte/2; TEST_ASSERT(tol.approximately_equal(pt_out, pt_ref)); i=4; pt_out = cst.f(t[i]); pt_ref = ebcu.f(t[i]); pt_ref(1) = std::sqrt(t[i])*(1-t[i])*pt_ref(1)+t[i]*dte/2; TEST_ASSERT(tol.approximately_equal(pt_out, pt_ref)); i=5; pt_out = cst.f(t[i]); pt_ref = ebcu.f(t[i]); pt_ref(1) = std::sqrt(t[i])*(1-t[i])*pt_ref(1)+t[i]*dte/2; TEST_ASSERT(tol.approximately_equal(pt_out, pt_ref)); }