예제 #1
0
unsigned BasicHashTable::hashIndexFromKey(char const *key) const
{
    unsigned result = 0;

    if (fKeyType == STRING_HASH_KEYS)
    {
        while (1)
        {
            char c = *key++;
            if (c == 0) break;
            result += (result << 3) + (unsigned)c;
        }
        result &= fMask;
    }
    else if (fKeyType == ONE_WORD_HASH_KEYS)
    {
        result = randomIndex((unsigned long)key);
    }
    else
    {
        unsigned *k = (unsigned *)key;
        unsigned long sum = 0;
        for (int i = 0; i < fKeyType; ++i)
        {
            sum += k[i];
        }
        result = randomIndex(sum);
    }

    return result;
}
예제 #2
0
size_t randomBit(const llvm::BitVector &Vector) {
  assert(Vector.any());
  auto Itr = Vector.set_bits_begin();
  for (size_t I = randomIndex(Vector.count()); I != 0; --I)
    ++Itr;
  return *Itr;
}
예제 #3
0
파일: net.cpp 프로젝트: zbxzc35/uniform-lbp
static void randomFat(const vector<cv::Mat> &input, cv::Mat &fat)
{
    cv::Mat_<int> randIdx(1, input.size());
    randomIndex(randIdx);

    for (size_t i=0; i<input.size(); i++)
    {
        int idx = randIdx(i);
        fat.push_back(input[idx].reshape(1,1));
    }
}
예제 #4
0
 /**
  * performs one sweep, which means Nx*Ny random updates
  */
 double performSweep() {
     int overlap = 0;
     #pragma omp parallel for
     for(int n=0; n<Nx*Ny; n++) {
         int i = randomIndex(gen);
         disc_t temp = discs[i];
         double dx = randomDisplacement(gen);
         double dy = randomDisplacement(gen);
         temp.x += dx;
         temp.y += dy;
         if(doesOverlap(temp, i))
             overlap++;
         else
             discs[i] = temp;
     }
     return ((double) overlap)/(Nx*Ny);
 }
void MatrixGenerator::generateMatrixC(bool isPercent) {
  cout << "Generating matrixC... " << flush;
  int numbersNotNull = k;
  if (isPercent)
    numbersNotNull = (int)((double)n*((double)numbersNotNull/100.0));

  for (int j=0 ; j<n ; j++) {
    matrix[j][j] = randomValue(minDiagValue, maxDiagValue); 
    notNullElementsCount++;
    int numbersLeft = numbersNotNull - 1;
    while (numbersLeft) {
      int index = randomIndex(minIndex, maxIndex);
      if (matrix[index][j] == 0) {
        matrix[index][j] = randomValue(minValue, maxValue);
        notNullElementsCount++;
        numbersLeft--;
      }
    }
  }
  cout << "done" << endl;
  cout << "MatrixC test: " << ((testMatrixC(numbersNotNull) == true)?"passed":"failed") << endl;
}
예제 #6
0
/**
 * @brief Perform the migrations between subpopulations
 * @param subpops The subpopulations
 * @param nSubpopulations The number of subpopulations involved in the migration
 * @param nIndsFronts0 The number of individuals in the front 0 of each subpopulation
 * @param conf The structure with all configuration parameters
 */
void migration(Individual *const subpops, const int nSubpopulations, const int *const nIndsFronts0, const Config *const conf) {

	// From subpopulations randomly choosen some individuals of the front 0 are copied to each subpopulation (the worst individuals are deleted)
	for (int subpop = 0; subpop < nSubpopulations; ++subpop) {

		// This vector contains the available subpopulations indexes which are randomly choosen for copy the individuals of the front 0
		std::vector<int> randomIndex(nSubpopulations);
		std::iota(randomIndex.begin(), randomIndex.end(), 0);

		// The current subpopulation will not copy its own individuals
		randomIndex.erase(randomIndex.begin() + subpop);
		std::random_shuffle(randomIndex.begin(), randomIndex.end());

		int maxCopy = conf -> subpopulationSize - nIndsFronts0[subpop];
		Individual *ptrDest = subpops + (subpop * conf -> familySize) + conf -> subpopulationSize;
		for (int subpop2 = 0; subpop2 < nSubpopulations - 1 && maxCopy > 0; ++subpop2) {
			int toCopy = std::min(maxCopy, nIndsFronts0[randomIndex[subpop2]] >> 1);
			Individual *ptrOrig = subpops + (randomIndex[subpop2] * conf -> familySize);
			ptrDest -= toCopy;
			memcpy(ptrDest, ptrOrig, toCopy * sizeof(Individual));
			maxCopy -= toCopy;
		}
	}
}
예제 #7
0
파일: engine.cpp 프로젝트: lettis/Kubix
/// evaluate best possible move up to a certain level
/// this is done recursively by a form of the NegaMax algorithm with alpha-beta pruning
Evaluation Game::_evaluateMoves(int level, float alpha, float beta, bool initialCall) {
  KBX::Logger log("evaluation");
  if ((level == 0) || (this->getWinner() != NONE_OF_BOTH)) {
    return Evaluation(this->_rate(this->_nextPlayer));
  }
  // get rating, either directly or by recursive call
  float rating;
  // container for best move candidates
  std::priority_queue< Evaluation, std::vector< Evaluation >, Evaluation::less > candidates;
  // limit indices to significant color
  size_t from, to;
  if (this->_nextPlayer == WHITE) {
    from = 0;
    to = 8;
  } else {
    from = 9;
    to = 17;
  }
  // iterate over all dice of a color
  for (size_t d = from; d <= to; d++) {
    // get value of current die
    size_t value = this->_dice[d].getValue();
    // iterate over max number of moves for given dice value (stored in state-array)
    for (size_t i = 0; i < DieState::nPossibleMoves[value]; i++) {
      // abort evaluation if cancelled
      if (this->cancelled()) {
        return Evaluation(0.0f);
      }
      // check if this specific move is valid
      RelativeMove move = DieState::possibleMoves[value][i];
      if (this->moveIsValid(Move(d, move))) {
        // store all data to undo move later
        RelativeMove moveBack = move.invert();
        // kill the die lying on the target field
        int idDieOnTarget = this->_fields[this->_dice[d].x() + move.dx][this->_dice[d].y() + move.dy];
        // perform move
        this->makeMove(Move(d, move), false);
        // recursive call for next step (negative weighting, since it is opponent's turn)
        rating = - this->_strategy.patience * this->_evaluateMoves(level - 1, -beta, -alpha, false).rating;
        // undo move
        this->makeMove(Move(d, moveBack), false);
        // revive killed die on target field
        if (idDieOnTarget != CLEAR) {
          this->reviveDie(idDieOnTarget);
        }
        // alpha-beta pruning
        if (rating >= beta) {
          return Evaluation(rating);
        }
        if (rating > alpha) {
          alpha = rating;
          if (initialCall == true) {
            // add move to candidate list
            candidates.push(Evaluation(rating, Move(d, move)));
          }
        }
      }
    }
  }
  if (initialCall == true) {
    if ( ! candidates.empty()) {
      float topRating = candidates.top().rating;
      std::vector<Evaluation> topCandidates;
      log.info(stringprintf("top rating: %0.4f", topRating));
      while ((candidates.top().rating >= topRating) && ( ! candidates.empty())) {
        topCandidates.push_back(candidates.top());
        candidates.pop();
      }
      log.info(stringprintf("next rating: %0.4f", candidates.top().rating));
      log.info(stringprintf("no. of top candidates: %d", topCandidates.size()));
      // randomly select from equally rated top candidates
      std::size_t iTop = randomIndex(0, topCandidates.size()-1);
      return topCandidates[iTop];
    }
  }
  return Evaluation(alpha);
}