예제 #1
0
/*
 * Create a new thread.
 * Doesn't start the thread running.
 */
static kern_return_t
thread_create_internal(
	task_t					parent_task,
	integer_t				priority,
	thread_continue_t		continuation,
	thread_t				*out_thread)
{
	thread_t				new_thread;
	static thread_t			first_thread;

	/*
	 *	Allocate a thread and initialize static fields
	 */
	if (first_thread == NULL)
		new_thread = first_thread = current_thread();
	else
		new_thread = (thread_t)zalloc(thread_zone);
	if (new_thread == NULL)
		return (KERN_RESOURCE_SHORTAGE);

	if (new_thread != first_thread)
		*new_thread = thread_template;

#ifdef MACH_BSD
    {
		new_thread->uthread = uthread_alloc(parent_task, new_thread);
		if (new_thread->uthread == NULL) {
			zfree(thread_zone, new_thread);
			return (KERN_RESOURCE_SHORTAGE);
		}
	}
#endif  /* MACH_BSD */

	if (machine_thread_create(new_thread, parent_task) != KERN_SUCCESS) {
#ifdef MACH_BSD
		{
			void *ut = new_thread->uthread;

			new_thread->uthread = NULL;
			/* cred free may not be necessary */
			uthread_cleanup(parent_task, ut, parent_task->bsd_info);
			uthread_cred_free(ut);
			uthread_zone_free(ut);
		}
#endif  /* MACH_BSD */
		zfree(thread_zone, new_thread);
		return (KERN_FAILURE);
	}

    new_thread->task = parent_task;

	thread_lock_init(new_thread);
	wake_lock_init(new_thread);

	mutex_init(&new_thread->mutex, 0);

	ipc_thread_init(new_thread);
	queue_init(&new_thread->held_ulocks);

	new_thread->continuation = continuation;

	mutex_lock(&tasks_threads_lock);
	task_lock(parent_task);

	if (	!parent_task->active							||
			(parent_task->thread_count >= THREAD_MAX	&&
			 parent_task != kernel_task)) {
		task_unlock(parent_task);
		mutex_unlock(&tasks_threads_lock);

#ifdef MACH_BSD
		{
			void *ut = new_thread->uthread;

			new_thread->uthread = NULL;
			uthread_cleanup(parent_task, ut, parent_task->bsd_info);
			/* cred free may not be necessary */
			uthread_cred_free(ut);
			uthread_zone_free(ut);
		}
#endif  /* MACH_BSD */
		ipc_thread_disable(new_thread);
		ipc_thread_terminate(new_thread);
		machine_thread_destroy(new_thread);
		zfree(thread_zone, new_thread);
		return (KERN_FAILURE);
	}

	task_reference_internal(parent_task);

	/* Cache the task's map */
	new_thread->map = parent_task->map;

	/* Chain the thread onto the task's list */
	queue_enter(&parent_task->threads, new_thread, thread_t, task_threads);
	parent_task->thread_count++;
	
	/* So terminating threads don't need to take the task lock to decrement */
	hw_atomic_add(&parent_task->active_thread_count, 1);

	queue_enter(&threads, new_thread, thread_t, threads);
	threads_count++;

	timer_call_setup(&new_thread->wait_timer, thread_timer_expire, new_thread);
	timer_call_setup(&new_thread->depress_timer, thread_depress_expire, new_thread);

	/* Set the thread's scheduling parameters */
	if (parent_task != kernel_task)
		new_thread->sched_mode |= TH_MODE_TIMESHARE;
	new_thread->max_priority = parent_task->max_priority;
	new_thread->task_priority = parent_task->priority;
	new_thread->priority = (priority < 0)? parent_task->priority: priority;
	if (new_thread->priority > new_thread->max_priority)
		new_thread->priority = new_thread->max_priority;
	new_thread->importance =
					new_thread->priority - new_thread->task_priority;
	new_thread->sched_stamp = sched_tick;
	new_thread->pri_shift = sched_pri_shift;
	compute_priority(new_thread, FALSE);

	new_thread->active = TRUE;

	*out_thread = new_thread;

	{
		long	dbg_arg1, dbg_arg2, dbg_arg3, dbg_arg4;

		kdbg_trace_data(parent_task->bsd_info, &dbg_arg2);

		KERNEL_DEBUG_CONSTANT(
					TRACEDBG_CODE(DBG_TRACE_DATA, 1) | DBG_FUNC_NONE,
							(vm_address_t)new_thread, dbg_arg2, 0, 0, 0);

		kdbg_trace_string(parent_task->bsd_info,
							&dbg_arg1, &dbg_arg2, &dbg_arg3, &dbg_arg4);

		KERNEL_DEBUG_CONSTANT(
					TRACEDBG_CODE(DBG_TRACE_STRING, 1) | DBG_FUNC_NONE,
							dbg_arg1, dbg_arg2, dbg_arg3, dbg_arg4, 0);
	}

	DTRACE_PROC1(lwp__create, thread_t, *out_thread);

	return (KERN_SUCCESS);
}
예제 #2
0
파일: machine.c 프로젝트: rohsaini/mkunity
/*
 *	processor_request_action - common internals of processor_assign
 *		and processor_shutdown.  If new_pset is null, this is
 *		a shutdown, else it's an assign and caller must donate
 *		a reference.  For assign operations, it returns 
 *		an old pset that must be deallocated if it's not NULL.  For
 *		shutdown operations, it always returns PROCESSOR_SET_NULL.
 */
processor_set_t
processor_request_action(
	processor_t	processor,
	processor_set_t	new_pset)
{
    register processor_set_t pset, old_next_pset;

    /*
     *	Processor must be in a processor set.  Must lock its idle lock to
     *	get at processor state.
     */
    pset = processor->processor_set;
    simple_lock(&pset->idle_lock);

    /*
     *	If the processor is dispatching, let it finish - it will set its
     *	state to running very soon.
     */
    while (*(volatile int *)&processor->state == PROCESSOR_DISPATCHING)
    	continue;

    /*
     *	Now lock the action queue and do the dirty work.
     */
    simple_lock(&action_lock);

    switch (processor->state) {
	case PROCESSOR_IDLE:
	    /*
	     *	Remove from idle queue.
	     */
	    queue_remove(&pset->idle_queue, processor, 	processor_t,
		processor_queue);
	    pset->idle_count--;

	    /* fall through ... */
	case PROCESSOR_RUNNING:
	    /*
	     *	Put it on the action queue.
	     */
	    queue_enter(&action_queue, processor, processor_t,
		processor_queue);

	    /* fall through ... */
	case PROCESSOR_ASSIGN:
	    /*
	     * And ask the action_thread to do the work.
	     */

	    if (new_pset == PROCESSOR_SET_NULL) {
		processor->state = PROCESSOR_SHUTDOWN;
		old_next_pset = PROCESSOR_SET_NULL;
	    }
	    else {
		processor->state = PROCESSOR_ASSIGN;
	        old_next_pset = processor->processor_set_next;
	        processor->processor_set_next = new_pset;
	    }
	    break;

	default:
	    printf("state: %d\n", processor->state);
	    panic("processor_request_action: bad state");
    }
    simple_unlock(&action_lock);
    simple_unlock(&pset->idle_lock);

    thread_wakeup((event_t)&action_queue);

    return(old_next_pset);
}
예제 #3
0
파일: wait_queue.c 프로젝트: Prajna/xnu
/*
 *	Routine:	_wait_queue_select64_all
 *	Purpose:
 *		Select all threads off a wait queue that meet the
 *		supplied criteria.
 *	Conditions:
 *		at splsched
 *		wait queue locked
 *		wake_queue initialized and ready for insertion
 *		possibly recursive
 *	Returns:
 *		a queue of locked threads
 */
static void
_wait_queue_select64_all(
	wait_queue_t wq,
	event64_t event,
	queue_t wake_queue)
{
	wait_queue_element_t wq_element;
	wait_queue_element_t wqe_next;
	queue_t q;

	q = &wq->wq_queue;

	wq_element = (wait_queue_element_t) queue_first(q);
	while (!queue_end(q, (queue_entry_t)wq_element)) {
		WAIT_QUEUE_ELEMENT_CHECK(wq, wq_element);
		wqe_next = (wait_queue_element_t)
			   queue_next((queue_t) wq_element);

		/*
		 * We may have to recurse if this is a compound wait queue.
		 */
		if (wq_element->wqe_type == WAIT_QUEUE_LINK ||
		    wq_element->wqe_type == WAIT_QUEUE_LINK_NOALLOC) {
			wait_queue_link_t wql = (wait_queue_link_t)wq_element;
			wait_queue_set_t set_queue = wql->wql_setqueue;

			/*
			 * We have to check the set wait queue. If it is marked
			 * as pre-post, and it is the "generic event" then mark
			 * it pre-posted now (if not already).
			 */
			wqs_lock(set_queue);
			if (event == NO_EVENT64 && set_queue->wqs_prepost && !wql_is_preposted(wql)) {
				queue_t ppq = &set_queue->wqs_preposts;
				queue_enter(ppq, wql, wait_queue_link_t, wql_preposts);
			}
			if (! wait_queue_empty(&set_queue->wqs_wait_queue)) 
				_wait_queue_select64_all(&set_queue->wqs_wait_queue, event, wake_queue);
			wqs_unlock(set_queue);
		} else {
			
			/*
			 * Otherwise, its a thread.  If it is waiting on
			 * the event we are posting to this queue, pull
			 * it off the queue and stick it in out wake_queue.
			 */
			thread_t t = (thread_t)wq_element;

			if (t->wait_event == event) {
				thread_lock(t);
				remqueue((queue_entry_t) t);
				enqueue (wake_queue, (queue_entry_t) t);
				t->wait_queue = WAIT_QUEUE_NULL;
				t->wait_event = NO_EVENT64;
				t->at_safe_point = FALSE;
				/* returned locked */
			}
		}
		wq_element = wqe_next;
	}
}
예제 #4
0
파일: wait_queue.c 프로젝트: Prajna/xnu
/*
 *	Routine:	_wait_queue_select64_one
 *	Purpose:
 *		Select the best thread off a wait queue that meet the
 *		supplied criteria.
 * 	Conditions:
 *		at splsched
 *		wait queue locked
 *		possibly recursive
 * 	Returns:
 *		a locked thread - if one found
 *	Note:
 *		This is where the sync policy of the wait queue comes
 *		into effect.  For now, we just assume FIFO/LIFO.
 */
static thread_t
_wait_queue_select64_one(
	wait_queue_t wq,
	event64_t event)
{
	wait_queue_element_t wq_element;
	wait_queue_element_t wqe_next;
	thread_t t = THREAD_NULL;
	queue_t q;

	q = &wq->wq_queue;

	wq_element = (wait_queue_element_t) queue_first(q);
	while (!queue_end(q, (queue_entry_t)wq_element)) {
		WAIT_QUEUE_ELEMENT_CHECK(wq, wq_element);
		wqe_next = (wait_queue_element_t)
			       queue_next((queue_t) wq_element);

		/*
		 * We may have to recurse if this is a compound wait queue.
		 */
		if (wq_element->wqe_type == WAIT_QUEUE_LINK ||
		    wq_element->wqe_type == WAIT_QUEUE_LINK_NOALLOC) {
			wait_queue_link_t wql = (wait_queue_link_t)wq_element;
			wait_queue_set_t set_queue = wql->wql_setqueue;

			/*
			 * We have to check the set wait queue. If the set
			 * supports pre-posting, it isn't already preposted,
			 * and we didn't find a thread in the set, then mark it.
			 *
			 * If we later find a thread, there may be a spurious
			 * pre-post here on this set.  The wait side has to check
			 * for that either pre- or post-wait.
			 */
			wqs_lock(set_queue);
			if (! wait_queue_empty(&set_queue->wqs_wait_queue)) {
				t = _wait_queue_select64_one(&set_queue->wqs_wait_queue, event);
			}
			if (t != THREAD_NULL) {
				wqs_unlock(set_queue);
				return t;
			}
			if (event == NO_EVENT64 && set_queue->wqs_prepost && !wql_is_preposted(wql)) {
				queue_t ppq = &set_queue->wqs_preposts;
				queue_enter(ppq, wql, wait_queue_link_t, wql_preposts);
			}
			wqs_unlock(set_queue);

		} else {
			
			/*
			 * Otherwise, its a thread.  If it is waiting on
			 * the event we are posting to this queue, pull
			 * it off the queue and stick it in out wake_queue.
			 */
			t = (thread_t)wq_element;
			if (t->wait_event == event) {
				thread_lock(t);
				remqueue((queue_entry_t) t);
				t->wait_queue = WAIT_QUEUE_NULL;
				t->wait_event = NO_EVENT64;
				t->at_safe_point = FALSE;
				return t;	/* still locked */
			}

			t = THREAD_NULL;
		}
		wq_element = wqe_next;
	}
	return THREAD_NULL;
}
예제 #5
0
파일: thread.c 프로젝트: DJHartley/xnu
/*
 * Create a new thread.
 * Doesn't start the thread running.
 */
static kern_return_t
thread_create_internal(
	task_t					parent_task,
	integer_t				priority,
	thread_continue_t		continuation,
	int						options,
#define TH_OPTION_NONE		0x00
#define TH_OPTION_NOCRED	0x01
#define TH_OPTION_NOSUSP	0x02
	thread_t				*out_thread)
{
	thread_t				new_thread;
	static thread_t			first_thread = THREAD_NULL;

	/*
	 *	Allocate a thread and initialize static fields
	 */
	if (first_thread == THREAD_NULL)
		new_thread = first_thread = current_thread();
	new_thread = (thread_t)zalloc(thread_zone);
	if (new_thread == THREAD_NULL)
		return (KERN_RESOURCE_SHORTAGE);

	if (new_thread != first_thread)
		*new_thread = thread_template;

#ifdef MACH_BSD
	new_thread->uthread = uthread_alloc(parent_task, new_thread, (options & TH_OPTION_NOCRED) != 0);
	if (new_thread->uthread == NULL) {
		zfree(thread_zone, new_thread);
		return (KERN_RESOURCE_SHORTAGE);
	}
#endif  /* MACH_BSD */

	if (machine_thread_create(new_thread, parent_task) != KERN_SUCCESS) {
#ifdef MACH_BSD
		void *ut = new_thread->uthread;

		new_thread->uthread = NULL;
		/* cred free may not be necessary */
		uthread_cleanup(parent_task, ut, parent_task->bsd_info);
		uthread_cred_free(ut);
		uthread_zone_free(ut);
#endif  /* MACH_BSD */

		zfree(thread_zone, new_thread);
		return (KERN_FAILURE);
	}

	new_thread->task = parent_task;

	thread_lock_init(new_thread);
	wake_lock_init(new_thread);

	lck_mtx_init(&new_thread->mutex, &thread_lck_grp, &thread_lck_attr);

	ipc_thread_init(new_thread);
	queue_init(&new_thread->held_ulocks);

	new_thread->continuation = continuation;

	lck_mtx_lock(&tasks_threads_lock);
	task_lock(parent_task);

	if (	!parent_task->active || parent_task->halting ||
			((options & TH_OPTION_NOSUSP) != 0 &&
			 	parent_task->suspend_count > 0)	||
			(parent_task->thread_count >= task_threadmax &&
				parent_task != kernel_task)		) {
		task_unlock(parent_task);
		lck_mtx_unlock(&tasks_threads_lock);

#ifdef MACH_BSD
		{
			void *ut = new_thread->uthread;

			new_thread->uthread = NULL;
			uthread_cleanup(parent_task, ut, parent_task->bsd_info);
			/* cred free may not be necessary */
			uthread_cred_free(ut);
			uthread_zone_free(ut);
		}
#endif  /* MACH_BSD */
		ipc_thread_disable(new_thread);
		ipc_thread_terminate(new_thread);
		lck_mtx_destroy(&new_thread->mutex, &thread_lck_grp);
		machine_thread_destroy(new_thread);
		zfree(thread_zone, new_thread);
		return (KERN_FAILURE);
	}

	/* New threads inherit any default state on the task */
	machine_thread_inherit_taskwide(new_thread, parent_task);

	task_reference_internal(parent_task);

	if (new_thread->task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) {
		/*
		 * This task has a per-thread CPU limit; make sure this new thread
		 * gets its limit set too, before it gets out of the kernel.
		 */
		set_astledger(new_thread);
	}
	new_thread->t_threadledger = LEDGER_NULL;	/* per thread ledger is not inherited */
	new_thread->t_ledger = new_thread->task->ledger;
	if (new_thread->t_ledger)
		ledger_reference(new_thread->t_ledger);

	/* Cache the task's map */
	new_thread->map = parent_task->map;

	/* Chain the thread onto the task's list */
	queue_enter(&parent_task->threads, new_thread, thread_t, task_threads);
	parent_task->thread_count++;
	
	/* So terminating threads don't need to take the task lock to decrement */
	hw_atomic_add(&parent_task->active_thread_count, 1);

	/* Protected by the tasks_threads_lock */
	new_thread->thread_id = ++thread_unique_id;

	queue_enter(&threads, new_thread, thread_t, threads);
	threads_count++;

	timer_call_setup(&new_thread->wait_timer, thread_timer_expire, new_thread);
	timer_call_setup(&new_thread->depress_timer, thread_depress_expire, new_thread);

#if CONFIG_COUNTERS
	/*
	 * If parent task has any reservations, they need to be propagated to this
	 * thread.
	 */
	new_thread->t_chud = (TASK_PMC_FLAG == (parent_task->t_chud & TASK_PMC_FLAG)) ? 
		THREAD_PMC_FLAG : 0U;
#endif

	/* Set the thread's scheduling parameters */
	new_thread->sched_mode = SCHED(initial_thread_sched_mode)(parent_task);
	new_thread->sched_flags = 0;
	new_thread->max_priority = parent_task->max_priority;
	new_thread->task_priority = parent_task->priority;
	new_thread->priority = (priority < 0)? parent_task->priority: priority;
	if (new_thread->priority > new_thread->max_priority)
		new_thread->priority = new_thread->max_priority;
#if CONFIG_EMBEDDED 
	if (new_thread->priority < MAXPRI_THROTTLE) {
		new_thread->priority = MAXPRI_THROTTLE;
	}
#endif /* CONFIG_EMBEDDED */
	new_thread->importance =
					new_thread->priority - new_thread->task_priority;
#if CONFIG_EMBEDDED
	new_thread->saved_importance = new_thread->importance;
	/* apple ios daemon starts all threads in darwin background */
	if (parent_task->ext_appliedstate.apptype == PROC_POLICY_IOS_APPLE_DAEMON) {
		/* Cannot use generic routines here so apply darwin bacground directly */
		new_thread->policystate.hw_bg = TASK_POLICY_BACKGROUND_ATTRIBUTE_ALL;
		/* set thread self backgrounding */
		new_thread->appliedstate.hw_bg = new_thread->policystate.hw_bg;
		/* priority will get recomputed suitably bit later */
		new_thread->importance = INT_MIN;
		/* to avoid changes to many pri compute routines, set the effect of those here */
		new_thread->priority = MAXPRI_THROTTLE;
	}
#endif /* CONFIG_EMBEDDED */

#if defined(CONFIG_SCHED_TRADITIONAL)
	new_thread->sched_stamp = sched_tick;
	new_thread->pri_shift = sched_pri_shift;
#endif
	SCHED(compute_priority)(new_thread, FALSE);

	new_thread->active = TRUE;

	*out_thread = new_thread;

	{
		long	dbg_arg1, dbg_arg2, dbg_arg3, dbg_arg4;

		kdbg_trace_data(parent_task->bsd_info, &dbg_arg2);

		KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, 
			TRACEDBG_CODE(DBG_TRACE_DATA, 1) | DBG_FUNC_NONE,
			(vm_address_t)(uintptr_t)thread_tid(new_thread), dbg_arg2, 0, 0, 0);

		kdbg_trace_string(parent_task->bsd_info,
							&dbg_arg1, &dbg_arg2, &dbg_arg3, &dbg_arg4);

		KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, 
			TRACEDBG_CODE(DBG_TRACE_STRING, 1) | DBG_FUNC_NONE,
			dbg_arg1, dbg_arg2, dbg_arg3, dbg_arg4, 0);
	}

	DTRACE_PROC1(lwp__create, thread_t, *out_thread);

	return (KERN_SUCCESS);
}
예제 #6
0
/*
 * Create a new thread.
 * Doesn't start the thread running.
 */
static kern_return_t
thread_create_internal(
	task_t					parent_task,
	integer_t				priority,
	thread_continue_t		continuation,
	int						options,
#define TH_OPTION_NONE		0x00
#define TH_OPTION_NOCRED	0x01
#define TH_OPTION_NOSUSP	0x02
	thread_t				*out_thread)
{
	thread_t				new_thread;
	static thread_t			first_thread;

	/*
	 *	Allocate a thread and initialize static fields
	 */
	if (first_thread == THREAD_NULL)
		new_thread = first_thread = current_thread();
	else
		new_thread = (thread_t)zalloc(thread_zone);
	if (new_thread == THREAD_NULL)
		return (KERN_RESOURCE_SHORTAGE);

	if (new_thread != first_thread)
		*new_thread = thread_template;

#ifdef MACH_BSD
	new_thread->uthread = uthread_alloc(parent_task, new_thread, (options & TH_OPTION_NOCRED) != 0);
	if (new_thread->uthread == NULL) {
		zfree(thread_zone, new_thread);
		return (KERN_RESOURCE_SHORTAGE);
	}
#endif  /* MACH_BSD */

	if (machine_thread_create(new_thread, parent_task) != KERN_SUCCESS) {
#ifdef MACH_BSD
		void *ut = new_thread->uthread;

		new_thread->uthread = NULL;
		/* cred free may not be necessary */
		uthread_cleanup(parent_task, ut, parent_task->bsd_info);
		uthread_cred_free(ut);
		uthread_zone_free(ut);
#endif  /* MACH_BSD */

		zfree(thread_zone, new_thread);
		return (KERN_FAILURE);
	}

    new_thread->task = parent_task;

	thread_lock_init(new_thread);
	wake_lock_init(new_thread);

	lck_mtx_init(&new_thread->mutex, &thread_lck_grp, &thread_lck_attr);

	ipc_thread_init(new_thread);
	queue_init(&new_thread->held_ulocks);

	new_thread->continuation = continuation;

	lck_mtx_lock(&tasks_threads_lock);
	task_lock(parent_task);

	if (	!parent_task->active || parent_task->halting ||
			((options & TH_OPTION_NOSUSP) != 0 &&
			 	parent_task->suspend_count > 0)	||
			(parent_task->thread_count >= task_threadmax &&
				parent_task != kernel_task)		) {
		task_unlock(parent_task);
		lck_mtx_unlock(&tasks_threads_lock);

#ifdef MACH_BSD
		{
			void *ut = new_thread->uthread;

			new_thread->uthread = NULL;
			uthread_cleanup(parent_task, ut, parent_task->bsd_info);
			/* cred free may not be necessary */
			uthread_cred_free(ut);
			uthread_zone_free(ut);
		}
#endif  /* MACH_BSD */
		ipc_thread_disable(new_thread);
		ipc_thread_terminate(new_thread);
		lck_mtx_destroy(&new_thread->mutex, &thread_lck_grp);
		machine_thread_destroy(new_thread);
		zfree(thread_zone, new_thread);
		return (KERN_FAILURE);
	}

	/* New threads inherit any default state on the task */
	machine_thread_inherit_taskwide(new_thread, parent_task);

	task_reference_internal(parent_task);

	/* Cache the task's map */
	new_thread->map = parent_task->map;

	/* Chain the thread onto the task's list */
	queue_enter(&parent_task->threads, new_thread, thread_t, task_threads);
	parent_task->thread_count++;
	
	/* So terminating threads don't need to take the task lock to decrement */
	hw_atomic_add(&parent_task->active_thread_count, 1);

	/* Protected by the tasks_threads_lock */
	new_thread->thread_id = ++thread_unique_id;

	queue_enter(&threads, new_thread, thread_t, threads);
	threads_count++;

	timer_call_setup(&new_thread->wait_timer, thread_timer_expire, new_thread);
	timer_call_setup(&new_thread->depress_timer, thread_depress_expire, new_thread);

#if CONFIG_COUNTERS
	/*
	 * If parent task has any reservations, they need to be propagated to this
	 * thread.
	 */
	new_thread->t_chud = (TASK_PMC_FLAG == (parent_task->t_chud & TASK_PMC_FLAG)) ? 
		THREAD_PMC_FLAG : 0U;
#endif

	/* Set the thread's scheduling parameters */
	if (parent_task != kernel_task)
		new_thread->sched_mode |= TH_MODE_TIMESHARE;
	new_thread->max_priority = parent_task->max_priority;
	new_thread->task_priority = parent_task->priority;
	new_thread->priority = (priority < 0)? parent_task->priority: priority;
	if (new_thread->priority > new_thread->max_priority)
		new_thread->priority = new_thread->max_priority;
	new_thread->importance =
					new_thread->priority - new_thread->task_priority;
	new_thread->sched_stamp = sched_tick;
	new_thread->pri_shift = sched_pri_shift;
	compute_priority(new_thread, FALSE);

	new_thread->active = TRUE;

	*out_thread = new_thread;

	{
		long	dbg_arg1, dbg_arg2, dbg_arg3, dbg_arg4;

		kdbg_trace_data(parent_task->bsd_info, &dbg_arg2);

		KERNEL_DEBUG_CONSTANT(
					TRACEDBG_CODE(DBG_TRACE_DATA, 1) | DBG_FUNC_NONE,
							(vm_address_t)(uintptr_t)thread_tid(new_thread), dbg_arg2, 0, 0, 0);

		kdbg_trace_string(parent_task->bsd_info,
							&dbg_arg1, &dbg_arg2, &dbg_arg3, &dbg_arg4);

		KERNEL_DEBUG_CONSTANT(
					TRACEDBG_CODE(DBG_TRACE_STRING, 1) | DBG_FUNC_NONE,
							dbg_arg1, dbg_arg2, dbg_arg3, dbg_arg4, 0);
	}

	DTRACE_PROC1(lwp__create, thread_t, *out_thread);

	return (KERN_SUCCESS);
}
예제 #7
0
wait_result_t
ipc_mqueue_receive_on_thread(
        ipc_mqueue_t            mqueue,
	mach_msg_option_t       option,
	mach_msg_size_t         max_size,
	mach_msg_timeout_t      rcv_timeout,
	int                     interruptible,
	thread_t                thread)
{
	ipc_kmsg_queue_t        kmsgs;
	wait_result_t           wresult;
	uint64_t		deadline;
	spl_t                   s;

	s = splsched();
	imq_lock(mqueue);
	
	if (imq_is_set(mqueue)) {
		queue_t q;

		q = &mqueue->imq_preposts;

		/*
		 * If we are waiting on a portset mqueue, we need to see if
		 * any of the member ports have work for us.  Ports that
		 * have (or recently had) messages will be linked in the
		 * prepost queue for the portset. By holding the portset's
		 * mqueue lock during the search, we tie up any attempts by
		 * mqueue_deliver or portset membership changes that may
		 * cross our path.
		 */
	search_set:
		while(!queue_empty(q)) {
			wait_queue_link_t wql;
			ipc_mqueue_t port_mq;

			queue_remove_first(q, wql, wait_queue_link_t, wql_preposts);
			assert(!wql_is_preposted(wql));

			/*
			 * This is a lock order violation, so we have to do it
			 * "softly," putting the link back on the prepost list
			 * if it fails (at the tail is fine since the order of
			 * handling messages from different sources in a set is
			 * not guaranteed and we'd like to skip to the next source
			 * if one is available).
			 */
			port_mq = (ipc_mqueue_t)wql->wql_queue;
			if (!imq_lock_try(port_mq)) {
				queue_enter(q, wql, wait_queue_link_t, wql_preposts);
				imq_unlock(mqueue);
				splx(s);
				mutex_pause(0);
				s = splsched();
				imq_lock(mqueue);
				goto search_set; /* start again at beginning - SMP */
			}

			/*
			 * If there are no messages on this queue, just skip it
			 * (we already removed the link from the set's prepost queue).
			 */
			kmsgs = &port_mq->imq_messages;
			if (ipc_kmsg_queue_first(kmsgs) == IKM_NULL) {
				imq_unlock(port_mq);
				continue;
			}

			/*
			 * There are messages, so reinsert the link back
			 * at the tail of the preposted queue (for fairness)
			 * while we still have the portset mqueue locked.
			 */
			queue_enter(q, wql, wait_queue_link_t, wql_preposts);
			imq_unlock(mqueue);

			/*
			 * Continue on to handling the message with just
			 * the port mqueue locked.
			 */
			ipc_mqueue_select_on_thread(port_mq, option, max_size, thread);
			imq_unlock(port_mq);
			splx(s);
			return THREAD_NOT_WAITING;
			
		}

	} else {

		/*
		 * Receive on a single port. Just try to get the messages.
		 */
	  	kmsgs = &mqueue->imq_messages;
		if (ipc_kmsg_queue_first(kmsgs) != IKM_NULL) {
			ipc_mqueue_select_on_thread(mqueue, option, max_size, thread);
			imq_unlock(mqueue);
			splx(s);
			return THREAD_NOT_WAITING;
		}
	}
	
	/*
	 * Looks like we'll have to block.  The mqueue we will
	 * block on (whether the set's or the local port's) is
	 * still locked.
	 */
	if (option & MACH_RCV_TIMEOUT) {
		if (rcv_timeout == 0) {
			imq_unlock(mqueue);
			splx(s);
			thread->ith_state = MACH_RCV_TIMED_OUT;
			return THREAD_NOT_WAITING;
		}
	}

	thread_lock(thread);
	thread->ith_state = MACH_RCV_IN_PROGRESS;
	thread->ith_option = option;
	thread->ith_msize = max_size;

	if (option & MACH_RCV_TIMEOUT)
		clock_interval_to_deadline(rcv_timeout, 1000*NSEC_PER_USEC, &deadline);
	else
		deadline = 0;

	wresult = wait_queue_assert_wait64_locked(&mqueue->imq_wait_queue,
						  IPC_MQUEUE_RECEIVE,
						  interruptible, 
						  TIMEOUT_URGENCY_USER_NORMAL,
						  deadline, 0,
						  thread);
	/* preposts should be detected above, not here */
	if (wresult == THREAD_AWAKENED)
		panic("ipc_mqueue_receive_on_thread: sleep walking");

	thread_unlock(thread);
	imq_unlock(mqueue);
	splx(s);
	return wresult;
}
예제 #8
0
/*
 * Manage next request event
 */
void
datadev_request(
    datadev_t ddp)
{
    kern_return_t rc;
    io_req_t ior;
    spl_t s;

    s = splsched();
    mutex_lock(&datadev_lock);
    if (ddp != (datadev_t)0) {
	/*
	 * Queue current request
	 */
	queue_enter(&datadev_wait, ddp, datadev_t, dd_chain);
    }

    /*
     * Try to start next request
     */
    if (queue_empty(&datadev_wait) || datadev_ior == (io_req_t)0) {
	/*
	 * No request or no pending read
	 */
	mutex_unlock(&datadev_lock);
	splx(s);
	return;
    }

    /*
     * Extract first waiting request
     */
    ddp = (datadev_t)queue_first(&datadev_wait);

    /*
     * Extract pending I/O request
     */
    ior = datadev_ior;
    datadev_ior = (io_req_t)0;

    /*
     * Allocate read memory
     */
    if (ior->io_count < ddp->dd_size) {
	/*
	 * Return size error for this request
	 */
	mutex_unlock(&datadev_lock);
	splx(s);
	ior->io_error = D_INVALID_SIZE;

    } else {
	/*
	 * Move waiting request from the waiting queue to the active one.
	 */
	queue_remove(&datadev_wait, ddp, datadev_t, dd_chain);
	queue_enter(&datadev_curr, ddp, datadev_t, dd_chain);
	mutex_unlock(&datadev_lock);
	splx(s);

	/*
	 * Activate the request
	 */
	bcopy(ddp->dd_name, ior->io_data, ddp->dd_size);
	ddp->dd_dev = ior->io_unit;
	ior->io_residual = ior->io_count - ddp->dd_size;
	ior->io_error = D_SUCCESS;
    }

    io_completed(ior, FALSE);
}
예제 #9
0
/*
 *	task_swapout:
 * 	A reference to the task must be held.
 *
 *	Start swapping out a task by sending an AST_SWAPOUT to each thread.
 *	When the threads reach a clean point, they queue themselves up on the
 *	swapout_thread_q to be swapped out by the task_swap_swapout_thread.
 *	The task can be swapped in at any point in this process.
 *
 *	A task will not be fully swapped out (i.e. its map residence count
 *	at zero) until all currently-swapped threads run and reach
 *	a clean point, at which time they will be swapped again,
 *	decrementing the swap_ast_waiting count on the task.
 *
 *	Locking: no locks held upon entry and exit.
 *		 Task_lock is held throughout this function.
 */
kern_return_t
task_swapout(task_t task)
{
	thread_act_t thr_act;
	thread_t thread;
	queue_head_t *list;
	int s;

	task_swapout_lock();
	task_lock(task);
	/*
	 * NOTE: look into turning these into assertions if they
	 * are invariants.
	 */
	if ((task->swap_state != TASK_SW_IN) || (!task->active)) {
		task_unlock(task);
		task_swapout_unlock();
		return(KERN_FAILURE);
	}
	if (task->swap_flags & TASK_SW_ELIGIBLE) {
		queue_remove(&eligible_tasks, task, task_t, swapped_tasks);
		task->swap_flags &= ~TASK_SW_ELIGIBLE;
	}
	task_swapout_unlock();

	/* set state to avoid races with task_swappable(FALSE) */
	task->swap_state = TASK_SW_GOING_OUT;
	task->swap_rss = pmap_resident_count(task->map->pmap);
	task_swaprss_out += task->swap_rss;
	task->swap_ast_waiting = task->thr_act_count;

	/*
	 * halt all threads in this task:
	 * We don't need the thread list lock for traversal.
	 */
	list = &task->thr_acts;
	thr_act = (thread_act_t) queue_first(list);
	while (!queue_end(list, (queue_entry_t) thr_act)) {
		boolean_t swappable;
		thread_act_t ract;

		thread = act_lock_thread(thr_act);
		s = splsched();
		if (!thread)
			swappable = (thr_act->swap_state != TH_SW_UNSWAPPABLE);
		else {
			thread_lock(thread);
			swappable = TRUE;
			for (ract = thread->top_act; ract; ract = ract->lower)
				if (ract->swap_state == TH_SW_UNSWAPPABLE) {
					swappable = FALSE;
					break;
				}
		}
		if (swappable)
			thread_ast_set(thr_act, AST_SWAPOUT);
		if (thread)
			thread_unlock(thread);
		splx(s);
		assert((thr_act->ast & AST_TERMINATE) == 0);
		act_unlock_thread(thr_act);
		thr_act = (thread_act_t) queue_next(&thr_act->thr_acts);
	}

	task->swap_stamp = sched_tick;
	task->swap_nswap++;
	assert((task->swap_flags&TASK_SW_WANT_IN) == 0);
	/* put task on the queue of swapped out tasks */
	task_swapper_lock();
#if	TASK_SW_DEBUG
	if (task_swap_debug && on_swapped_list(task)) {
		printf("task 0x%X already on list\n", task);
		Debugger("");
	}
#endif	/* TASK_SW_DEBUG */
	queue_enter(&swapped_tasks, task, task_t, swapped_tasks);
	tasks_swapped_out++;
	task_swapouts++;
	task_swapper_unlock();
	task_unlock(task);

	return(KERN_SUCCESS);
}