/** * Check if the requested number of dwords is available in the CS and * if not, flush. * \param r300 The context. * \param flags See r300_prepare_flags. * \param cs_dwords The number of dwords to reserve in CS. * \return TRUE if the CS was flushed */ static boolean r300_reserve_cs_dwords(struct r300_context *r300, enum r300_prepare_flags flags, unsigned cs_dwords) { boolean flushed = FALSE; boolean emit_states = flags & PREP_EMIT_STATES; boolean emit_vertex_arrays = flags & PREP_EMIT_VARRAYS; boolean emit_vertex_arrays_swtcl = flags & PREP_EMIT_VARRAYS_SWTCL; /* Add dirty state, index offset, and AOS. */ if (emit_states) cs_dwords += r300_get_num_dirty_dwords(r300); if (r300->screen->caps.is_r500) cs_dwords += 2; /* emit_index_offset */ if (emit_vertex_arrays) cs_dwords += 55; /* emit_vertex_arrays */ if (emit_vertex_arrays_swtcl) cs_dwords += 7; /* emit_vertex_arrays_swtcl */ cs_dwords += r300_get_num_cs_end_dwords(r300); /* Reserve requested CS space. */ if (cs_dwords > (RADEON_MAX_CMDBUF_DWORDS - r300->cs->cdw)) { r300_flush(&r300->context, RADEON_FLUSH_ASYNC, NULL); flushed = TRUE; } return flushed; }
static void r300_flush_callback(void *data, unsigned flags, struct pipe_fence_handle **fence) { struct r300_context* const cs_context_copy = data; r300_flush(&cs_context_copy->context, flags, fence); }
static void r300_flush_wrapped(struct pipe_context *pipe, struct pipe_fence_handle **fence, unsigned flags) { r300_flush(pipe, flags & PIPE_FLUSH_END_OF_FRAME ? RADEON_FLUSH_END_OF_FRAME : 0, fence); }
/* Copy a detiled texture to a tiled one. */ static void r300_copy_into_tiled_texture(struct pipe_context *ctx, struct r300_transfer *r300transfer) { struct pipe_transfer *transfer = (struct pipe_transfer*)r300transfer; struct pipe_resource *tex = transfer->resource; struct pipe_box src_box; u_box_origin_2d(transfer->box.width, transfer->box.height, &src_box); ctx->resource_copy_region(ctx, tex, transfer->level, transfer->box.x, transfer->box.y, transfer->box.z, &r300transfer->linear_texture->b.b.b, 0, &src_box); /* XXX remove this. */ r300_flush(ctx, 0, NULL); }
static void r300_end_query(struct pipe_context* pipe, struct pipe_query* query) { struct r300_context* r300 = r300_context(pipe); struct r300_query *q = r300_query(query); if (q->type == PIPE_QUERY_GPU_FINISHED) { pb_reference(&q->buf, NULL); r300_flush(pipe, RADEON_FLUSH_ASYNC, (struct pipe_fence_handle**)&q->buf); return; } if (q != r300->query_current) { fprintf(stderr, "r300: end_query: Got invalid query.\n"); assert(0); return; } r300_stop_query(r300); }
/* Clear currently bound buffers. */ static void r300_clear(struct pipe_context* pipe, unsigned buffers, const union pipe_color_union *color, double depth, unsigned stencil) { /* My notes about Zbuffer compression: * * 1) The zbuffer must be micro-tiled and whole microtiles must be * written if compression is enabled. If microtiling is disabled, * it locks up. * * 2) There is ZMASK RAM which contains a compressed zbuffer. * Each dword of the Z Mask contains compression information * for 16 4x4 pixel tiles, that is 2 bits for each tile. * On chips with 2 Z pipes, every other dword maps to a different * pipe. On newer chipsets, there is a new compression mode * with 8x8 pixel tiles per 2 bits. * * 3) The FASTFILL bit has nothing to do with filling. It only tells hw * it should look in the ZMASK RAM first before fetching from a real * zbuffer. * * 4) If a pixel is in a cleared state, ZB_DEPTHCLEARVALUE is returned * during zbuffer reads instead of the value that is actually stored * in the zbuffer memory. A pixel is in a cleared state when its ZMASK * is equal to 0. Therefore, if you clear ZMASK with zeros, you may * leave the zbuffer memory uninitialized, but then you must enable * compression, so that the ZMASK RAM is actually used. * * 5) Each 4x4 (or 8x8) tile is automatically decompressed and recompressed * during zbuffer updates. A special decompressing operation should be * used to fully decompress a zbuffer, which basically just stores all * compressed tiles in ZMASK to the zbuffer memory. * * 6) For a 16-bit zbuffer, compression causes a hung with one or * two samples and should not be used. * * 7) FORCE_COMPRESSED_STENCIL_VALUE should be enabled for stencil clears * to avoid needless decompression. * * 8) Fastfill must not be used if reading of compressed Z data is disabled * and writing of compressed Z data is enabled (RD/WR_COMP_ENABLE), * i.e. it cannot be used to compress the zbuffer. * * 9) ZB_CB_CLEAR does not interact with zbuffer compression in any way. * * - Marek */ struct r300_context* r300 = r300_context(pipe); struct pipe_framebuffer_state *fb = (struct pipe_framebuffer_state*)r300->fb_state.state; struct r300_hyperz_state *hyperz = (struct r300_hyperz_state*)r300->hyperz_state.state; uint32_t width = fb->width; uint32_t height = fb->height; uint32_t hyperz_dcv = hyperz->zb_depthclearvalue; /* Enable fast Z clear. * The zbuffer must be in micro-tiled mode, otherwise it locks up. */ if (buffers & PIPE_CLEAR_DEPTHSTENCIL) { boolean zmask_clear, hiz_clear; zmask_clear = r300_fast_zclear_allowed(r300); hiz_clear = r300_hiz_clear_allowed(r300); /* If we need Hyper-Z. */ if (zmask_clear || hiz_clear) { r300->num_z_clears++; /* Try to obtain the access to Hyper-Z buffers if we don't have one. */ if (!r300->hyperz_enabled) { r300->hyperz_enabled = r300->rws->cs_request_feature(r300->cs, RADEON_FID_R300_HYPERZ_ACCESS, TRUE); if (r300->hyperz_enabled) { /* Need to emit HyperZ buffer regs for the first time. */ r300_mark_fb_state_dirty(r300, R300_CHANGED_HYPERZ_FLAG); } } /* Setup Hyper-Z clears. */ if (r300->hyperz_enabled) { DBG(r300, DBG_HYPERZ, "r300: Clear memory: %s%s\n", zmask_clear ? "ZMASK " : "", hiz_clear ? "HIZ" : ""); if (zmask_clear) { hyperz_dcv = hyperz->zb_depthclearvalue = r300_depth_clear_value(fb->zsbuf->format, depth, stencil); r300_mark_atom_dirty(r300, &r300->zmask_clear); buffers &= ~PIPE_CLEAR_DEPTHSTENCIL; } if (hiz_clear) { r300->hiz_clear_value = r300_hiz_clear_value(depth); r300_mark_atom_dirty(r300, &r300->hiz_clear); } } } } /* Enable CBZB clear. */ if (r300_cbzb_clear_allowed(r300, buffers)) { struct r300_surface *surf = r300_surface(fb->cbufs[0]); hyperz->zb_depthclearvalue = r300_depth_clear_cb_value(surf->base.format, color->f); width = surf->cbzb_width; height = surf->cbzb_height; r300->cbzb_clear = TRUE; r300_mark_fb_state_dirty(r300, R300_CHANGED_HYPERZ_FLAG); } /* Clear. */ if (buffers) { enum pipe_format cformat = fb->nr_cbufs ? fb->cbufs[0]->format : PIPE_FORMAT_NONE; /* Clear using the blitter. */ r300_blitter_begin(r300, R300_CLEAR); util_blitter_clear(r300->blitter, width, height, fb->nr_cbufs, buffers, cformat, color, depth, stencil); r300_blitter_end(r300); } else if (r300->zmask_clear.dirty || r300->hiz_clear.dirty) { /* Just clear zmask and hiz now, this does not use the standard draw * procedure. */ /* Calculate zmask_clear and hiz_clear atom sizes. */ unsigned dwords = (r300->zmask_clear.dirty ? r300->zmask_clear.size : 0) + (r300->hiz_clear.dirty ? r300->hiz_clear.size : 0) + r300_get_num_cs_end_dwords(r300); /* Reserve CS space. */ if (dwords > (RADEON_MAX_CMDBUF_DWORDS - r300->cs->cdw)) { r300_flush(&r300->context, RADEON_FLUSH_ASYNC, NULL); } /* Emit clear packets. */ if (r300->zmask_clear.dirty) { r300_emit_zmask_clear(r300, r300->zmask_clear.size, r300->zmask_clear.state); r300->zmask_clear.dirty = FALSE; } if (r300->hiz_clear.dirty) { r300_emit_hiz_clear(r300, r300->hiz_clear.size, r300->hiz_clear.state); r300->hiz_clear.dirty = FALSE; } } else { assert(0); } /* Disable CBZB clear. */ if (r300->cbzb_clear) { r300->cbzb_clear = FALSE; hyperz->zb_depthclearvalue = hyperz_dcv; r300_mark_fb_state_dirty(r300, R300_CHANGED_HYPERZ_FLAG); } /* Enable fastfill and/or hiz. * * If we cleared zmask/hiz, it's in use now. The Hyper-Z state update * looks if zmask/hiz is in use and programs hardware accordingly. */ if (r300->zmask_in_use || r300->hiz_in_use) { r300_mark_atom_dirty(r300, &r300->hyperz_state); } }
struct pipe_transfer* r300_texture_get_transfer(struct pipe_context *ctx, struct pipe_resource *texture, unsigned level, unsigned usage, const struct pipe_box *box) { struct r300_context *r300 = r300_context(ctx); struct r300_resource *tex = r300_resource(texture); struct r300_transfer *trans; struct pipe_resource base; boolean referenced_cs, referenced_hw, blittable; const struct util_format_description *desc = util_format_description(texture->format); referenced_cs = r300->rws->cs_is_buffer_referenced(r300->cs, tex->cs_buf); if (referenced_cs) { referenced_hw = TRUE; } else { referenced_hw = r300->rws->buffer_is_busy(tex->buf, RADEON_USAGE_READWRITE); } blittable = desc->layout == UTIL_FORMAT_LAYOUT_PLAIN || desc->layout == UTIL_FORMAT_LAYOUT_S3TC || desc->layout == UTIL_FORMAT_LAYOUT_RGTC; trans = CALLOC_STRUCT(r300_transfer); if (trans) { /* Initialize the transfer object. */ pipe_resource_reference(&trans->transfer.resource, texture); trans->transfer.level = level; trans->transfer.usage = usage; trans->transfer.box = *box; /* If the texture is tiled, we must create a temporary detiled texture * for this transfer. * Also make write transfers pipelined. */ if (tex->tex.microtile || tex->tex.macrotile[level] || (referenced_hw && blittable && !(usage & PIPE_TRANSFER_READ))) { if (r300->blitter->running) { fprintf(stderr, "r300: ERROR: Blitter recursion in texture_get_transfer.\n"); os_break(); } base.target = PIPE_TEXTURE_2D; base.format = texture->format; base.width0 = box->width; base.height0 = box->height; base.depth0 = 1; base.array_size = 1; base.last_level = 0; base.nr_samples = 0; base.usage = PIPE_USAGE_DYNAMIC; base.bind = 0; base.flags = R300_RESOURCE_FLAG_TRANSFER; /* For texture reading, the temporary (detiled) texture is used as * a render target when blitting from a tiled texture. */ if (usage & PIPE_TRANSFER_READ) { base.bind |= PIPE_BIND_RENDER_TARGET; } /* For texture writing, the temporary texture is used as a sampler * when blitting into a tiled texture. */ if (usage & PIPE_TRANSFER_WRITE) { base.bind |= PIPE_BIND_SAMPLER_VIEW; } /* Create the temporary texture. */ trans->linear_texture = r300_resource( ctx->screen->resource_create(ctx->screen, &base)); if (!trans->linear_texture) { /* Oh crap, the thing can't create the texture. * Let's flush and try again. */ r300_flush(ctx, 0, NULL); trans->linear_texture = r300_resource( ctx->screen->resource_create(ctx->screen, &base)); if (!trans->linear_texture) { /* For linear textures, it's safe to fallback to * an unpipelined transfer. */ if (!tex->tex.microtile && !tex->tex.macrotile[level]) { goto unpipelined; } /* Otherwise, go to hell. */ fprintf(stderr, "r300: Failed to create a transfer object, praise.\n"); FREE(trans); return NULL; } } assert(!trans->linear_texture->tex.microtile && !trans->linear_texture->tex.macrotile[0]); /* Set the stride. */ trans->transfer.stride = trans->linear_texture->tex.stride_in_bytes[0]; if (usage & PIPE_TRANSFER_READ) { /* We cannot map a tiled texture directly because the data is * in a different order, therefore we do detiling using a blit. */ r300_copy_from_tiled_texture(ctx, trans); /* Always referenced in the blit. */ r300_flush(ctx, 0, NULL); } return &trans->transfer; } unpipelined: /* Unpipelined transfer. */ trans->transfer.stride = tex->tex.stride_in_bytes[level]; trans->offset = r300_texture_get_offset(tex, level, box->z); if (referenced_cs && !(usage & PIPE_TRANSFER_UNSYNCHRONIZED)) r300_flush(ctx, 0, NULL); return &trans->transfer; } return NULL; }
static void r300_flush_callback(void *data, unsigned flags) { struct r300_context* const cs_context_copy = data; r300_flush(&cs_context_copy->context, flags, NULL); }
void * r300_texture_transfer_map(struct pipe_context *ctx, struct pipe_resource *texture, unsigned level, unsigned usage, const struct pipe_box *box, struct pipe_transfer **transfer) { struct r300_context *r300 = r300_context(ctx); struct r300_resource *tex = r300_resource(texture); struct r300_transfer *trans; struct pipe_resource base; boolean referenced_cs, referenced_hw; enum pipe_format format = tex->b.b.format; char *map; referenced_cs = r300->rws->cs_is_buffer_referenced(r300->cs, tex->cs_buf, RADEON_USAGE_READWRITE); if (referenced_cs) { referenced_hw = TRUE; } else { referenced_hw = r300->rws->buffer_is_busy(tex->buf, RADEON_USAGE_READWRITE); } trans = CALLOC_STRUCT(r300_transfer); if (trans) { /* Initialize the transfer object. */ trans->transfer.resource = texture; trans->transfer.level = level; trans->transfer.usage = usage; trans->transfer.box = *box; /* If the texture is tiled, we must create a temporary detiled texture * for this transfer. * Also make write transfers pipelined. */ if (tex->tex.microtile || tex->tex.macrotile[level] || (referenced_hw && !(usage & PIPE_TRANSFER_READ) && r300_is_blit_supported(texture->format))) { if (r300->blitter->running) { fprintf(stderr, "r300: ERROR: Blitter recursion in texture_get_transfer.\n"); os_break(); } base.target = PIPE_TEXTURE_2D; base.format = texture->format; base.width0 = box->width; base.height0 = box->height; base.depth0 = 1; base.array_size = 1; base.last_level = 0; base.nr_samples = 0; base.usage = PIPE_USAGE_STAGING; base.bind = 0; if (usage & PIPE_TRANSFER_READ) { base.bind |= PIPE_BIND_SAMPLER_VIEW; } if (usage & PIPE_TRANSFER_WRITE) { base.bind |= PIPE_BIND_RENDER_TARGET; } base.flags = R300_RESOURCE_FLAG_TRANSFER; /* For texture reading, the temporary (detiled) texture is used as * a render target when blitting from a tiled texture. */ if (usage & PIPE_TRANSFER_READ) { base.bind |= PIPE_BIND_RENDER_TARGET; } /* For texture writing, the temporary texture is used as a sampler * when blitting into a tiled texture. */ if (usage & PIPE_TRANSFER_WRITE) { base.bind |= PIPE_BIND_SAMPLER_VIEW; } /* Create the temporary texture. */ trans->linear_texture = r300_resource( ctx->screen->resource_create(ctx->screen, &base)); if (!trans->linear_texture) { /* Oh crap, the thing can't create the texture. * Let's flush and try again. */ r300_flush(ctx, 0, NULL); trans->linear_texture = r300_resource( ctx->screen->resource_create(ctx->screen, &base)); if (!trans->linear_texture) { fprintf(stderr, "r300: Failed to create a transfer object.\n"); FREE(trans); return NULL; } } assert(!trans->linear_texture->tex.microtile && !trans->linear_texture->tex.macrotile[0]); /* Set the stride. */ trans->transfer.stride = trans->linear_texture->tex.stride_in_bytes[0]; if (usage & PIPE_TRANSFER_READ) { /* We cannot map a tiled texture directly because the data is * in a different order, therefore we do detiling using a blit. */ r300_copy_from_tiled_texture(ctx, trans); /* Always referenced in the blit. */ r300_flush(ctx, 0, NULL); } } else { /* Unpipelined transfer. */ trans->transfer.stride = tex->tex.stride_in_bytes[level]; trans->offset = r300_texture_get_offset(tex, level, box->z); if (referenced_cs && !(usage & PIPE_TRANSFER_UNSYNCHRONIZED)) { r300_flush(ctx, 0, NULL); } } } if (trans->linear_texture) { /* The detiled texture is of the same size as the region being mapped * (no offset needed). */ map = r300->rws->buffer_map(trans->linear_texture->cs_buf, r300->cs, usage); if (!map) { pipe_resource_reference( (struct pipe_resource**)&trans->linear_texture, NULL); FREE(trans); return NULL; } *transfer = &trans->transfer; return map; } else { /* Tiling is disabled. */ map = r300->rws->buffer_map(tex->cs_buf, r300->cs, usage); if (!map) { FREE(trans); return NULL; } *transfer = &trans->transfer; return map + trans->offset + box->y / util_format_get_blockheight(format) * trans->transfer.stride + box->x / util_format_get_blockwidth(format) * util_format_get_blocksize(format); } }
static void r300_flush_wrapped(struct pipe_context *pipe, struct pipe_fence_handle **fence) { r300_flush(pipe, 0, fence); }