예제 #1
0
/* Open code a private version of pflash registration since we
 * need to set non-default device width for VExpress platform.
 */
static pflash_t *ve_pflash_cfi01_register(hwaddr base, const char *name,
                                          DriveInfo *di)
{
    DeviceState *dev = qdev_create(NULL, "cfi.pflash01");

    if (di) {
        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(di),
                            &error_abort);
    }

    qdev_prop_set_uint32(dev, "num-blocks",
                         VEXPRESS_FLASH_SIZE / VEXPRESS_FLASH_SECT_SIZE);
    qdev_prop_set_uint64(dev, "sector-length", VEXPRESS_FLASH_SECT_SIZE);
    qdev_prop_set_uint8(dev, "width", 4);
    qdev_prop_set_uint8(dev, "device-width", 2);
    qdev_prop_set_bit(dev, "big-endian", false);
    qdev_prop_set_uint16(dev, "id0", 0x89);
    qdev_prop_set_uint16(dev, "id1", 0x18);
    qdev_prop_set_uint16(dev, "id2", 0x00);
    qdev_prop_set_uint16(dev, "id3", 0x00);
    qdev_prop_set_string(dev, "name", name);
    qdev_init_nofail(dev);

    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
    return OBJECT_CHECK(pflash_t, (dev), "cfi.pflash01");
}
예제 #2
0
파일: q35.c 프로젝트: m000/panda
static void q35_host_initfn(Object *obj)
{
    Q35PCIHost *s = Q35_HOST_DEVICE(obj);
    PCIHostState *phb = PCI_HOST_BRIDGE(obj);

    memory_region_init_io(&phb->conf_mem, obj, &pci_host_conf_le_ops, phb,
                          "pci-conf-idx", 4);
    memory_region_init_io(&phb->data_mem, obj, &pci_host_data_le_ops, phb,
                          "pci-conf-data", 4);

    object_initialize(&s->mch, sizeof(s->mch), TYPE_MCH_PCI_DEVICE);
    object_property_add_child(OBJECT(s), "mch", OBJECT(&s->mch), NULL);
    qdev_prop_set_uint32(DEVICE(&s->mch), "addr", PCI_DEVFN(0, 0));
    qdev_prop_set_bit(DEVICE(&s->mch), "multifunction", false);

    object_property_add(obj, PCI_HOST_PROP_PCI_HOLE_START, "int",
                        q35_host_get_pci_hole_start,
                        NULL, NULL, NULL, NULL);

    object_property_add(obj, PCI_HOST_PROP_PCI_HOLE_END, "int",
                        q35_host_get_pci_hole_end,
                        NULL, NULL, NULL, NULL);

    object_property_add(obj, PCI_HOST_PROP_PCI_HOLE64_START, "int",
                        q35_host_get_pci_hole64_start,
                        NULL, NULL, NULL, NULL);

    object_property_add(obj, PCI_HOST_PROP_PCI_HOLE64_END, "int",
                        q35_host_get_pci_hole64_end,
                        NULL, NULL, NULL, NULL);

    object_property_add(obj, PCIE_HOST_MCFG_SIZE, "int",
                        q35_host_get_mmcfg_size,
                        NULL, NULL, NULL, NULL);

    object_property_add_link(obj, MCH_HOST_PROP_RAM_MEM, TYPE_MEMORY_REGION,
                             (Object **) &s->mch.ram_memory,
                             qdev_prop_allow_set_link_before_realize, 0, NULL);

    object_property_add_link(obj, MCH_HOST_PROP_PCI_MEM, TYPE_MEMORY_REGION,
                             (Object **) &s->mch.pci_address_space,
                             qdev_prop_allow_set_link_before_realize, 0, NULL);

    object_property_add_link(obj, MCH_HOST_PROP_SYSTEM_MEM, TYPE_MEMORY_REGION,
                             (Object **) &s->mch.system_memory,
                             qdev_prop_allow_set_link_before_realize, 0, NULL);

    object_property_add_link(obj, MCH_HOST_PROP_IO_MEM, TYPE_MEMORY_REGION,
                             (Object **) &s->mch.address_space_io,
                             qdev_prop_allow_set_link_before_realize, 0, NULL);

    /* Leave enough space for the biggest MCFG BAR */
    /* TODO: this matches current bios behaviour, but
     * it's not a power of two, which means an MTRR
     * can't cover it exactly.
     */
    range_set_bounds(&s->mch.pci_hole,
            MCH_HOST_BRIDGE_PCIEXBAR_DEFAULT + MCH_HOST_BRIDGE_PCIEXBAR_MAX,
            IO_APIC_DEFAULT_ADDRESS - 1);
}
예제 #3
0
파일: boston.c 프로젝트: mdroth/qemu
static inline XilinxPCIEHost *
xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
                 hwaddr cfg_base, uint64_t cfg_size,
                 hwaddr mmio_base, uint64_t mmio_size,
                 qemu_irq irq, bool link_up)
{
    DeviceState *dev;
    MemoryRegion *cfg, *mmio;

    dev = qdev_create(NULL, TYPE_XILINX_PCIE_HOST);

    qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
    qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
    qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
    qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
    qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
    qdev_prop_set_bit(dev, "link_up", link_up);

    qdev_init_nofail(dev);

    cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
    memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);

    mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
    memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);

    qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);

    return XILINX_PCIE_HOST(dev);
}
예제 #4
0
파일: q35.c 프로젝트: joewaj/qemu-sam3n
static void q35_host_initfn(Object *obj)
{
    Q35PCIHost *s = Q35_HOST_DEVICE(obj);

    object_initialize(&s->mch, TYPE_MCH_PCI_DEVICE);
    object_property_add_child(OBJECT(s), "mch", OBJECT(&s->mch), NULL);
    qdev_prop_set_uint32(DEVICE(&s->mch), "addr", PCI_DEVFN(0, 0));
    qdev_prop_set_bit(DEVICE(&s->mch), "multifunction", false);
}
예제 #5
0
파일: xilinx-pcie.c 프로젝트: CTU-IIG/qemu
static void xilinx_pcie_host_init(Object *obj)
{
    XilinxPCIEHost *s = XILINX_PCIE_HOST(obj);
    XilinxPCIERoot *root = &s->root;

    object_initialize(root, sizeof(*root), TYPE_XILINX_PCIE_ROOT);
    object_property_add_child(obj, "root", OBJECT(root), NULL);
    qdev_prop_set_int32(DEVICE(root), "addr", PCI_DEVFN(0, 0));
    qdev_prop_set_bit(DEVICE(root), "multifunction", false);
}
예제 #6
0
ISADevice *i8259_init_chip(const char *name, ISABus *bus, bool master)
{
    DeviceState *dev;
    ISADevice *isadev;

    isadev = isa_create(bus, name);
    dev = DEVICE(isadev);
    qdev_prop_set_uint32(dev, "iobase", master ? 0x20 : 0xa0);
    qdev_prop_set_uint32(dev, "elcr_addr", master ? 0x4d0 : 0x4d1);
    qdev_prop_set_uint8(dev, "elcr_mask", master ? 0xf8 : 0xde);
    qdev_prop_set_bit(dev, "master", master);
    qdev_init_nofail(dev);

    return isadev;
}
예제 #7
0
파일: q35.c 프로젝트: AlexHai/qemu
static void q35_host_initfn(Object *obj)
{
    Q35PCIHost *s = Q35_HOST_DEVICE(obj);
    PCIHostState *phb = PCI_HOST_BRIDGE(obj);

    memory_region_init_io(&phb->conf_mem, obj, &pci_host_conf_le_ops, phb,
                          "pci-conf-idx", 4);
    memory_region_init_io(&phb->data_mem, obj, &pci_host_data_le_ops, phb,
                          "pci-conf-data", 4);

    object_initialize(&s->mch, sizeof(s->mch), TYPE_MCH_PCI_DEVICE);
    object_property_add_child(OBJECT(s), "mch", OBJECT(&s->mch), NULL);
    qdev_prop_set_uint32(DEVICE(&s->mch), "addr", PCI_DEVFN(0, 0));
    qdev_prop_set_bit(DEVICE(&s->mch), "multifunction", false);

    object_property_add(obj, PCI_HOST_PROP_PCI_HOLE_START, "int",
                        q35_host_get_pci_hole_start,
                        NULL, NULL, NULL, NULL);

    object_property_add(obj, PCI_HOST_PROP_PCI_HOLE_END, "int",
                        q35_host_get_pci_hole_end,
                        NULL, NULL, NULL, NULL);

    object_property_add(obj, PCI_HOST_PROP_PCI_HOLE64_START, "int",
                        q35_host_get_pci_hole64_start,
                        NULL, NULL, NULL, NULL);

    object_property_add(obj, PCI_HOST_PROP_PCI_HOLE64_END, "int",
                        q35_host_get_pci_hole64_end,
                        NULL, NULL, NULL, NULL);

    object_property_add(obj, PCIE_HOST_MCFG_SIZE, "int",
                        q35_host_get_mmcfg_size,
                        NULL, NULL, NULL, NULL);

    /* Leave enough space for the biggest MCFG BAR */
    /* TODO: this matches current bios behaviour, but
     * it's not a power of two, which means an MTRR
     * can't cover it exactly.
     */
    s->mch.pci_info.w32.begin = MCH_HOST_BRIDGE_PCIEXBAR_DEFAULT +
        MCH_HOST_BRIDGE_PCIEXBAR_MAX;
    s->mch.pci_info.w32.end = IO_APIC_DEFAULT_ADDRESS;
}
예제 #8
0
static void raven_pcihost_initfn(Object *obj)
{
    PCIHostState *h = PCI_HOST_BRIDGE(obj);
    PREPPCIState *s = RAVEN_PCI_HOST_BRIDGE(obj);
    MemoryRegion *address_space_mem = get_system_memory();
    MemoryRegion *address_space_io = get_system_io();
    DeviceState *pci_dev;

    pci_bus_new_inplace(&s->pci_bus, DEVICE(obj), NULL,
                        address_space_mem, address_space_io, 0);
    h->bus = &s->pci_bus;

    object_initialize(&s->pci_dev, TYPE_RAVEN_PCI_DEVICE);
    pci_dev = DEVICE(&s->pci_dev);
    qdev_set_parent_bus(pci_dev, BUS(&s->pci_bus));
    object_property_set_int(OBJECT(&s->pci_dev), PCI_DEVFN(0, 0), "addr",
                            NULL);
    qdev_prop_set_bit(pci_dev, "multifunction", false);
}
예제 #9
0
/* handle legacy '-drive if=scsi,...' cmd line args */
SCSIDevice *scsi_bus_legacy_add_drive(SCSIBus *bus, BlockDriverState *bdrv,
                                      int unit, bool removable)
{
    const char *driver;
    DeviceState *dev;

    driver = bdrv_is_sg(bdrv) ? "scsi-generic" : "scsi-disk";
    dev = qdev_create(&bus->qbus, driver);
    qdev_prop_set_uint32(dev, "scsi-id", unit);
    if (qdev_prop_exists(dev, "removable")) {
        qdev_prop_set_bit(dev, "removable", removable);
    }
    if (qdev_prop_set_drive(dev, "drive", bdrv) < 0) {
        qdev_free(dev);
        return NULL;
    }
    if (qdev_init(dev) < 0)
        return NULL;
    return DO_UPCAST(SCSIDevice, qdev, dev);
}
예제 #10
0
파일: xtfpga.c 프로젝트: JeremyAgost/qemu
static pflash_t *xtfpga_flash_init(MemoryRegion *address_space,
                                   const LxBoardDesc *board,
                                   DriveInfo *dinfo, int be)
{
    SysBusDevice *s;
    DeviceState *dev = qdev_create(NULL, "cfi.pflash01");

    qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
                        &error_abort);
    qdev_prop_set_uint32(dev, "num-blocks",
                         board->flash_size / board->flash_sector_size);
    qdev_prop_set_uint64(dev, "sector-length", board->flash_sector_size);
    qdev_prop_set_uint8(dev, "width", 4);
    qdev_prop_set_bit(dev, "big-endian", be);
    qdev_prop_set_string(dev, "name", "lx60.io.flash");
    qdev_init_nofail(dev);
    s = SYS_BUS_DEVICE(dev);
    memory_region_add_subregion(address_space, board->flash_base,
                                sysbus_mmio_get_region(s, 0));
    return OBJECT_CHECK(pflash_t, (dev), "cfi.pflash01");
}
예제 #11
0
void s390_init_ipl_dev(const char *kernel_filename,
                       const char *kernel_cmdline,
                       const char *initrd_filename,
                       const char *firmware,
                       bool enforce_bios)
{
    DeviceState *dev;

    dev  = qdev_create(NULL, "s390-ipl");
    if (kernel_filename) {
        qdev_prop_set_string(dev, "kernel", kernel_filename);
    }
    if (initrd_filename) {
        qdev_prop_set_string(dev, "initrd", initrd_filename);
    }
    qdev_prop_set_string(dev, "cmdline", kernel_cmdline);
    qdev_prop_set_string(dev, "firmware", firmware);
    qdev_prop_set_bit(dev, "enforce_bios", enforce_bios);
    object_property_add_child(qdev_get_machine(), "s390-ipl",
                              OBJECT(dev), NULL);
    qdev_init_nofail(dev);
}
예제 #12
0
파일: mps2.c 프로젝트: dgibson/qemu
static void mps2_common_init(MachineState *machine)
{
    MPS2MachineState *mms = MPS2_MACHINE(machine);
    MPS2MachineClass *mmc = MPS2_MACHINE_GET_CLASS(machine);
    MemoryRegion *system_memory = get_system_memory();
    MachineClass *mc = MACHINE_GET_CLASS(machine);
    DeviceState *armv7m, *sccdev;

    if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
        error_report("This board can only be used with CPU %s",
                     mc->default_cpu_type);
        exit(1);
    }

    /* The FPGA images have an odd combination of different RAMs,
     * because in hardware they are different implementations and
     * connected to different buses, giving varying performance/size
     * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
     * call the 16MB our "system memory", as it's the largest lump.
     *
     * Common to both boards:
     *  0x21000000..0x21ffffff : PSRAM (16MB)
     * AN385 only:
     *  0x00000000 .. 0x003fffff : ZBT SSRAM1
     *  0x00400000 .. 0x007fffff : mirror of ZBT SSRAM1
     *  0x20000000 .. 0x203fffff : ZBT SSRAM 2&3
     *  0x20400000 .. 0x207fffff : mirror of ZBT SSRAM 2&3
     *  0x01000000 .. 0x01003fff : block RAM (16K)
     *  0x01004000 .. 0x01007fff : mirror of above
     *  0x01008000 .. 0x0100bfff : mirror of above
     *  0x0100c000 .. 0x0100ffff : mirror of above
     * AN511 only:
     *  0x00000000 .. 0x0003ffff : FPGA block RAM
     *  0x00400000 .. 0x007fffff : ZBT SSRAM1
     *  0x20000000 .. 0x2001ffff : SRAM
     *  0x20400000 .. 0x207fffff : ZBT SSRAM 2&3
     *
     * The AN385 has a feature where the lowest 16K can be mapped
     * either to the bottom of the ZBT SSRAM1 or to the block RAM.
     * This is of no use for QEMU so we don't implement it (as if
     * zbt_boot_ctrl is always zero).
     */
    memory_region_allocate_system_memory(&mms->psram,
                                         NULL, "mps.ram", 0x1000000);
    memory_region_add_subregion(system_memory, 0x21000000, &mms->psram);

    switch (mmc->fpga_type) {
    case FPGA_AN385:
        make_ram(&mms->ssram1, "mps.ssram1", 0x0, 0x400000);
        make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", &mms->ssram1, 0x400000);
        make_ram(&mms->ssram23, "mps.ssram23", 0x20000000, 0x400000);
        make_ram_alias(&mms->ssram23_m, "mps.ssram23_m",
                       &mms->ssram23, 0x20400000);
        make_ram(&mms->blockram, "mps.blockram", 0x01000000, 0x4000);
        make_ram_alias(&mms->blockram_m1, "mps.blockram_m1",
                       &mms->blockram, 0x01004000);
        make_ram_alias(&mms->blockram_m2, "mps.blockram_m2",
                       &mms->blockram, 0x01008000);
        make_ram_alias(&mms->blockram_m3, "mps.blockram_m3",
                       &mms->blockram, 0x0100c000);
        break;
    case FPGA_AN511:
        make_ram(&mms->blockram, "mps.blockram", 0x0, 0x40000);
        make_ram(&mms->ssram1, "mps.ssram1", 0x00400000, 0x00800000);
        make_ram(&mms->sram, "mps.sram", 0x20000000, 0x20000);
        make_ram(&mms->ssram23, "mps.ssram23", 0x20400000, 0x400000);
        break;
    default:
        g_assert_not_reached();
    }

    sysbus_init_child_obj(OBJECT(mms), "armv7m", &mms->armv7m,
                          sizeof(mms->armv7m), TYPE_ARMV7M);
    armv7m = DEVICE(&mms->armv7m);
    switch (mmc->fpga_type) {
    case FPGA_AN385:
        qdev_prop_set_uint32(armv7m, "num-irq", 32);
        break;
    case FPGA_AN511:
        qdev_prop_set_uint32(armv7m, "num-irq", 64);
        break;
    default:
        g_assert_not_reached();
    }
    qdev_prop_set_string(armv7m, "cpu-type", machine->cpu_type);
    qdev_prop_set_bit(armv7m, "enable-bitband", true);
    object_property_set_link(OBJECT(&mms->armv7m), OBJECT(system_memory),
                             "memory", &error_abort);
    object_property_set_bool(OBJECT(&mms->armv7m), true, "realized",
                             &error_fatal);

    create_unimplemented_device("zbtsmram mirror", 0x00400000, 0x00400000);
    create_unimplemented_device("RESERVED 1", 0x00800000, 0x00800000);
    create_unimplemented_device("Block RAM", 0x01000000, 0x00010000);
    create_unimplemented_device("RESERVED 2", 0x01010000, 0x1EFF0000);
    create_unimplemented_device("RESERVED 3", 0x20800000, 0x00800000);
    create_unimplemented_device("PSRAM", 0x21000000, 0x01000000);
    /* These three ranges all cover multiple devices; we may implement
     * some of them below (in which case the real device takes precedence
     * over the unimplemented-region mapping).
     */
    create_unimplemented_device("CMSDK APB peripheral region @0x40000000",
                                0x40000000, 0x00010000);
    create_unimplemented_device("CMSDK peripheral region @0x40010000",
                                0x40010000, 0x00010000);
    create_unimplemented_device("Extra peripheral region @0x40020000",
                                0x40020000, 0x00010000);
    create_unimplemented_device("RESERVED 4", 0x40030000, 0x001D0000);
    create_unimplemented_device("VGA", 0x41000000, 0x0200000);

    switch (mmc->fpga_type) {
    case FPGA_AN385:
    {
        /* The overflow IRQs for UARTs 0, 1 and 2 are ORed together.
         * Overflow for UARTs 4 and 5 doesn't trigger any interrupt.
         */
        Object *orgate;
        DeviceState *orgate_dev;
        int i;

        orgate = object_new(TYPE_OR_IRQ);
        object_property_set_int(orgate, 6, "num-lines", &error_fatal);
        object_property_set_bool(orgate, true, "realized", &error_fatal);
        orgate_dev = DEVICE(orgate);
        qdev_connect_gpio_out(orgate_dev, 0, qdev_get_gpio_in(armv7m, 12));

        for (i = 0; i < 5; i++) {
            static const hwaddr uartbase[] = {0x40004000, 0x40005000,
                                              0x40006000, 0x40007000,
                                              0x40009000};
            /* RX irq number; TX irq is always one greater */
            static const int uartirq[] = {0, 2, 4, 18, 20};
            qemu_irq txovrint = NULL, rxovrint = NULL;

            if (i < 3) {
                txovrint = qdev_get_gpio_in(orgate_dev, i * 2);
                rxovrint = qdev_get_gpio_in(orgate_dev, i * 2 + 1);
            }

            cmsdk_apb_uart_create(uartbase[i],
                                  qdev_get_gpio_in(armv7m, uartirq[i] + 1),
                                  qdev_get_gpio_in(armv7m, uartirq[i]),
                                  txovrint, rxovrint,
                                  NULL,
                                  serial_hd(i), SYSCLK_FRQ);
        }
        break;
    }
    case FPGA_AN511:
    {
        /* The overflow IRQs for all UARTs are ORed together.
         * Tx and Rx IRQs for each UART are ORed together.
         */
        Object *orgate;
        DeviceState *orgate_dev;
        int i;

        orgate = object_new(TYPE_OR_IRQ);
        object_property_set_int(orgate, 10, "num-lines", &error_fatal);
        object_property_set_bool(orgate, true, "realized", &error_fatal);
        orgate_dev = DEVICE(orgate);
        qdev_connect_gpio_out(orgate_dev, 0, qdev_get_gpio_in(armv7m, 12));

        for (i = 0; i < 5; i++) {
            /* system irq numbers for the combined tx/rx for each UART */
            static const int uart_txrx_irqno[] = {0, 2, 45, 46, 56};
            static const hwaddr uartbase[] = {0x40004000, 0x40005000,
                                              0x4002c000, 0x4002d000,
                                              0x4002e000};
            Object *txrx_orgate;
            DeviceState *txrx_orgate_dev;

            txrx_orgate = object_new(TYPE_OR_IRQ);
            object_property_set_int(txrx_orgate, 2, "num-lines", &error_fatal);
            object_property_set_bool(txrx_orgate, true, "realized",
                                     &error_fatal);
            txrx_orgate_dev = DEVICE(txrx_orgate);
            qdev_connect_gpio_out(txrx_orgate_dev, 0,
                                  qdev_get_gpio_in(armv7m, uart_txrx_irqno[i]));
            cmsdk_apb_uart_create(uartbase[i],
                                  qdev_get_gpio_in(txrx_orgate_dev, 0),
                                  qdev_get_gpio_in(txrx_orgate_dev, 1),
                                  qdev_get_gpio_in(orgate_dev, i * 2),
                                  qdev_get_gpio_in(orgate_dev, i * 2 + 1),
                                  NULL,
                                  serial_hd(i), SYSCLK_FRQ);
        }
        break;
    }
    default:
        g_assert_not_reached();
    }

    cmsdk_apb_timer_create(0x40000000, qdev_get_gpio_in(armv7m, 8), SYSCLK_FRQ);
    cmsdk_apb_timer_create(0x40001000, qdev_get_gpio_in(armv7m, 9), SYSCLK_FRQ);

    sysbus_init_child_obj(OBJECT(mms), "dualtimer", &mms->dualtimer,
                          sizeof(mms->dualtimer), TYPE_CMSDK_APB_DUALTIMER);
    qdev_prop_set_uint32(DEVICE(&mms->dualtimer), "pclk-frq", SYSCLK_FRQ);
    object_property_set_bool(OBJECT(&mms->dualtimer), true, "realized",
                             &error_fatal);
    sysbus_connect_irq(SYS_BUS_DEVICE(&mms->dualtimer), 0,
                       qdev_get_gpio_in(armv7m, 10));
    sysbus_mmio_map(SYS_BUS_DEVICE(&mms->dualtimer), 0, 0x40002000);

    sysbus_init_child_obj(OBJECT(mms), "scc", &mms->scc,
                          sizeof(mms->scc), TYPE_MPS2_SCC);
    sccdev = DEVICE(&mms->scc);
    qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
    qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
    qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
    object_property_set_bool(OBJECT(&mms->scc), true, "realized",
                             &error_fatal);
    sysbus_mmio_map(SYS_BUS_DEVICE(sccdev), 0, 0x4002f000);

    /* In hardware this is a LAN9220; the LAN9118 is software compatible
     * except that it doesn't support the checksum-offload feature.
     */
    lan9118_init(&nd_table[0], 0x40200000,
                 qdev_get_gpio_in(armv7m,
                                  mmc->fpga_type == FPGA_AN385 ? 13 : 47));

    system_clock_scale = NANOSECONDS_PER_SECOND / SYSCLK_FRQ;

    armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename,
                       0x400000);
}
예제 #13
0
파일: sun4u.c 프로젝트: Marshalzxy/qemu
static void sun4uv_init(MemoryRegion *address_space_mem,
                        MachineState *machine,
                        const struct hwdef *hwdef)
{
    SPARCCPU *cpu;
    Nvram *nvram;
    unsigned int i;
    uint64_t initrd_addr, initrd_size, kernel_addr, kernel_size, kernel_entry;
    SabreState *sabre;
    PCIBus *pci_bus, *pci_busA, *pci_busB;
    PCIDevice *ebus, *pci_dev;
    SysBusDevice *s;
    DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
    DeviceState *iommu, *dev;
    FWCfgState *fw_cfg;
    NICInfo *nd;
    MACAddr macaddr;
    bool onboard_nic;

    /* init CPUs */
    cpu = sparc64_cpu_devinit(machine->cpu_type, hwdef->prom_addr);

    /* IOMMU */
    iommu = qdev_create(NULL, TYPE_SUN4U_IOMMU);
    qdev_init_nofail(iommu);

    /* set up devices */
    ram_init(0, machine->ram_size);

    prom_init(hwdef->prom_addr, bios_name);

    /* Init sabre (PCI host bridge) */
    sabre = SABRE_DEVICE(qdev_create(NULL, TYPE_SABRE));
    qdev_prop_set_uint64(DEVICE(sabre), "special-base", PBM_SPECIAL_BASE);
    qdev_prop_set_uint64(DEVICE(sabre), "mem-base", PBM_MEM_BASE);
    object_property_set_link(OBJECT(sabre), OBJECT(iommu), "iommu",
                             &error_abort);
    qdev_init_nofail(DEVICE(sabre));

    /* Wire up PCI interrupts to CPU */
    for (i = 0; i < IVEC_MAX; i++) {
        qdev_connect_gpio_out_named(DEVICE(sabre), "ivec-irq", i,
            qdev_get_gpio_in_named(DEVICE(cpu), "ivec-irq", i));
    }

    pci_bus = PCI_HOST_BRIDGE(sabre)->bus;
    pci_busA = pci_bridge_get_sec_bus(sabre->bridgeA);
    pci_busB = pci_bridge_get_sec_bus(sabre->bridgeB);

    /* Only in-built Simba APBs can exist on the root bus, slot 0 on busA is
       reserved (leaving no slots free after on-board devices) however slots
       0-3 are free on busB */
    pci_bus->slot_reserved_mask = 0xfffffffc;
    pci_busA->slot_reserved_mask = 0xfffffff1;
    pci_busB->slot_reserved_mask = 0xfffffff0;

    ebus = pci_create_multifunction(pci_busA, PCI_DEVFN(1, 0), true, TYPE_EBUS);
    qdev_prop_set_uint64(DEVICE(ebus), "console-serial-base",
                         hwdef->console_serial_base);
    qdev_init_nofail(DEVICE(ebus));

    /* Wire up "well-known" ISA IRQs to PBM legacy obio IRQs */
    qdev_connect_gpio_out_named(DEVICE(ebus), "isa-irq", 7,
        qdev_get_gpio_in_named(DEVICE(sabre), "pbm-irq", OBIO_LPT_IRQ));
    qdev_connect_gpio_out_named(DEVICE(ebus), "isa-irq", 6,
        qdev_get_gpio_in_named(DEVICE(sabre), "pbm-irq", OBIO_FDD_IRQ));
    qdev_connect_gpio_out_named(DEVICE(ebus), "isa-irq", 1,
        qdev_get_gpio_in_named(DEVICE(sabre), "pbm-irq", OBIO_KBD_IRQ));
    qdev_connect_gpio_out_named(DEVICE(ebus), "isa-irq", 12,
        qdev_get_gpio_in_named(DEVICE(sabre), "pbm-irq", OBIO_MSE_IRQ));
    qdev_connect_gpio_out_named(DEVICE(ebus), "isa-irq", 4,
        qdev_get_gpio_in_named(DEVICE(sabre), "pbm-irq", OBIO_SER_IRQ));

    pci_dev = pci_create_simple(pci_busA, PCI_DEVFN(2, 0), "VGA");

    memset(&macaddr, 0, sizeof(MACAddr));
    onboard_nic = false;
    for (i = 0; i < nb_nics; i++) {
        nd = &nd_table[i];

        if (!nd->model || strcmp(nd->model, "sunhme") == 0) {
            if (!onboard_nic) {
                pci_dev = pci_create_multifunction(pci_busA, PCI_DEVFN(1, 1),
                                                   true, "sunhme");
                memcpy(&macaddr, &nd->macaddr.a, sizeof(MACAddr));
                onboard_nic = true;
            } else {
                pci_dev = pci_create(pci_busB, -1, "sunhme");
            }
        } else {
            pci_dev = pci_create(pci_busB, -1, nd->model);
        }

        dev = &pci_dev->qdev;
        qdev_set_nic_properties(dev, nd);
        qdev_init_nofail(dev);
    }

    /* If we don't have an onboard NIC, grab a default MAC address so that
     * we have a valid machine id */
    if (!onboard_nic) {
        qemu_macaddr_default_if_unset(&macaddr);
    }

    ide_drive_get(hd, ARRAY_SIZE(hd));

    pci_dev = pci_create(pci_busA, PCI_DEVFN(3, 0), "cmd646-ide");
    qdev_prop_set_uint32(&pci_dev->qdev, "secondary", 1);
    qdev_init_nofail(&pci_dev->qdev);
    pci_ide_create_devs(pci_dev, hd);

    /* Map NVRAM into I/O (ebus) space */
    nvram = m48t59_init(NULL, 0, 0, NVRAM_SIZE, 1968, 59);
    s = SYS_BUS_DEVICE(nvram);
    memory_region_add_subregion(pci_address_space_io(ebus), 0x2000,
                                sysbus_mmio_get_region(s, 0));
 
    initrd_size = 0;
    initrd_addr = 0;
    kernel_size = sun4u_load_kernel(machine->kernel_filename,
                                    machine->initrd_filename,
                                    ram_size, &initrd_size, &initrd_addr,
                                    &kernel_addr, &kernel_entry);

    sun4u_NVRAM_set_params(nvram, NVRAM_SIZE, "Sun4u", machine->ram_size,
                           machine->boot_order,
                           kernel_addr, kernel_size,
                           machine->kernel_cmdline,
                           initrd_addr, initrd_size,
                           /* XXX: need an option to load a NVRAM image */
                           0,
                           graphic_width, graphic_height, graphic_depth,
                           (uint8_t *)&macaddr);

    dev = qdev_create(NULL, TYPE_FW_CFG_IO);
    qdev_prop_set_bit(dev, "dma_enabled", false);
    object_property_add_child(OBJECT(ebus), TYPE_FW_CFG, OBJECT(dev), NULL);
    qdev_init_nofail(dev);
    memory_region_add_subregion(pci_address_space_io(ebus), BIOS_CFG_IOPORT,
                                &FW_CFG_IO(dev)->comb_iomem);

    fw_cfg = FW_CFG(dev);
    fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
    fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
    fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
    fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_ADDR, kernel_entry);
    fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
    if (machine->kernel_cmdline) {
        fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
                       strlen(machine->kernel_cmdline) + 1);
        fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
    } else {
        fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
    }
    fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
    fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
    fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]);

    fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_WIDTH, graphic_width);
    fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_HEIGHT, graphic_height);
    fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_DEPTH, graphic_depth);

    qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
}
예제 #14
0
파일: mac_newworld.c 프로젝트: aik/qemu
/* PowerPC Mac99 hardware initialisation */
static void ppc_core99_init(MachineState *machine)
{
    ram_addr_t ram_size = machine->ram_size;
    const char *kernel_filename = machine->kernel_filename;
    const char *kernel_cmdline = machine->kernel_cmdline;
    const char *initrd_filename = machine->initrd_filename;
    const char *boot_device = machine->boot_order;
    Core99MachineState *core99_machine = CORE99_MACHINE(machine);
    PowerPCCPU *cpu = NULL;
    CPUPPCState *env = NULL;
    char *filename;
    IrqLines *openpic_irqs;
    int linux_boot, i, j, k;
    MemoryRegion *ram = g_new(MemoryRegion, 1), *bios = g_new(MemoryRegion, 1);
    hwaddr kernel_base, initrd_base, cmdline_base = 0;
    long kernel_size, initrd_size;
    UNINHostState *uninorth_pci;
    PCIBus *pci_bus;
    NewWorldMacIOState *macio;
    bool has_pmu, has_adb;
    MACIOIDEState *macio_ide;
    BusState *adb_bus;
    MacIONVRAMState *nvr;
    int bios_size;
    int ppc_boot_device;
    DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
    void *fw_cfg;
    int machine_arch;
    SysBusDevice *s;
    DeviceState *dev, *pic_dev;
    hwaddr nvram_addr = 0xFFF04000;
    uint64_t tbfreq;

    linux_boot = (kernel_filename != NULL);

    /* init CPUs */
    for (i = 0; i < smp_cpus; i++) {
        cpu = POWERPC_CPU(cpu_create(machine->cpu_type));
        env = &cpu->env;

        /* Set time-base frequency to 100 Mhz */
        cpu_ppc_tb_init(env, TBFREQ);
        qemu_register_reset(ppc_core99_reset, cpu);
    }

    /* allocate RAM */
    memory_region_allocate_system_memory(ram, NULL, "ppc_core99.ram", ram_size);
    memory_region_add_subregion(get_system_memory(), 0, ram);

    /* allocate and load BIOS */
    memory_region_init_ram(bios, NULL, "ppc_core99.bios", BIOS_SIZE,
                           &error_fatal);

    if (bios_name == NULL)
        bios_name = PROM_FILENAME;
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
    memory_region_set_readonly(bios, true);
    memory_region_add_subregion(get_system_memory(), PROM_ADDR, bios);

    /* Load OpenBIOS (ELF) */
    if (filename) {
        bios_size = load_elf(filename, NULL, NULL, NULL,
                             NULL, NULL, 1, PPC_ELF_MACHINE, 0, 0);

        g_free(filename);
    } else {
        bios_size = -1;
    }
    if (bios_size < 0 || bios_size > BIOS_SIZE) {
        error_report("could not load PowerPC bios '%s'", bios_name);
        exit(1);
    }

    if (linux_boot) {
        uint64_t lowaddr = 0;
        int bswap_needed;

#ifdef BSWAP_NEEDED
        bswap_needed = 1;
#else
        bswap_needed = 0;
#endif
        kernel_base = KERNEL_LOAD_ADDR;

        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
                               NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE,
                               0, 0);
        if (kernel_size < 0)
            kernel_size = load_aout(kernel_filename, kernel_base,
                                    ram_size - kernel_base, bswap_needed,
                                    TARGET_PAGE_SIZE);
        if (kernel_size < 0)
            kernel_size = load_image_targphys(kernel_filename,
                                              kernel_base,
                                              ram_size - kernel_base);
        if (kernel_size < 0) {
            error_report("could not load kernel '%s'", kernel_filename);
            exit(1);
        }
        /* load initrd */
        if (initrd_filename) {
            initrd_base = TARGET_PAGE_ALIGN(kernel_base + kernel_size + KERNEL_GAP);
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
                                              ram_size - initrd_base);
            if (initrd_size < 0) {
                error_report("could not load initial ram disk '%s'",
                             initrd_filename);
                exit(1);
            }
            cmdline_base = TARGET_PAGE_ALIGN(initrd_base + initrd_size);
        } else {
            initrd_base = 0;
            initrd_size = 0;
            cmdline_base = TARGET_PAGE_ALIGN(kernel_base + kernel_size + KERNEL_GAP);
        }
        ppc_boot_device = 'm';
    } else {
        kernel_base = 0;
        kernel_size = 0;
        initrd_base = 0;
        initrd_size = 0;
        ppc_boot_device = '\0';
        /* We consider that NewWorld PowerMac never have any floppy drive
         * For now, OHW cannot boot from the network.
         */
        for (i = 0; boot_device[i] != '\0'; i++) {
            if (boot_device[i] >= 'c' && boot_device[i] <= 'f') {
                ppc_boot_device = boot_device[i];
                break;
            }
        }
        if (ppc_boot_device == '\0') {
            error_report("No valid boot device for Mac99 machine");
            exit(1);
        }
    }

    /* UniN init */
    dev = qdev_create(NULL, TYPE_UNI_NORTH);
    qdev_init_nofail(dev);
    s = SYS_BUS_DEVICE(dev);
    memory_region_add_subregion(get_system_memory(), 0xf8000000,
                                sysbus_mmio_get_region(s, 0));

    openpic_irqs = g_new0(IrqLines, smp_cpus);
    for (i = 0; i < smp_cpus; i++) {
        /* Mac99 IRQ connection between OpenPIC outputs pins
         * and PowerPC input pins
         */
        switch (PPC_INPUT(env)) {
        case PPC_FLAGS_INPUT_6xx:
            openpic_irqs[i].irq[OPENPIC_OUTPUT_INT] =
                ((qemu_irq *)env->irq_inputs)[PPC6xx_INPUT_INT];
            openpic_irqs[i].irq[OPENPIC_OUTPUT_CINT] =
                ((qemu_irq *)env->irq_inputs)[PPC6xx_INPUT_INT];
            openpic_irqs[i].irq[OPENPIC_OUTPUT_MCK] =
                ((qemu_irq *)env->irq_inputs)[PPC6xx_INPUT_MCP];
            /* Not connected ? */
            openpic_irqs[i].irq[OPENPIC_OUTPUT_DEBUG] = NULL;
            /* Check this */
            openpic_irqs[i].irq[OPENPIC_OUTPUT_RESET] =
                ((qemu_irq *)env->irq_inputs)[PPC6xx_INPUT_HRESET];
            break;
#if defined(TARGET_PPC64)
        case PPC_FLAGS_INPUT_970:
            openpic_irqs[i].irq[OPENPIC_OUTPUT_INT] =
                ((qemu_irq *)env->irq_inputs)[PPC970_INPUT_INT];
            openpic_irqs[i].irq[OPENPIC_OUTPUT_CINT] =
                ((qemu_irq *)env->irq_inputs)[PPC970_INPUT_INT];
            openpic_irqs[i].irq[OPENPIC_OUTPUT_MCK] =
                ((qemu_irq *)env->irq_inputs)[PPC970_INPUT_MCP];
            /* Not connected ? */
            openpic_irqs[i].irq[OPENPIC_OUTPUT_DEBUG] = NULL;
            /* Check this */
            openpic_irqs[i].irq[OPENPIC_OUTPUT_RESET] =
                ((qemu_irq *)env->irq_inputs)[PPC970_INPUT_HRESET];
            break;
#endif /* defined(TARGET_PPC64) */
        default:
            error_report("Bus model not supported on mac99 machine");
            exit(1);
        }
    }

    pic_dev = qdev_create(NULL, TYPE_OPENPIC);
    qdev_prop_set_uint32(pic_dev, "model", OPENPIC_MODEL_KEYLARGO);
    qdev_init_nofail(pic_dev);
    s = SYS_BUS_DEVICE(pic_dev);
    k = 0;
    for (i = 0; i < smp_cpus; i++) {
        for (j = 0; j < OPENPIC_OUTPUT_NB; j++) {
            sysbus_connect_irq(s, k++, openpic_irqs[i].irq[j]);
        }
    }
    g_free(openpic_irqs);

    if (PPC_INPUT(env) == PPC_FLAGS_INPUT_970) {
        /* 970 gets a U3 bus */
        /* Uninorth AGP bus */
        dev = qdev_create(NULL, TYPE_U3_AGP_HOST_BRIDGE);
        object_property_set_link(OBJECT(dev), OBJECT(pic_dev), "pic",
                                 &error_abort);
        qdev_init_nofail(dev);
        uninorth_pci = U3_AGP_HOST_BRIDGE(dev);
        s = SYS_BUS_DEVICE(dev);
        /* PCI hole */
        memory_region_add_subregion(get_system_memory(), 0x80000000ULL,
                                    sysbus_mmio_get_region(s, 2));
        /* Register 8 MB of ISA IO space */
        memory_region_add_subregion(get_system_memory(), 0xf2000000,
                                    sysbus_mmio_get_region(s, 3));
        sysbus_mmio_map(s, 0, 0xf0800000);
        sysbus_mmio_map(s, 1, 0xf0c00000);

        machine_arch = ARCH_MAC99_U3;
    } else {
        /* Use values found on a real PowerMac */
        /* Uninorth AGP bus */
        dev = qdev_create(NULL, TYPE_UNI_NORTH_AGP_HOST_BRIDGE);
        object_property_set_link(OBJECT(dev), OBJECT(pic_dev), "pic",
                                 &error_abort);
        qdev_init_nofail(dev);
        s = SYS_BUS_DEVICE(dev);
        sysbus_mmio_map(s, 0, 0xf0800000);
        sysbus_mmio_map(s, 1, 0xf0c00000);

        /* Uninorth internal bus */
        dev = qdev_create(NULL, TYPE_UNI_NORTH_INTERNAL_PCI_HOST_BRIDGE);
        object_property_set_link(OBJECT(dev), OBJECT(pic_dev), "pic",
                                 &error_abort);
        qdev_init_nofail(dev);
        s = SYS_BUS_DEVICE(dev);
        sysbus_mmio_map(s, 0, 0xf4800000);
        sysbus_mmio_map(s, 1, 0xf4c00000);

        /* Uninorth main bus */
        dev = qdev_create(NULL, TYPE_UNI_NORTH_PCI_HOST_BRIDGE);
        qdev_prop_set_uint32(dev, "ofw-addr", 0xf2000000);
        object_property_set_link(OBJECT(dev), OBJECT(pic_dev), "pic",
                                 &error_abort);
        qdev_init_nofail(dev);
        uninorth_pci = UNI_NORTH_PCI_HOST_BRIDGE(dev);
        s = SYS_BUS_DEVICE(dev);
        /* PCI hole */
        memory_region_add_subregion(get_system_memory(), 0x80000000ULL,
                                    sysbus_mmio_get_region(s, 2));
        /* Register 8 MB of ISA IO space */
        memory_region_add_subregion(get_system_memory(), 0xf2000000,
                                    sysbus_mmio_get_region(s, 3));
        sysbus_mmio_map(s, 0, 0xf2800000);
        sysbus_mmio_map(s, 1, 0xf2c00000);

        machine_arch = ARCH_MAC99;
    }

    machine->usb |= defaults_enabled() && !machine->usb_disabled;
    has_pmu = (core99_machine->via_config != CORE99_VIA_CONFIG_CUDA);
    has_adb = (core99_machine->via_config == CORE99_VIA_CONFIG_CUDA ||
               core99_machine->via_config == CORE99_VIA_CONFIG_PMU_ADB);

    /* Timebase Frequency */
    if (kvm_enabled()) {
        tbfreq = kvmppc_get_tbfreq();
    } else {
        tbfreq = TBFREQ;
    }

    /* init basic PC hardware */
    pci_bus = PCI_HOST_BRIDGE(uninorth_pci)->bus;

    /* MacIO */
    macio = NEWWORLD_MACIO(pci_create(pci_bus, -1, TYPE_NEWWORLD_MACIO));
    dev = DEVICE(macio);
    qdev_prop_set_uint64(dev, "frequency", tbfreq);
    qdev_prop_set_bit(dev, "has-pmu", has_pmu);
    qdev_prop_set_bit(dev, "has-adb", has_adb);
    object_property_set_link(OBJECT(macio), OBJECT(pic_dev), "pic",
                             &error_abort);
    qdev_init_nofail(dev);

    /* We only emulate 2 out of 3 IDE controllers for now */
    ide_drive_get(hd, ARRAY_SIZE(hd));

    macio_ide = MACIO_IDE(object_resolve_path_component(OBJECT(macio),
                                                        "ide[0]"));
    macio_ide_init_drives(macio_ide, hd);

    macio_ide = MACIO_IDE(object_resolve_path_component(OBJECT(macio),
                                                        "ide[1]"));
    macio_ide_init_drives(macio_ide, &hd[MAX_IDE_DEVS]);

    if (has_adb) {
        if (has_pmu) {
            dev = DEVICE(object_resolve_path_component(OBJECT(macio), "pmu"));
        } else {
            dev = DEVICE(object_resolve_path_component(OBJECT(macio), "cuda"));
        }

        adb_bus = qdev_get_child_bus(dev, "adb.0");
        dev = qdev_create(adb_bus, TYPE_ADB_KEYBOARD);
        qdev_prop_set_bit(dev, "disable-direct-reg3-writes", true);
        qdev_init_nofail(dev);

        dev = qdev_create(adb_bus, TYPE_ADB_MOUSE);
        qdev_prop_set_bit(dev, "disable-direct-reg3-writes", true);
        qdev_init_nofail(dev);
    }

    if (machine->usb) {
        pci_create_simple(pci_bus, -1, "pci-ohci");

        /* U3 needs to use USB for input because Linux doesn't support via-cuda
        on PPC64 */
        if (!has_adb || machine_arch == ARCH_MAC99_U3) {
            USBBus *usb_bus = usb_bus_find(-1);

            usb_create_simple(usb_bus, "usb-kbd");
            usb_create_simple(usb_bus, "usb-mouse");
        }
    }

    pci_vga_init(pci_bus);

    if (graphic_depth != 15 && graphic_depth != 32 && graphic_depth != 8) {
        graphic_depth = 15;
    }

    for (i = 0; i < nb_nics; i++) {
        pci_nic_init_nofail(&nd_table[i], pci_bus, "ne2k_pci", NULL);
    }

    /* The NewWorld NVRAM is not located in the MacIO device */
#ifdef CONFIG_KVM
    if (kvm_enabled() && getpagesize() > 4096) {
        /* We can't combine read-write and read-only in a single page, so
           move the NVRAM out of ROM again for KVM */
        nvram_addr = 0xFFE00000;
    }
#endif
    dev = qdev_create(NULL, TYPE_MACIO_NVRAM);
    qdev_prop_set_uint32(dev, "size", 0x2000);
    qdev_prop_set_uint32(dev, "it_shift", 1);
    qdev_init_nofail(dev);
    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, nvram_addr);
    nvr = MACIO_NVRAM(dev);
    pmac_format_nvram_partition(nvr, 0x2000);
    /* No PCI init: the BIOS will do it */

    dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
    fw_cfg = FW_CFG(dev);
    qdev_prop_set_uint32(dev, "data_width", 1);
    qdev_prop_set_bit(dev, "dma_enabled", false);
    object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
                              OBJECT(fw_cfg), NULL);
    qdev_init_nofail(dev);
    s = SYS_BUS_DEVICE(dev);
    sysbus_mmio_map(s, 0, CFG_ADDR);
    sysbus_mmio_map(s, 1, CFG_ADDR + 2);

    fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
    fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
    fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, machine_arch);
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, kernel_base);
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
    if (kernel_cmdline) {
        fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, cmdline_base);
        pstrcpy_targphys("cmdline", cmdline_base, TARGET_PAGE_SIZE, kernel_cmdline);
    } else {
        fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
    }
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_base);
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
    fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, ppc_boot_device);

    fw_cfg_add_i16(fw_cfg, FW_CFG_PPC_WIDTH, graphic_width);
    fw_cfg_add_i16(fw_cfg, FW_CFG_PPC_HEIGHT, graphic_height);
    fw_cfg_add_i16(fw_cfg, FW_CFG_PPC_DEPTH, graphic_depth);

    fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_VIACONFIG, core99_machine->via_config);

    fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_IS_KVM, kvm_enabled());
    if (kvm_enabled()) {
#ifdef CONFIG_KVM
        uint8_t *hypercall;

        hypercall = g_malloc(16);
        kvmppc_get_hypercall(env, hypercall, 16);
        fw_cfg_add_bytes(fw_cfg, FW_CFG_PPC_KVM_HC, hypercall, 16);
        fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_KVM_PID, getpid());
#endif
    }
    fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_TBFREQ, tbfreq);
    /* Mac OS X requires a "known good" clock-frequency value; pass it one. */
    fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_CLOCKFREQ, CLOCKFREQ);
    fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_BUSFREQ, BUSFREQ);
    fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_NVRAM_ADDR, nvram_addr);

    /* MacOS NDRV VGA driver */
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, NDRV_VGA_FILENAME);
    if (filename) {
        gchar *ndrv_file;
        gsize ndrv_size;

        if (g_file_get_contents(filename, &ndrv_file, &ndrv_size, NULL)) {
            fw_cfg_add_file(fw_cfg, "ndrv/qemu_vga.ndrv", ndrv_file, ndrv_size);
        }
        g_free(filename);
    }

    qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
}
예제 #15
0
파일: msf2-soc.c 프로젝트: CTU-IIG/qemu
static void m2sxxx_soc_realize(DeviceState *dev_soc, Error **errp)
{
    MSF2State *s = MSF2_SOC(dev_soc);
    DeviceState *dev, *armv7m;
    SysBusDevice *busdev;
    Error *err = NULL;
    int i;

    MemoryRegion *system_memory = get_system_memory();
    MemoryRegion *nvm = g_new(MemoryRegion, 1);
    MemoryRegion *nvm_alias = g_new(MemoryRegion, 1);
    MemoryRegion *sram = g_new(MemoryRegion, 1);

    memory_region_init_rom(nvm, NULL, "MSF2.eNVM", s->envm_size,
                           &error_fatal);
    /*
     * On power-on, the eNVM region 0x60000000 is automatically
     * remapped to the Cortex-M3 processor executable region
     * start address (0x0). We do not support remapping other eNVM,
     * eSRAM and DDR regions by guest(via Sysreg) currently.
     */
    memory_region_init_alias(nvm_alias, NULL, "MSF2.eNVM",
                             nvm, 0, s->envm_size);

    memory_region_add_subregion(system_memory, ENVM_BASE_ADDRESS, nvm);
    memory_region_add_subregion(system_memory, 0, nvm_alias);

    memory_region_init_ram(sram, NULL, "MSF2.eSRAM", s->esram_size,
                           &error_fatal);
    memory_region_add_subregion(system_memory, SRAM_BASE_ADDRESS, sram);

    armv7m = DEVICE(&s->armv7m);
    qdev_prop_set_uint32(armv7m, "num-irq", 81);
    qdev_prop_set_string(armv7m, "cpu-type", s->cpu_type);
    qdev_prop_set_bit(armv7m, "enable-bitband", true);
    object_property_set_link(OBJECT(&s->armv7m), OBJECT(get_system_memory()),
                                     "memory", &error_abort);
    object_property_set_bool(OBJECT(&s->armv7m), true, "realized", &err);
    if (err != NULL) {
        error_propagate(errp, err);
        return;
    }

    if (!s->m3clk) {
        error_setg(errp, "Invalid m3clk value");
        error_append_hint(errp, "m3clk can not be zero\n");
        return;
    }

    qdev_connect_gpio_out_named(DEVICE(&s->armv7m.nvic), "SYSRESETREQ", 0,
                                qemu_allocate_irq(&do_sys_reset, NULL, 0));

    system_clock_scale = NANOSECONDS_PER_SECOND / s->m3clk;

    for (i = 0; i < MSF2_NUM_UARTS; i++) {
        if (serial_hd(i)) {
            serial_mm_init(get_system_memory(), uart_addr[i], 2,
                           qdev_get_gpio_in(armv7m, uart_irq[i]),
                           115200, serial_hd(i), DEVICE_NATIVE_ENDIAN);
        }
    }

    dev = DEVICE(&s->timer);
    /* APB0 clock is the timer input clock */
    qdev_prop_set_uint32(dev, "clock-frequency", s->m3clk / s->apb0div);
    object_property_set_bool(OBJECT(&s->timer), true, "realized", &err);
    if (err != NULL) {
        error_propagate(errp, err);
        return;
    }
    busdev = SYS_BUS_DEVICE(dev);
    sysbus_mmio_map(busdev, 0, MSF2_TIMER_BASE);
    sysbus_connect_irq(busdev, 0,
                           qdev_get_gpio_in(armv7m, timer_irq[0]));
    sysbus_connect_irq(busdev, 1,
                           qdev_get_gpio_in(armv7m, timer_irq[1]));

    dev = DEVICE(&s->sysreg);
    qdev_prop_set_uint32(dev, "apb0divisor", s->apb0div);
    qdev_prop_set_uint32(dev, "apb1divisor", s->apb1div);
    object_property_set_bool(OBJECT(&s->sysreg), true, "realized", &err);
    if (err != NULL) {
        error_propagate(errp, err);
        return;
    }
    busdev = SYS_BUS_DEVICE(dev);
    sysbus_mmio_map(busdev, 0, MSF2_SYSREG_BASE);

    for (i = 0; i < MSF2_NUM_SPIS; i++) {
        gchar *bus_name;

        object_property_set_bool(OBJECT(&s->spi[i]), true, "realized", &err);
        if (err != NULL) {
            error_propagate(errp, err);
            return;
        }

        sysbus_mmio_map(SYS_BUS_DEVICE(&s->spi[i]), 0, spi_addr[i]);
        sysbus_connect_irq(SYS_BUS_DEVICE(&s->spi[i]), 0,
                           qdev_get_gpio_in(armv7m, spi_irq[i]));

        /* Alias controller SPI bus to the SoC itself */
        bus_name = g_strdup_printf("spi%d", i);
        object_property_add_alias(OBJECT(s), bus_name,
                                  OBJECT(&s->spi[i]), "spi",
                                  &error_abort);
        g_free(bus_name);
    }

    /* Below devices are not modelled yet. */
    create_unimplemented_device("i2c_0", 0x40002000, 0x1000);
    create_unimplemented_device("dma", 0x40003000, 0x1000);
    create_unimplemented_device("watchdog", 0x40005000, 0x1000);
    create_unimplemented_device("i2c_1", 0x40012000, 0x1000);
    create_unimplemented_device("gpio", 0x40013000, 0x1000);
    create_unimplemented_device("hs-dma", 0x40014000, 0x1000);
    create_unimplemented_device("can", 0x40015000, 0x1000);
    create_unimplemented_device("rtc", 0x40017000, 0x1000);
    create_unimplemented_device("apb_config", 0x40020000, 0x10000);
    create_unimplemented_device("emac", 0x40041000, 0x1000);
    create_unimplemented_device("usb", 0x40043000, 0x1000);
}
예제 #16
0
파일: a9mpcore.c 프로젝트: Distrotech/qemu
static void a9mp_priv_realize(DeviceState *dev, Error **errp)
{
    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
    A9MPPrivState *s = A9MPCORE_PRIV(dev);
    DeviceState *scudev, *gicdev, *gtimerdev, *mptimerdev, *wdtdev;
    SysBusDevice *scubusdev, *gicbusdev, *gtimerbusdev, *mptimerbusdev,
                 *wdtbusdev;
    Error *err = NULL;
    int i;
    bool has_el3;
    Object *cpuobj;

    scudev = DEVICE(&s->scu);
    qdev_prop_set_uint32(scudev, "num-cpu", s->num_cpu);
    object_property_set_bool(OBJECT(&s->scu), true, "realized", &err);
    if (err != NULL) {
        error_propagate(errp, err);
        return;
    }
    scubusdev = SYS_BUS_DEVICE(&s->scu);

    gicdev = DEVICE(&s->gic);
    qdev_prop_set_uint32(gicdev, "num-cpu", s->num_cpu);
    qdev_prop_set_uint32(gicdev, "num-irq", s->num_irq);

    /* Make the GIC's TZ support match the CPUs. We assume that
     * either all the CPUs have TZ, or none do.
     */
    cpuobj = OBJECT(qemu_get_cpu(0));
    has_el3 = object_property_find(cpuobj, "has_el3", NULL) &&
        object_property_get_bool(cpuobj, "has_el3", &error_abort);
    qdev_prop_set_bit(gicdev, "has-security-extensions", has_el3);

    object_property_set_bool(OBJECT(&s->gic), true, "realized", &err);
    if (err != NULL) {
        error_propagate(errp, err);
        return;
    }
    gicbusdev = SYS_BUS_DEVICE(&s->gic);

    /* Pass through outbound IRQ lines from the GIC */
    sysbus_pass_irq(sbd, gicbusdev);

    /* Pass through inbound GPIO lines to the GIC */
    qdev_init_gpio_in(dev, a9mp_priv_set_irq, s->num_irq - 32);

    gtimerdev = DEVICE(&s->gtimer);
    qdev_prop_set_uint32(gtimerdev, "num-cpu", s->num_cpu);
    object_property_set_bool(OBJECT(&s->gtimer), true, "realized", &err);
    if (err != NULL) {
        error_propagate(errp, err);
        return;
    }
    gtimerbusdev = SYS_BUS_DEVICE(&s->gtimer);

    mptimerdev = DEVICE(&s->mptimer);
    qdev_prop_set_uint32(mptimerdev, "num-cpu", s->num_cpu);
    object_property_set_bool(OBJECT(&s->mptimer), true, "realized", &err);
    if (err != NULL) {
        error_propagate(errp, err);
        return;
    }
    mptimerbusdev = SYS_BUS_DEVICE(&s->mptimer);

    wdtdev = DEVICE(&s->wdt);
    qdev_prop_set_uint32(wdtdev, "num-cpu", s->num_cpu);
    object_property_set_bool(OBJECT(&s->wdt), true, "realized", &err);
    if (err != NULL) {
        error_propagate(errp, err);
        return;
    }
    wdtbusdev = SYS_BUS_DEVICE(&s->wdt);

    /* Memory map (addresses are offsets from PERIPHBASE):
     *  0x0000-0x00ff -- Snoop Control Unit
     *  0x0100-0x01ff -- GIC CPU interface
     *  0x0200-0x02ff -- Global Timer
     *  0x0300-0x05ff -- nothing
     *  0x0600-0x06ff -- private timers and watchdogs
     *  0x0700-0x0fff -- nothing
     *  0x1000-0x1fff -- GIC Distributor
     */
    memory_region_add_subregion(&s->container, 0,
                                sysbus_mmio_get_region(scubusdev, 0));
    /* GIC CPU interface */
    memory_region_add_subregion(&s->container, 0x100,
                                sysbus_mmio_get_region(gicbusdev, 1));
    memory_region_add_subregion(&s->container, 0x200,
                                sysbus_mmio_get_region(gtimerbusdev, 0));
    /* Note that the A9 exposes only the "timer/watchdog for this core"
     * memory region, not the "timer/watchdog for core X" ones 11MPcore has.
     */
    memory_region_add_subregion(&s->container, 0x600,
                                sysbus_mmio_get_region(mptimerbusdev, 0));
    memory_region_add_subregion(&s->container, 0x620,
                                sysbus_mmio_get_region(wdtbusdev, 0));
    memory_region_add_subregion(&s->container, 0x1000,
                                sysbus_mmio_get_region(gicbusdev, 0));

    /* Wire up the interrupt from each watchdog and timer.
     * For each core the global timer is PPI 27, the private
     * timer is PPI 29 and the watchdog PPI 30.
     */
    for (i = 0; i < s->num_cpu; i++) {
        int ppibase = (s->num_irq - 32) + i * 32;
        sysbus_connect_irq(gtimerbusdev, i,
                           qdev_get_gpio_in(gicdev, ppibase + 27));
        sysbus_connect_irq(mptimerbusdev, i,
                           qdev_get_gpio_in(gicdev, ppibase + 29));
        sysbus_connect_irq(wdtbusdev, i,
                           qdev_get_gpio_in(gicdev, ppibase + 30));
    }
}
예제 #17
0
static void ppc_heathrow_init(MachineState *machine)
{
    ram_addr_t ram_size = machine->ram_size;
    const char *kernel_filename = machine->kernel_filename;
    const char *kernel_cmdline = machine->kernel_cmdline;
    const char *initrd_filename = machine->initrd_filename;
    const char *boot_device = machine->boot_order;
    MemoryRegion *sysmem = get_system_memory();
    PowerPCCPU *cpu = NULL;
    CPUPPCState *env = NULL;
    char *filename;
    int linux_boot, i;
    MemoryRegion *ram = g_new(MemoryRegion, 1);
    MemoryRegion *bios = g_new(MemoryRegion, 1);
    uint32_t kernel_base, initrd_base, cmdline_base = 0;
    int32_t kernel_size, initrd_size;
    PCIBus *pci_bus;
    OldWorldMacIOState *macio;
    MACIOIDEState *macio_ide;
    SysBusDevice *s;
    DeviceState *dev, *pic_dev;
    BusState *adb_bus;
    int bios_size;
    uint16_t ppc_boot_device;
    DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
    void *fw_cfg;
    uint64_t tbfreq;

    linux_boot = (kernel_filename != NULL);

    /* init CPUs */
    for (i = 0; i < smp_cpus; i++) {
        cpu = POWERPC_CPU(cpu_create(machine->cpu_type));
        env = &cpu->env;

        /* Set time-base frequency to 16.6 Mhz */
        cpu_ppc_tb_init(env,  TBFREQ);
        qemu_register_reset(ppc_heathrow_reset, cpu);
    }

    /* allocate RAM */
    if (ram_size > 2047 * MiB) {
        error_report("Too much memory for this machine: %" PRId64 " MB, "
                     "maximum 2047 MB", ram_size / MiB);
        exit(1);
    }

    memory_region_allocate_system_memory(ram, NULL, "ppc_heathrow.ram",
                                         ram_size);
    memory_region_add_subregion(sysmem, 0, ram);

    /* allocate and load BIOS */
    memory_region_init_ram(bios, NULL, "ppc_heathrow.bios", BIOS_SIZE,
                           &error_fatal);

    if (bios_name == NULL)
        bios_name = PROM_FILENAME;
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
    memory_region_set_readonly(bios, true);
    memory_region_add_subregion(sysmem, PROM_ADDR, bios);

    /* Load OpenBIOS (ELF) */
    if (filename) {
        bios_size = load_elf(filename, NULL, 0, NULL, NULL, NULL, NULL,
                             1, PPC_ELF_MACHINE, 0, 0);
        g_free(filename);
    } else {
        bios_size = -1;
    }
    if (bios_size < 0 || bios_size > BIOS_SIZE) {
        error_report("could not load PowerPC bios '%s'", bios_name);
        exit(1);
    }

    if (linux_boot) {
        uint64_t lowaddr = 0;
        int bswap_needed;

#ifdef BSWAP_NEEDED
        bswap_needed = 1;
#else
        bswap_needed = 0;
#endif
        kernel_base = KERNEL_LOAD_ADDR;
        kernel_size = load_elf(kernel_filename, NULL,
                               translate_kernel_address, NULL,
                               NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE,
                               0, 0);
        if (kernel_size < 0)
            kernel_size = load_aout(kernel_filename, kernel_base,
                                    ram_size - kernel_base, bswap_needed,
                                    TARGET_PAGE_SIZE);
        if (kernel_size < 0)
            kernel_size = load_image_targphys(kernel_filename,
                                              kernel_base,
                                              ram_size - kernel_base);
        if (kernel_size < 0) {
            error_report("could not load kernel '%s'", kernel_filename);
            exit(1);
        }
        /* load initrd */
        if (initrd_filename) {
            initrd_base = TARGET_PAGE_ALIGN(kernel_base + kernel_size + KERNEL_GAP);
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
                                              ram_size - initrd_base);
            if (initrd_size < 0) {
                error_report("could not load initial ram disk '%s'",
                             initrd_filename);
                exit(1);
            }
            cmdline_base = TARGET_PAGE_ALIGN(initrd_base + initrd_size);
        } else {
            initrd_base = 0;
            initrd_size = 0;
            cmdline_base = TARGET_PAGE_ALIGN(kernel_base + kernel_size + KERNEL_GAP);
        }
        ppc_boot_device = 'm';
    } else {
        kernel_base = 0;
        kernel_size = 0;
        initrd_base = 0;
        initrd_size = 0;
        ppc_boot_device = '\0';
        for (i = 0; boot_device[i] != '\0'; i++) {
            /* TOFIX: for now, the second IDE channel is not properly
             *        used by OHW. The Mac floppy disk are not emulated.
             *        For now, OHW cannot boot from the network.
             */
#if 0
            if (boot_device[i] >= 'a' && boot_device[i] <= 'f') {
                ppc_boot_device = boot_device[i];
                break;
            }
#else
            if (boot_device[i] >= 'c' && boot_device[i] <= 'd') {
                ppc_boot_device = boot_device[i];
                break;
            }
#endif
        }
        if (ppc_boot_device == '\0') {
            error_report("No valid boot device for G3 Beige machine");
            exit(1);
        }
    }

    /* XXX: we register only 1 output pin for heathrow PIC */
    pic_dev = qdev_create(NULL, TYPE_HEATHROW);
    qdev_init_nofail(pic_dev);

    /* Connect the heathrow PIC outputs to the 6xx bus */
    for (i = 0; i < smp_cpus; i++) {
        switch (PPC_INPUT(env)) {
        case PPC_FLAGS_INPUT_6xx:
            qdev_connect_gpio_out(pic_dev, 0,
                ((qemu_irq *)env->irq_inputs)[PPC6xx_INPUT_INT]);
            break;
        default:
            error_report("Bus model not supported on OldWorld Mac machine");
            exit(1);
        }
    }

    /* Timebase Frequency */
    if (kvm_enabled()) {
        tbfreq = kvmppc_get_tbfreq();
    } else {
        tbfreq = TBFREQ;
    }

    /* init basic PC hardware */
    if (PPC_INPUT(env) != PPC_FLAGS_INPUT_6xx) {
        error_report("Only 6xx bus is supported on heathrow machine");
        exit(1);
    }

    /* Grackle PCI host bridge */
    dev = qdev_create(NULL, TYPE_GRACKLE_PCI_HOST_BRIDGE);
    qdev_prop_set_uint32(dev, "ofw-addr", 0x80000000);
    object_property_set_link(OBJECT(dev), OBJECT(pic_dev), "pic",
                             &error_abort);
    qdev_init_nofail(dev);
    s = SYS_BUS_DEVICE(dev);
    sysbus_mmio_map(s, 0, GRACKLE_BASE);
    sysbus_mmio_map(s, 1, GRACKLE_BASE + 0x200000);
    /* PCI hole */
    memory_region_add_subregion(get_system_memory(), 0x80000000ULL,
                                sysbus_mmio_get_region(s, 2));
    /* Register 2 MB of ISA IO space */
    memory_region_add_subregion(get_system_memory(), 0xfe000000,
                                sysbus_mmio_get_region(s, 3));

    pci_bus = PCI_HOST_BRIDGE(dev)->bus;

    pci_vga_init(pci_bus);

    for (i = 0; i < nb_nics; i++) {
        pci_nic_init_nofail(&nd_table[i], pci_bus, "ne2k_pci", NULL);
    }

    ide_drive_get(hd, ARRAY_SIZE(hd));

    /* MacIO */
    macio = OLDWORLD_MACIO(pci_create(pci_bus, -1, TYPE_OLDWORLD_MACIO));
    dev = DEVICE(macio);
    qdev_prop_set_uint64(dev, "frequency", tbfreq);
    object_property_set_link(OBJECT(macio), OBJECT(pic_dev), "pic",
                             &error_abort);
    qdev_init_nofail(dev);

    macio_ide = MACIO_IDE(object_resolve_path_component(OBJECT(macio),
                                                        "ide[0]"));
    macio_ide_init_drives(macio_ide, hd);

    macio_ide = MACIO_IDE(object_resolve_path_component(OBJECT(macio),
                                                        "ide[1]"));
    macio_ide_init_drives(macio_ide, &hd[MAX_IDE_DEVS]);

    dev = DEVICE(object_resolve_path_component(OBJECT(macio), "cuda"));
    adb_bus = qdev_get_child_bus(dev, "adb.0");
    dev = qdev_create(adb_bus, TYPE_ADB_KEYBOARD);
    qdev_init_nofail(dev);
    dev = qdev_create(adb_bus, TYPE_ADB_MOUSE);
    qdev_init_nofail(dev);

    if (machine_usb(machine)) {
        pci_create_simple(pci_bus, -1, "pci-ohci");
    }

    if (graphic_depth != 15 && graphic_depth != 32 && graphic_depth != 8)
        graphic_depth = 15;

    /* No PCI init: the BIOS will do it */

    dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
    fw_cfg = FW_CFG(dev);
    qdev_prop_set_uint32(dev, "data_width", 1);
    qdev_prop_set_bit(dev, "dma_enabled", false);
    object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
                              OBJECT(fw_cfg), NULL);
    qdev_init_nofail(dev);
    s = SYS_BUS_DEVICE(dev);
    sysbus_mmio_map(s, 0, CFG_ADDR);
    sysbus_mmio_map(s, 1, CFG_ADDR + 2);

    fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
    fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
    fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, ARCH_HEATHROW);
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, kernel_base);
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
    if (kernel_cmdline) {
        fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, cmdline_base);
        pstrcpy_targphys("cmdline", cmdline_base, TARGET_PAGE_SIZE, kernel_cmdline);
    } else {
        fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
    }
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_base);
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
    fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, ppc_boot_device);

    fw_cfg_add_i16(fw_cfg, FW_CFG_PPC_WIDTH, graphic_width);
    fw_cfg_add_i16(fw_cfg, FW_CFG_PPC_HEIGHT, graphic_height);
    fw_cfg_add_i16(fw_cfg, FW_CFG_PPC_DEPTH, graphic_depth);

    fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_IS_KVM, kvm_enabled());
    if (kvm_enabled()) {
#ifdef CONFIG_KVM
        uint8_t *hypercall;

        hypercall = g_malloc(16);
        kvmppc_get_hypercall(env, hypercall, 16);
        fw_cfg_add_bytes(fw_cfg, FW_CFG_PPC_KVM_HC, hypercall, 16);
        fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_KVM_PID, getpid());
#endif
    }
    fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_TBFREQ, tbfreq);
    /* Mac OS X requires a "known good" clock-frequency value; pass it one. */
    fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_CLOCKFREQ, CLOCKFREQ);
    fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_BUSFREQ, BUSFREQ);

    /* MacOS NDRV VGA driver */
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, NDRV_VGA_FILENAME);
    if (filename) {
        gchar *ndrv_file;
        gsize ndrv_size;

        if (g_file_get_contents(filename, &ndrv_file, &ndrv_size, NULL)) {
            fw_cfg_add_file(fw_cfg, "ndrv/qemu_vga.ndrv", ndrv_file, ndrv_size);
        }
        g_free(filename);
    }

    qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
}
예제 #18
0
파일: a15mpcore.c 프로젝트: CTU-IIG/qemu
static void a15mp_priv_realize(DeviceState *dev, Error **errp)
{
    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
    A15MPPrivState *s = A15MPCORE_PRIV(dev);
    DeviceState *gicdev;
    SysBusDevice *busdev;
    int i;
    Error *err = NULL;
    bool has_el3;
    bool has_el2 = false;
    Object *cpuobj;

    gicdev = DEVICE(&s->gic);
    qdev_prop_set_uint32(gicdev, "num-cpu", s->num_cpu);
    qdev_prop_set_uint32(gicdev, "num-irq", s->num_irq);

    if (!kvm_irqchip_in_kernel()) {
        /* Make the GIC's TZ support match the CPUs. We assume that
         * either all the CPUs have TZ, or none do.
         */
        cpuobj = OBJECT(qemu_get_cpu(0));
        has_el3 = object_property_find(cpuobj, "has_el3", NULL) &&
            object_property_get_bool(cpuobj, "has_el3", &error_abort);
        qdev_prop_set_bit(gicdev, "has-security-extensions", has_el3);
        /* Similarly for virtualization support */
        has_el2 = object_property_find(cpuobj, "has_el2", NULL) &&
            object_property_get_bool(cpuobj, "has_el2", &error_abort);
        qdev_prop_set_bit(gicdev, "has-virtualization-extensions", has_el2);
    }

    object_property_set_bool(OBJECT(&s->gic), true, "realized", &err);
    if (err != NULL) {
        error_propagate(errp, err);
        return;
    }
    busdev = SYS_BUS_DEVICE(&s->gic);

    /* Pass through outbound IRQ lines from the GIC */
    sysbus_pass_irq(sbd, busdev);

    /* Pass through inbound GPIO lines to the GIC */
    qdev_init_gpio_in(dev, a15mp_priv_set_irq, s->num_irq - 32);

    /* Wire the outputs from each CPU's generic timer to the
     * appropriate GIC PPI inputs
     */
    for (i = 0; i < s->num_cpu; i++) {
        DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
        int ppibase = s->num_irq - 32 + i * 32;
        int irq;
        /* Mapping from the output timer irq lines from the CPU to the
         * GIC PPI inputs used on the A15:
         */
        const int timer_irq[] = {
            [GTIMER_PHYS] = 30,
            [GTIMER_VIRT] = 27,
            [GTIMER_HYP]  = 26,
            [GTIMER_SEC]  = 29,
        };
        for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
            qdev_connect_gpio_out(cpudev, irq,
                                  qdev_get_gpio_in(gicdev,
                                                   ppibase + timer_irq[irq]));
        }
        if (has_el2) {
            /* Connect the GIC maintenance interrupt to PPI ID 25 */
            sysbus_connect_irq(SYS_BUS_DEVICE(gicdev), i + 4 * s->num_cpu,
                               qdev_get_gpio_in(gicdev, ppibase + 25));
        }
    }

    /* Memory map (addresses are offsets from PERIPHBASE):
     *  0x0000-0x0fff -- reserved
     *  0x1000-0x1fff -- GIC Distributor
     *  0x2000-0x3fff -- GIC CPU interface
     *  0x4000-0x4fff -- GIC virtual interface control for this CPU
     *  0x5000-0x51ff -- GIC virtual interface control for CPU 0
     *  0x5200-0x53ff -- GIC virtual interface control for CPU 1
     *  0x5400-0x55ff -- GIC virtual interface control for CPU 2
     *  0x5600-0x57ff -- GIC virtual interface control for CPU 3
     *  0x6000-0x7fff -- GIC virtual CPU interface
     */
    memory_region_add_subregion(&s->container, 0x1000,
                                sysbus_mmio_get_region(busdev, 0));
    memory_region_add_subregion(&s->container, 0x2000,
                                sysbus_mmio_get_region(busdev, 1));
    if (has_el2) {
        memory_region_add_subregion(&s->container, 0x4000,
                                    sysbus_mmio_get_region(busdev, 2));
        memory_region_add_subregion(&s->container, 0x6000,
                                    sysbus_mmio_get_region(busdev, 3));
        for (i = 0; i < s->num_cpu; i++) {
            hwaddr base = 0x5000 + i * 0x200;
            MemoryRegion *mr = sysbus_mmio_get_region(busdev,
                                                      4 + s->num_cpu + i);
            memory_region_add_subregion(&s->container, base, mr);
        }
    }
}