static int test_quat_precision()
{
	int Error(0);
	
	{
		glm::f32quat q1;
		glm::lowp_f32quat qA(q1);
		glm::mediump_f32quat qB(q1);
		glm::highp_f32quat qC(q1);
		glm::f32quat q2(qA);
		glm::f32quat q3(qB);
		glm::f32quat q4(qC);
		
		Error += glm::all(glm::equal(q1, q2)) ? 0 : 1;
		Error += glm::all(glm::equal(q1, q3)) ? 0 : 1;
		Error += glm::all(glm::equal(q1, q4)) ? 0 : 1;
	}

	return Error;
}
예제 #2
0
    vecN<vecN<vecN<OutputType, 2>, 4>, 2>
    split_cubicT(c_array<const vecN<InputType, 2> > pts)
    {
      FASTUIDRAWassert(pts.size() == 4);

      vecN<vecN<vecN<OutputType, 2>, 4>, 2> return_value;
      vecN<IntermediateType, 2> p0(pts[0]), p1(pts[1]), p2(pts[2]), p3(pts[3]);
      vecN<IntermediateType, 2> p01, p23, pA, pB, pC;
      const IntermediateType two(2), three(3), four(4), eight(8);

      p01 = (p0 + p1) / two;
      p23 = (p2 + p3) / two;
      pA = (p0 + two * p1 + p2) / four;
      pB = (p1 + two * p2 + p3) / four;
      pC = (p0 + three * p1 + three * p2 + p3) / eight;

      vecN<OutputType, 2> q0(pts[0]), q01(p01), qA(pA), qC(pC);
      vecN<OutputType, 2> qB(pB), q23(p23), q3(pts[3]);

      return_value[0] = vecN<vecN<OutputType, 2>, 4>(q0, q01, qA, qC);
      return_value[1] = vecN<vecN<OutputType, 2>, 4>(qC, qB, q23, q3);

      return return_value;
    }
예제 #3
0
bool b2GearJoint::SolvePositionConstraints(const b2SolverData& data)
{
	b2Vec2 cA = data.positions[m_indexA].c;
	float aA = data.positions[m_indexA].a;
	b2Vec2 cB = data.positions[m_indexB].c;
	float aB = data.positions[m_indexB].a;
	b2Vec2 cC = data.positions[m_indexC].c;
	float aC = data.positions[m_indexC].a;
	b2Vec2 cD = data.positions[m_indexD].c;
	float aD = data.positions[m_indexD].a;

	b2Rot qA(aA), qB(aB), qC(aC), qD(aD);

	float linearError = 0.0f;

	float coordinateA, coordinateB;

	b2Vec2 JvAC, JvBD;
	float JwA, JwB, JwC, JwD;
	float mass = 0.0f;

	if (m_typeA == e_revoluteJoint)
	{
		JvAC.SetZero();
		JwA = 1.0f;
		JwC = 1.0f;
		mass += m_iA + m_iC;

		coordinateA = aA - aC - m_referenceAngleA;
	}
	else
	{
		b2Vec2 u = b2Mul(qC, m_localAxisC);
		b2Vec2 rC = b2Mul(qC, m_localAnchorC - m_lcC);
		b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_lcA);
		JvAC = u;
		JwC = b2Cross(rC, u);
		JwA = b2Cross(rA, u);
		mass += m_mC + m_mA + m_iC * JwC * JwC + m_iA * JwA * JwA;

		b2Vec2 pC = m_localAnchorC - m_lcC;
		b2Vec2 pA = b2MulT(qC, rA + (cA - cC));
		coordinateA = b2Dot(pA - pC, m_localAxisC);
	}

	if (m_typeB == e_revoluteJoint)
	{
		JvBD.SetZero();
		JwB = m_ratio;
		JwD = m_ratio;
		mass += m_ratio * m_ratio * (m_iB + m_iD);

		coordinateB = aB - aD - m_referenceAngleB;
	}
	else
	{
		b2Vec2 u = b2Mul(qD, m_localAxisD);
		b2Vec2 rD = b2Mul(qD, m_localAnchorD - m_lcD);
		b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_lcB);
		JvBD = m_ratio * u;
		JwD = m_ratio * b2Cross(rD, u);
		JwB = m_ratio * b2Cross(rB, u);
		mass += m_ratio * m_ratio * (m_mD + m_mB) + m_iD * JwD * JwD + m_iB * JwB * JwB;

		b2Vec2 pD = m_localAnchorD - m_lcD;
		b2Vec2 pB = b2MulT(qD, rB + (cB - cD));
		coordinateB = b2Dot(pB - pD, m_localAxisD);
	}

	float C = (coordinateA + m_ratio * coordinateB) - m_constant;

	float impulse = 0.0f;
	if (mass > 0.0f)
	{
		impulse = -C / mass;
	}

	cA += m_mA * impulse * JvAC;
	aA += m_iA * impulse * JwA;
	cB += m_mB * impulse * JvBD;
	aB += m_iB * impulse * JwB;
	cC -= m_mC * impulse * JvAC;
	aC -= m_iC * impulse * JwC;
	cD -= m_mD * impulse * JvBD;
	aD -= m_iD * impulse * JwD;

	data.positions[m_indexA].c = cA;
	data.positions[m_indexA].a = aA;
	data.positions[m_indexB].c = cB;
	data.positions[m_indexB].a = aB;
	data.positions[m_indexC].c = cC;
	data.positions[m_indexC].a = aC;
	data.positions[m_indexD].c = cD;
	data.positions[m_indexD].a = aD;

	// TODO_ERIN not implemented
	return linearError < b2_linearSlop;
}
예제 #4
0
void b2GearJoint::InitVelocityConstraints(const b2SolverData& data)
{
	m_indexA = m_bodyA->m_islandIndex;
	m_indexB = m_bodyB->m_islandIndex;
	m_indexC = m_bodyC->m_islandIndex;
	m_indexD = m_bodyD->m_islandIndex;
	m_lcA = m_bodyA->m_sweep.localCenter;
	m_lcB = m_bodyB->m_sweep.localCenter;
	m_lcC = m_bodyC->m_sweep.localCenter;
	m_lcD = m_bodyD->m_sweep.localCenter;
	m_mA = m_bodyA->m_invMass;
	m_mB = m_bodyB->m_invMass;
	m_mC = m_bodyC->m_invMass;
	m_mD = m_bodyD->m_invMass;
	m_iA = m_bodyA->m_invI;
	m_iB = m_bodyB->m_invI;
	m_iC = m_bodyC->m_invI;
	m_iD = m_bodyD->m_invI;

	//b2Vec2 cA = data.positions[m_indexA].c;
	float aA = data.positions[m_indexA].a;
	b2Vec2 vA = data.velocities[m_indexA].v;
	float wA = data.velocities[m_indexA].w;

	//b2Vec2 cB = data.positions[m_indexB].c;
	float aB = data.positions[m_indexB].a;
	b2Vec2 vB = data.velocities[m_indexB].v;
	float wB = data.velocities[m_indexB].w;

	//b2Vec2 cC = data.positions[m_indexC].c;
	float aC = data.positions[m_indexC].a;
	b2Vec2 vC = data.velocities[m_indexC].v;
	float wC = data.velocities[m_indexC].w;

	//b2Vec2 cD = data.positions[m_indexD].c;
	float aD = data.positions[m_indexD].a;
	b2Vec2 vD = data.velocities[m_indexD].v;
	float wD = data.velocities[m_indexD].w;

	b2Rot qA(aA), qB(aB), qC(aC), qD(aD);

	m_mass = 0.0f;

	if (m_typeA == e_revoluteJoint)
	{
		m_JvAC.SetZero();
		m_JwA = 1.0f;
		m_JwC = 1.0f;
		m_mass += m_iA + m_iC;
	}
	else
	{
		b2Vec2 u = b2Mul(qC, m_localAxisC);
		b2Vec2 rC = b2Mul(qC, m_localAnchorC - m_lcC);
		b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_lcA);
		m_JvAC = u;
		m_JwC = b2Cross(rC, u);
		m_JwA = b2Cross(rA, u);
		m_mass += m_mC + m_mA + m_iC * m_JwC * m_JwC + m_iA * m_JwA * m_JwA;
	}

	if (m_typeB == e_revoluteJoint)
	{
		m_JvBD.SetZero();
		m_JwB = m_ratio;
		m_JwD = m_ratio;
		m_mass += m_ratio * m_ratio * (m_iB + m_iD);
	}
	else
	{
		b2Vec2 u = b2Mul(qD, m_localAxisD);
		b2Vec2 rD = b2Mul(qD, m_localAnchorD - m_lcD);
		b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_lcB);
		m_JvBD = m_ratio * u;
		m_JwD = m_ratio * b2Cross(rD, u);
		m_JwB = m_ratio * b2Cross(rB, u);
		m_mass += m_ratio * m_ratio * (m_mD + m_mB) + m_iD * m_JwD * m_JwD + m_iB * m_JwB * m_JwB;
	}

	// Compute effective mass.
	m_mass = m_mass > 0.0f ? 1.0f / m_mass : 0.0f;

	if (data.step.warmStarting)
	{
		vA += (m_mA * m_impulse) * m_JvAC;
		wA += m_iA * m_impulse * m_JwA;
		vB += (m_mB * m_impulse) * m_JvBD;
		wB += m_iB * m_impulse * m_JwB;
		vC -= (m_mC * m_impulse) * m_JvAC;
		wC -= m_iC * m_impulse * m_JwC;
		vD -= (m_mD * m_impulse) * m_JvBD;
		wD -= m_iD * m_impulse * m_JwD;
	}
	else
	{
		m_impulse = 0.0f;
	}

	data.velocities[m_indexA].v = vA;
	data.velocities[m_indexA].w = wA;
	data.velocities[m_indexB].v = vB;
	data.velocities[m_indexB].w = wB;
	data.velocities[m_indexC].v = vC;
	data.velocities[m_indexC].w = wC;
	data.velocities[m_indexD].v = vD;
	data.velocities[m_indexD].w = wD;
}