예제 #1
0
static int
hwmp_send_preq(struct ieee80211_node *ni,
    const uint8_t sa[IEEE80211_ADDR_LEN],
    const uint8_t da[IEEE80211_ADDR_LEN],
    struct ieee80211_meshpreq_ie *preq)
{
	struct ieee80211_hwmp_state *hs = ni->ni_vap->iv_hwmp;

	/*
	 * Enforce PREQ interval.
	 */
	if (ratecheck(&hs->hs_lastpreq, &ieee80211_hwmp_preqminint) == 0)
		return EALREADY;
	getmicrouptime(&hs->hs_lastpreq);

	/*
	 * mesh preq action frame format
	 *     [6] da
	 *     [6] sa 
	 *     [6] addr3 = sa
	 *     [1] action
	 *     [1] category
	 *     [tlv] mesh path request
	 */
	preq->preq_ie = IEEE80211_ELEMID_MESHPREQ;
	return hwmp_send_action(ni, sa, da, (uint8_t *)preq,
	    sizeof(struct ieee80211_meshpreq_ie));
}
예제 #2
0
void
ieee80211_rssadapt_raise_rate(struct ieee80211com *ic,
    struct ieee80211_rssadapt *ra, struct ieee80211_rssdesc *id)
{
	u_int16_t (*thrs)[IEEE80211_RATE_SIZE], newthr, oldthr;
	struct ieee80211_node *ni = id->id_node;
	struct ieee80211_rateset *rs = &ni->ni_rates;
	int i, rate, top;
#ifdef IEEE80211_DEBUG
	int j;
#endif

	ra->ra_nok++;

	if (!ratecheck(&ra->ra_last_raise, &ra->ra_raise_interval))
		return;

	for (i = 0, top = IEEE80211_RSSADAPT_BKT0;
	     i < IEEE80211_RSSADAPT_BKTS;
	     i++, top <<= IEEE80211_RSSADAPT_BKTPOWER) {
		thrs = &ra->ra_rate_thresh[i];
		if (id->id_len <= top)
			break;
	}

	if (id->id_rateidx + 1 < rs->rs_nrates &&
	    (*thrs)[id->id_rateidx + 1] > (*thrs)[id->id_rateidx]) {
		rate = (rs->rs_rates[id->id_rateidx + 1] & IEEE80211_RATE_VAL);

		RSSADAPT_PRINTF(("%s: threshold[%d, %d.%d] decay %d ",
		    ic->ic_ifp->if_xname,
		    IEEE80211_RSSADAPT_BKT0 << (IEEE80211_RSSADAPT_BKTPOWER* i),
		    rate / 2, rate * 5 % 10, (*thrs)[id->id_rateidx + 1]));
		oldthr = (*thrs)[id->id_rateidx + 1];
		if ((*thrs)[id->id_rateidx] == 0)
			newthr = ra->ra_avg_rssi;
		else
			newthr = (*thrs)[id->id_rateidx];
		(*thrs)[id->id_rateidx + 1] =
		    interpolate(master_expavgctl.rc_decay, oldthr, newthr);

		RSSADAPT_PRINTF(("-> %d\n", (*thrs)[id->id_rateidx + 1]));
	}

#ifdef IEEE80211_DEBUG
	if (RSSADAPT_DO_PRINT()) {
		printf("%s: dst %s thresholds\n", ic->ic_ifp->if_xname,
		    ether_sprintf(ni->ni_macaddr));
		for (i = 0; i < IEEE80211_RSSADAPT_BKTS; i++) {
			printf("%d-byte", IEEE80211_RSSADAPT_BKT0 << (IEEE80211_RSSADAPT_BKTPOWER * i));
			for (j = 0; j < rs->rs_nrates; j++) {
				rate = (rs->rs_rates[j] & IEEE80211_RATE_VAL);
				printf(", T[%d.%d] = %d", rate / 2,
				    rate * 5 % 10, ra->ra_rate_thresh[i][j]);
			}
			printf("\n");
		}
	}
#endif /* IEEE80211_DEBUG */
}
예제 #3
0
static int
hwmp_send_perr(struct ieee80211_node *ni,
    const uint8_t sa[IEEE80211_ADDR_LEN],
    const uint8_t da[IEEE80211_ADDR_LEN],
    struct ieee80211_meshperr_ie *perr)
{
	struct ieee80211_hwmp_state *hs = ni->ni_vap->iv_hwmp;

	/*
	 * Enforce PERR interval.
	 */
	if (ratecheck(&hs->hs_lastperr, &ieee80211_hwmp_perrminint) == 0)
		return EALREADY;
	getmicrouptime(&hs->hs_lastperr);

	/*
	 * mesh perr action frame format
	 *     [6] da
	 *     [6] sa
	 *     [6] addr3 = sa
	 *     [1] action
	 *     [1] category
	 *     [tlv] mesh path error
	 */
	perr->perr_ie = IEEE80211_ELEMID_MESHPERR;
	return hwmp_send_action(ni, sa, da, (uint8_t *)perr,
	    sizeof(struct ieee80211_meshperr_ie));
}
예제 #4
0
void
ral_rssadapt_raise_rate(struct ieee80211com *ic, struct ral_rssadapt *ra,
    struct ral_rssdesc *id)
{
	u_int16_t (*thrs)[IEEE80211_RATE_SIZE], newthr, oldthr;
	struct ieee80211_node *ni = id->id_node;
	struct ieee80211_rateset *rs = &ni->ni_rates;
	int i, rate, top;

	ra->ra_nok++;

	if (!ratecheck(&ra->ra_last_raise, &ra->ra_raise_interval))
		return;

	for (i = 0, top = RAL_RSSADAPT_BKT0;
	     i < RAL_RSSADAPT_BKTS;
	     i++, top <<= RAL_RSSADAPT_BKTPOWER) {
		thrs = &ra->ra_rate_thresh[i];
		if (id->id_len <= top)
			break;
	}

	if (id->id_rateidx + 1 < rs->rs_nrates &&
	    (*thrs)[id->id_rateidx + 1] > (*thrs)[id->id_rateidx]) {
		rate = (rs->rs_rates[id->id_rateidx + 1] & IEEE80211_RATE_VAL);

		oldthr = (*thrs)[id->id_rateidx + 1];
		if ((*thrs)[id->id_rateidx] == 0)
			newthr = ra->ra_avg_rssi;
		else
			newthr = (*thrs)[id->id_rateidx];
		(*thrs)[id->id_rateidx + 1] =
		    interpolate(master_expavgctl.rc_decay, oldthr, newthr);
	}
}
/*
 * Security sensitive rate limiting printf
 */
void
rlprintf(struct timeval *t, const char *fmt, ...)
{
	va_list ap;
	static const struct timeval msgperiod[1] = {{ 5, 0 }};

	if (ratecheck(t, msgperiod))
		vprintf(fmt, ap);
}
예제 #6
0
int
octeon_eth_recv_check(struct octeon_eth_softc *sc, uint64_t word2)
{
	if (__predict_false(octeon_eth_recv_check_link(sc, word2)) != 0) {
		if (ratecheck(&sc->sc_rate_recv_check_link_last,
		    &sc->sc_rate_recv_check_link_cap))
			log(LOG_DEBUG,
			    "%s: link is not up, the packet was dropped\n",
			    sc->sc_dev.dv_xname);
		return 1;
	}

#if 0 /* XXX Performance tuning (Jumbo-frame is not supported yet!) */
	if (__predict_false(octeon_eth_recv_check_jumbo(sc, word2)) != 0) {
		/* XXX jumbo frame */
		if (ratecheck(&sc->sc_rate_recv_check_jumbo_last,
		    &sc->sc_rate_recv_check_jumbo_cap))
			log(LOG_DEBUG,
			    "jumbo frame was received\n");
		return 1;
	}
#endif

	if (__predict_false(octeon_eth_recv_check_code(sc, word2)) != 0) {
		if ((word2 & PIP_WQE_WORD2_NOIP_OPECODE) == PIP_WQE_WORD2_RE_OPCODE_LENGTH) {
			/* no logging */
			/* XXX inclement special error count */
		} else if ((word2 & PIP_WQE_WORD2_NOIP_OPECODE) == 
				PIP_WQE_WORD2_RE_OPCODE_PARTIAL) {
			/* not an error. it's because of overload */
		}
		else {
			if (ratecheck(&sc->sc_rate_recv_check_code_last,
			    &sc->sc_rate_recv_check_code_cap)) 
				log(LOG_WARNING,
				    "%s: a reception error occured, "
				    "the packet was dropped (error code = %lld)\n",
				    sc->sc_dev.dv_xname, word2 & PIP_WQE_WORD2_NOIP_OPECODE);
		}
		return 1;
	}

	return 0;
}
예제 #7
0
파일: zkbd.c 프로젝트: ryo/netbsd-src
static int
zkbd_on(void *v)
{
#if NAPM > 0
	struct zkbd_softc *sc = (struct zkbd_softc *)v;
	int down;

	if (sc->sc_onkey_pin < 0)
		return 1;

	down = pxa2x0_gpio_get_bit(sc->sc_onkey_pin) ? 1 : 0;

	/*
	 * Change run mode depending on how long the key is held down.
	 * Ignore the key if it gets pressed while the lid is closed.
	 *
	 * Keys can bounce and we have to work around missed interrupts.
	 * Only the second edge is detected upon exit from sleep mode.
	 */
	if (down) {
		if (sc->sc_hinge == 3) {
			zkbdondown = 0;
		} else {
			microuptime(&zkbdontv);
			zkbdondown = 1;
		}
	} else if (zkbdondown) {
		if (ratecheck(&zkbdontv, &zkbdhalttv)) {
			if (kbd_reset == 1) {
				kbd_reset = 0;
				psignal(initproc, SIGUSR1);
			}
		} else if (ratecheck(&zkbdontv, &zkbdsleeptv)) {
			apm_suspends++;
		}
		zkbdondown = 0;
	}
#endif
	return 1;
}
예제 #8
0
void
ld_cac_done(device_t dv, void *context, int error)
{
	struct buf *bp;
	struct ld_cac_softc *sc;
	int rv;

	bp = context;
	rv = 0;
	sc = device_private(dv);

	if ((error & CAC_RET_CMD_REJECTED) == CAC_RET_CMD_REJECTED) {
		aprint_error_dev(dv, "command rejected\n");
		rv = EIO;
	}
	if (rv == 0 && (error & CAC_RET_INVAL_BLOCK) != 0) {
		aprint_error_dev(dv, "invalid request block\n");
		rv = EIO;
	}
	if (rv == 0 && (error & CAC_RET_HARD_ERROR) != 0) {
		aprint_error_dev(dv, "hard error\n");
		rv = EIO;
	}
	if (rv == 0 && (error & CAC_RET_SOFT_ERROR) != 0) {
		sc->sc_serrcnt++;
		if (ratecheck(&sc->sc_serrtm, &ld_cac_serrintvl)) {
			sc->sc_serrcnt = 0;
			aprint_error_dev(dv,
			    "%d soft errors; array may be degraded\n",
			    sc->sc_serrcnt);
		}
	}

	if (rv) {
		bp->b_error = rv;
		bp->b_resid = bp->b_bcount;
	} else
		bp->b_resid = 0;

	mutex_exit(sc->sc_mutex);
	lddone(&sc->sc_ld, bp);
	mutex_enter(sc->sc_mutex);
}
예제 #9
0
파일: ld_cac.c 프로젝트: MarginC/kame
void
ld_cac_done(struct device *dv, void *context, int error)
{
	struct buf *bp;
	struct ld_cac_softc *sc;

	bp = context;

	if ((error & CAC_RET_HARD_ERROR) != 0) {
		printf("%s: hard error\n", dv->dv_xname);
		error = EIO;
	}
	if ((error & CAC_RET_CMD_REJECTED) != 0) {
		printf("%s: invalid request\n", dv->dv_xname);
		error = EIO;
	}
	if ((error & CAC_RET_SOFT_ERROR) != 0) {
		sc = (struct ld_cac_softc *)dv;
		sc->sc_serrcnt++;
		if (ratecheck(&sc->sc_serrtm, &ld_cac_serrintvl)) {
			printf("%s: %d soft errors; array may be degraded\n",
			    dv->dv_xname, sc->sc_serrcnt);
			sc->sc_serrcnt = 0;
		}
		error = 0;
	}

	if (error) {
		bp->b_flags |= B_ERROR;
		bp->b_error = error;
		bp->b_resid = bp->b_bcount;
	} else
		bp->b_resid = 0;

	lddone((struct ld_softc *)dv, bp);
}
예제 #10
0
/*
 * Poll power-management related GPIO inputs, update battery life
 * in softc, and/or control battery charging.
 */
void
zapm_poll(void *v)
{
	struct zapm_softc *sc = v;
	int ac_on;
	int bc_lock;
	int charging;
	int volt;
	int s;

	s = splhigh();

	/* Check positition of battery compartment lock switch. */
	bc_lock = pxa2x0_gpio_get_bit(GPIO_BATT_COVER_C3000) ? 1 : 0;

	/* Stop discharging. */
	if (sc->sc_discharging) {
		sc->sc_discharging = 0;
		volt = zapm_batt_volt();
		ac_on = zapm_ac_on();
		charging = 0;
		DPRINTF(("zapm_poll: discharge off volt %d\n", volt));
	} else {
		ac_on = zapm_ac_on();
		charging = sc->sc_charging;
		volt = sc->sc_batt_volt;
	}

	/* Start or stop charging as necessary. */
	if (ac_on && bc_lock) {
		if (charging) {
			if (zapm_charge_complete(sc)) {
				DPRINTF(("zapm_poll: batt full\n"));
				charging = 0;
				zapm_enable_charging(sc, 0);
			}
		} else if (!zapm_charge_complete(sc)) {
			charging = 1;
			volt = zapm_batt_volt();
			zapm_enable_charging(sc, 1);
			DPRINTF(("zapm_poll: start charging volt %d\n", volt));
		}
	} else {
		if (charging) {
			charging = 0;
			zapm_enable_charging(sc, 0);
			timerclear(&sc->sc_lastbattchk);
			DPRINTF(("zapm_poll: stop charging\n"));
		}
		sc->sc_batt_full = 0;
	}

	/*
	 * Restart charging once in a while.  Discharge a few milliseconds
	 * before updating the voltage in our softc if A/C is connected.
	 */
	if (bc_lock && ratecheck(&sc->sc_lastbattchk, &zapm_battchkrate)) {
		if (sc->sc_suspended) {
			DPRINTF(("zapm_poll: suspended %lu %lu\n",
			    sc->sc_lastbattchk.tv_sec,
			    pxa2x0_rtc_getsecs()));
			if (charging) {
				zapm_enable_charging(sc, 0);
				delay(15000);
				zapm_enable_charging(sc, 1);
				pxa2x0_rtc_setalarm(pxa2x0_rtc_getsecs() +
				    zapm_battchkrate.tv_sec + 1);
			}
		} else if (ac_on && sc->sc_batt_full == 0) {
			DPRINTF(("zapm_poll: discharge on\n"));
			if (charging)
				zapm_enable_charging(sc, 0);
			sc->sc_discharging = 1;
			scoop_discharge_battery(1);
			timeout_add(&sc->sc_poll, DISCHARGE_TIMEOUT);
		} else if (!ac_on) {
			volt = zapm_batt_volt();
			DPRINTF(("zapm_poll: volt %d\n", volt));
		}
	}

	/* Update the cached power state in our softc. */
	if (ac_on != sc->sc_ac_on || charging != sc->sc_charging ||
	    volt != sc->sc_batt_volt) {
		sc->sc_ac_on = ac_on;
		sc->sc_charging = charging;
		sc->sc_batt_volt = volt;
		if (sc->sc_event == APM_NOEVENT)
			sc->sc_event = APM_POWER_CHANGE;
	}

	/* Detect battery low conditions. */
	if (!ac_on) {
		if (zapm_batt_life(volt) < 5)
			sc->sc_event = APM_BATTERY_LOW;
		if (zapm_batt_state(volt) == APM_BATT_CRITICAL)
			sc->sc_event = APM_CRIT_SUSPEND_REQ;
	}

#ifdef APMDEBUG
	if (sc->sc_event != APM_NOEVENT)
		DPRINTF(("zapm_poll: power event %d\n", sc->sc_event));
#endif
	splx(s);
}
예제 #11
0
static int
ieee80211_do_slow_print(struct ieee80211com *ic, int *did_print)
{
	static const struct timeval merge_print_intvl = {
		.tv_sec = 1, .tv_usec = 0
	};
	if ((ic->ic_if.if_flags & IFF_LINK0) == 0)
		return 0;
	if (!*did_print && (ic->ic_if.if_flags & IFF_DEBUG) == 0 &&
	    !ratecheck(&ic->ic_last_merge_print, &merge_print_intvl))
		return 0;

	*did_print = 1;
	return 1;
}

/* ieee80211_ibss_merge helps merge 802.11 ad hoc networks.  The
 * convention, set by the Wireless Ethernet Compatibility Alliance
 * (WECA), is that an 802.11 station will change its BSSID to match
 * the "oldest" 802.11 ad hoc network, on the same channel, that
 * has the station's desired SSID.  The "oldest" 802.11 network
 * sends beacons with the greatest TSF timestamp.
 *
 * Return ENETRESET if the BSSID changed, 0 otherwise.
 *
 * XXX Perhaps we should compensate for the time that elapses
 * between the MAC receiving the beacon and the host processing it
 * in ieee80211_ibss_merge.
 */
int
ieee80211_ibss_merge(struct ieee80211com *ic, struct ieee80211_node *ni,
    u_int64_t local_tsft)
{
	u_int64_t beacon_tsft;
	int did_print = 0, sign;
	union {
		u_int64_t	word;
		u_int8_t	tstamp[8];
	} u;

	/* ensure alignment */
	(void)memcpy(&u, &ni->ni_tstamp[0], sizeof(u));
	beacon_tsft = letoh64(u.word);

	/* we are faster, let the other guy catch up */
	if (beacon_tsft < local_tsft)
		sign = -1;
	else
		sign = 1;

	if (IEEE80211_ADDR_EQ(ni->ni_bssid, ic->ic_bss->ni_bssid)) {
		if (!ieee80211_do_slow_print(ic, &did_print))
			return 0;
		printf("%s: tsft offset %s%llu\n", ic->ic_if.if_xname,
		    (sign < 0) ? "-" : "",
		    (sign < 0)
			? (local_tsft - beacon_tsft)
			: (beacon_tsft - local_tsft));
		return 0;
	}

	if (sign < 0)
		return 0;

	if (ieee80211_match_bss(ic, ni) != 0)
		return 0;

	if (ieee80211_do_slow_print(ic, &did_print)) {
		printf("%s: ieee80211_ibss_merge: bssid mismatch %s\n",
		    ic->ic_if.if_xname, ether_sprintf(ni->ni_bssid));
		printf("%s: my tsft %llu beacon tsft %llu\n",
		    ic->ic_if.if_xname, local_tsft, beacon_tsft);
		printf("%s: sync TSF with %s\n",
		    ic->ic_if.if_xname, ether_sprintf(ni->ni_macaddr));
	}

	ic->ic_flags &= ~IEEE80211_F_SIBSS;

	/* negotiate rates with new IBSS */
	ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
	    IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
	if (ni->ni_rates.rs_nrates == 0) {
		if (ieee80211_do_slow_print(ic, &did_print)) {
			printf("%s: rates mismatch, BSSID %s\n",
			    ic->ic_if.if_xname, ether_sprintf(ni->ni_bssid));
		}
		return 0;
	}

	if (ieee80211_do_slow_print(ic, &did_print)) {
		printf("%s: sync BSSID %s -> ",
		    ic->ic_if.if_xname, ether_sprintf(ic->ic_bss->ni_bssid));
		printf("%s ", ether_sprintf(ni->ni_bssid));
		printf("(from %s)\n", ether_sprintf(ni->ni_macaddr));
	}

	ieee80211_node_newstate(ni, IEEE80211_STA_BSS);
	(*ic->ic_node_copy)(ic, ic->ic_bss, ni);

	return ENETRESET;
}
예제 #12
0
/*
 * General fork call.  Note that another LWP in the process may call exec()
 * or exit() while we are forking.  It's safe to continue here, because
 * neither operation will complete until all LWPs have exited the process.
 */
int
fork1(struct lwp *l1, int flags, int exitsig, void *stack, size_t stacksize,
    void (*func)(void *), void *arg, register_t *retval,
    struct proc **rnewprocp)
{
	struct proc	*p1, *p2, *parent;
	struct plimit   *p1_lim;
	uid_t		uid;
	struct lwp	*l2;
	int		count;
	vaddr_t		uaddr;
	int		tnprocs;
	int		tracefork;
	int		error = 0;

	p1 = l1->l_proc;
	uid = kauth_cred_getuid(l1->l_cred);
	tnprocs = atomic_inc_uint_nv(&nprocs);

	/*
	 * Although process entries are dynamically created, we still keep
	 * a global limit on the maximum number we will create.
	 */
	if (__predict_false(tnprocs >= maxproc))
		error = -1;
	else
		error = kauth_authorize_process(l1->l_cred,
		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);

	if (error) {
		static struct timeval lasttfm;
		atomic_dec_uint(&nprocs);
		if (ratecheck(&lasttfm, &fork_tfmrate))
			tablefull("proc", "increase kern.maxproc or NPROC");
		if (forkfsleep)
			kpause("forkmx", false, forkfsleep, NULL);
		return EAGAIN;
	}

	/*
	 * Enforce limits.
	 */
	count = chgproccnt(uid, 1);
	if (__predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
		if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
		    p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
		    &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0) {
			(void)chgproccnt(uid, -1);
			atomic_dec_uint(&nprocs);
			if (forkfsleep)
				kpause("forkulim", false, forkfsleep, NULL);
			return EAGAIN;
		}
	}

	/*
	 * Allocate virtual address space for the U-area now, while it
	 * is still easy to abort the fork operation if we're out of
	 * kernel virtual address space.
	 */
	uaddr = uvm_uarea_alloc();
	if (__predict_false(uaddr == 0)) {
		(void)chgproccnt(uid, -1);
		atomic_dec_uint(&nprocs);
		return ENOMEM;
	}

	/*
	 * We are now committed to the fork.  From here on, we may
	 * block on resources, but resource allocation may NOT fail.
	 */

	/* Allocate new proc. */
	p2 = proc_alloc();

	/*
	 * Make a proc table entry for the new process.
	 * Start by zeroing the section of proc that is zero-initialized,
	 * then copy the section that is copied directly from the parent.
	 */
	memset(&p2->p_startzero, 0,
	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
	memcpy(&p2->p_startcopy, &p1->p_startcopy,
	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));

	TAILQ_INIT(&p2->p_sigpend.sp_info);

	LIST_INIT(&p2->p_lwps);
	LIST_INIT(&p2->p_sigwaiters);

	/*
	 * Duplicate sub-structures as needed.
	 * Increase reference counts on shared objects.
	 * Inherit flags we want to keep.  The flags related to SIGCHLD
	 * handling are important in order to keep a consistent behaviour
	 * for the child after the fork.  If we are a 32-bit process, the
	 * child will be too.
	 */
	p2->p_flag =
	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
	p2->p_emul = p1->p_emul;
	p2->p_execsw = p1->p_execsw;

	if (flags & FORK_SYSTEM) {
		/*
		 * Mark it as a system process.  Set P_NOCLDWAIT so that
		 * children are reparented to init(8) when they exit.
		 * init(8) can easily wait them out for us.
		 */
		p2->p_flag |= (PK_SYSTEM | PK_NOCLDWAIT);
	}

	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
	rw_init(&p2->p_reflock);
	cv_init(&p2->p_waitcv, "wait");
	cv_init(&p2->p_lwpcv, "lwpwait");

	/*
	 * Share a lock between the processes if they are to share signal
	 * state: we must synchronize access to it.
	 */
	if (flags & FORK_SHARESIGS) {
		p2->p_lock = p1->p_lock;
		mutex_obj_hold(p1->p_lock);
	} else
		p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);

	kauth_proc_fork(p1, p2);

	p2->p_raslist = NULL;
#if defined(__HAVE_RAS)
	ras_fork(p1, p2);
#endif

	/* bump references to the text vnode (for procfs) */
	p2->p_textvp = p1->p_textvp;
	if (p2->p_textvp)
		vref(p2->p_textvp);

	if (flags & FORK_SHAREFILES)
		fd_share(p2);
	else if (flags & FORK_CLEANFILES)
		p2->p_fd = fd_init(NULL);
	else
		p2->p_fd = fd_copy();

	/* XXX racy */
	p2->p_mqueue_cnt = p1->p_mqueue_cnt;

	if (flags & FORK_SHARECWD)
		cwdshare(p2);
	else
		p2->p_cwdi = cwdinit();

	/*
	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
	 * we just need increase pl_refcnt.
	 */
	p1_lim = p1->p_limit;
	if (!p1_lim->pl_writeable) {
		lim_addref(p1_lim);
		p2->p_limit = p1_lim;
	} else {
		p2->p_limit = lim_copy(p1_lim);
	}

	if (flags & FORK_PPWAIT) {
		/* Mark ourselves as waiting for a child. */
		l1->l_pflag |= LP_VFORKWAIT;
		p2->p_lflag = PL_PPWAIT;
		p2->p_vforklwp = l1;
	} else {
		p2->p_lflag = 0;
	}
	p2->p_sflag = 0;
	p2->p_slflag = 0;
	parent = (flags & FORK_NOWAIT) ? initproc : p1;
	p2->p_pptr = parent;
	p2->p_ppid = parent->p_pid;
	LIST_INIT(&p2->p_children);

	p2->p_aio = NULL;

#ifdef KTRACE
	/*
	 * Copy traceflag and tracefile if enabled.
	 * If not inherited, these were zeroed above.
	 */
	if (p1->p_traceflag & KTRFAC_INHERIT) {
		mutex_enter(&ktrace_lock);
		p2->p_traceflag = p1->p_traceflag;
		if ((p2->p_tracep = p1->p_tracep) != NULL)
			ktradref(p2);
		mutex_exit(&ktrace_lock);
	}
#endif

	/*
	 * Create signal actions for the child process.
	 */
	p2->p_sigacts = sigactsinit(p1, flags & FORK_SHARESIGS);
	mutex_enter(p1->p_lock);
	p2->p_sflag |=
	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
	sched_proc_fork(p1, p2);
	mutex_exit(p1->p_lock);

	p2->p_stflag = p1->p_stflag;

	/*
	 * p_stats.
	 * Copy parts of p_stats, and zero out the rest.
	 */
	p2->p_stats = pstatscopy(p1->p_stats);

	/*
	 * Set up the new process address space.
	 */
	uvm_proc_fork(p1, p2, (flags & FORK_SHAREVM) ? true : false);

	/*
	 * Finish creating the child process.
	 * It will return through a different path later.
	 */
	lwp_create(l1, p2, uaddr, (flags & FORK_PPWAIT) ? LWP_VFORK : 0,
	    stack, stacksize, (func != NULL) ? func : child_return, arg, &l2,
	    l1->l_class);

	/*
	 * Inherit l_private from the parent.
	 * Note that we cannot use lwp_setprivate() here since that
	 * also sets the CPU TLS register, which is incorrect if the
	 * process has changed that without letting the kernel know.
	 */
	l2->l_private = l1->l_private;

	/*
	 * If emulation has a process fork hook, call it now.
	 */
	if (p2->p_emul->e_proc_fork)
		(*p2->p_emul->e_proc_fork)(p2, l1, flags);

	/*
	 * ...and finally, any other random fork hooks that subsystems
	 * might have registered.
	 */
	doforkhooks(p2, p1);

	SDT_PROBE(proc,,,create, p2, p1, flags, 0, 0);

	/*
	 * It's now safe for the scheduler and other processes to see the
	 * child process.
	 */
	mutex_enter(proc_lock);

	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
		p2->p_lflag |= PL_CONTROLT;

	LIST_INSERT_HEAD(&parent->p_children, p2, p_sibling);
	p2->p_exitsig = exitsig;		/* signal for parent on exit */

	/*
	 * We don't want to tracefork vfork()ed processes because they
	 * will not receive the SIGTRAP until it is too late.
	 */
	tracefork = (p1->p_slflag & (PSL_TRACEFORK|PSL_TRACED)) ==
	    (PSL_TRACEFORK|PSL_TRACED) && (flags && FORK_PPWAIT) == 0;
	if (tracefork) {
		p2->p_slflag |= PSL_TRACED;
		p2->p_opptr = p2->p_pptr;
		if (p2->p_pptr != p1->p_pptr) {
			struct proc *parent1 = p2->p_pptr;

			if (parent1->p_lock < p2->p_lock) {
				if (!mutex_tryenter(parent1->p_lock)) {
					mutex_exit(p2->p_lock);
					mutex_enter(parent1->p_lock);
				}
			} else if (parent1->p_lock > p2->p_lock) {
				mutex_enter(parent1->p_lock);
			}
			parent1->p_slflag |= PSL_CHTRACED;
			proc_reparent(p2, p1->p_pptr);
			if (parent1->p_lock != p2->p_lock)
				mutex_exit(parent1->p_lock);
		}

		/*
		 * Set ptrace status.
		 */
		p1->p_fpid = p2->p_pid;
		p2->p_fpid = p1->p_pid;
	}

	LIST_INSERT_AFTER(p1, p2, p_pglist);
	LIST_INSERT_HEAD(&allproc, p2, p_list);

	p2->p_trace_enabled = trace_is_enabled(p2);
#ifdef __HAVE_SYSCALL_INTERN
	(*p2->p_emul->e_syscall_intern)(p2);
#endif

	/*
	 * Update stats now that we know the fork was successful.
	 */
	uvmexp.forks++;
	if (flags & FORK_PPWAIT)
		uvmexp.forks_ppwait++;
	if (flags & FORK_SHAREVM)
		uvmexp.forks_sharevm++;

	/*
	 * Pass a pointer to the new process to the caller.
	 */
	if (rnewprocp != NULL)
		*rnewprocp = p2;

	if (ktrpoint(KTR_EMUL))
		p2->p_traceflag |= KTRFAC_TRC_EMUL;

	/*
	 * Notify any interested parties about the new process.
	 */
	if (!SLIST_EMPTY(&p1->p_klist)) {
		mutex_exit(proc_lock);
		KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
		mutex_enter(proc_lock);
	}

	/*
	 * Make child runnable, set start time, and add to run queue except
	 * if the parent requested the child to start in SSTOP state.
	 */
	mutex_enter(p2->p_lock);

	/*
	 * Start profiling.
	 */
	if ((p2->p_stflag & PST_PROFIL) != 0) {
		mutex_spin_enter(&p2->p_stmutex);
		startprofclock(p2);
		mutex_spin_exit(&p2->p_stmutex);
	}

	getmicrotime(&p2->p_stats->p_start);
	p2->p_acflag = AFORK;
	lwp_lock(l2);
	KASSERT(p2->p_nrlwps == 1);
	if (p2->p_sflag & PS_STOPFORK) {
		struct schedstate_percpu *spc = &l2->l_cpu->ci_schedstate;
		p2->p_nrlwps = 0;
		p2->p_stat = SSTOP;
		p2->p_waited = 0;
		p1->p_nstopchild++;
		l2->l_stat = LSSTOP;
		KASSERT(l2->l_wchan == NULL);
		lwp_unlock_to(l2, spc->spc_lwplock);
	} else {
		p2->p_nrlwps = 1;
		p2->p_stat = SACTIVE;
		l2->l_stat = LSRUN;
		sched_enqueue(l2, false);
		lwp_unlock(l2);
	}

	/*
	 * Return child pid to parent process,
	 * marking us as parent via retval[1].
	 */
	if (retval != NULL) {
		retval[0] = p2->p_pid;
		retval[1] = 0;
	}
	mutex_exit(p2->p_lock);

	/*
	 * Preserve synchronization semantics of vfork.  If waiting for
	 * child to exec or exit, sleep until it clears LP_VFORKWAIT.
	 */
#if 0
	while (l1->l_pflag & LP_VFORKWAIT) {
		cv_wait(&l1->l_waitcv, proc_lock);
	}
#else
	while (p2->p_lflag & PL_PPWAIT)
		cv_wait(&p1->p_waitcv, proc_lock);
#endif

	/*
	 * Let the parent know that we are tracing its child.
	 */
	if (tracefork) {
		ksiginfo_t ksi;

		KSI_INIT_EMPTY(&ksi);
		ksi.ksi_signo = SIGTRAP;
		ksi.ksi_lid = l1->l_lid;
		kpsignal(p1, &ksi, NULL);
	}
	mutex_exit(proc_lock);

	return 0;
}
예제 #13
0
파일: zapm.c 프로젝트: ryo/netbsd-src
/*
 * Poll power-management related GPIO inputs, update battery life
 * in softc, and/or control battery charging.
 */
static void
zapm_poll1(void *v, int do_suspend)
{
	struct zapm_softc *sc = (struct zapm_softc *)v;
	int ac_state;
	int bc_lock;
	int charging;
	int volt;

	if (!mutex_tryenter(&sc->sc_mtx))
		return;

	ac_state = zapm_get_ac_state(sc);
	bc_lock = zapm_get_battery_compartment_state(sc);

	/* Stop discharging. */
	if (sc->discharging) {
		sc->discharging = 0;
		charging = 0;
		volt = zapm_get_battery_volt();
		DPRINTF(("zapm_poll: discharge off volt %d\n", volt));
	} else {
		charging = sc->battery_state & APM_BATT_FLAG_CHARGING;
		volt = sc->battery_volt;
	}

	/* Start or stop charging as necessary. */
	if (ac_state && bc_lock) {
		int charge_completed = zapm_charge_complete(sc);
		if (charging) {
			if (charge_completed) {
				DPRINTF(("zapm_poll: battery is full\n"));
				charging = 0;
				zapm_set_charging(sc, 0);
			}
		} else if (!charge_completed) {
			charging = APM_BATT_FLAG_CHARGING;
			volt = zapm_get_battery_volt();
			zapm_set_charging(sc, 1);
			DPRINTF(("zapm_poll: start charging volt %d\n", volt));
		}
	} else {
		if (charging) {
			charging = 0;
			zapm_set_charging(sc, 0);
			timerclear(&sc->sc_lastbattchk);
			DPRINTF(("zapm_poll: stop charging\n"));
		}
		sc->battery_full_cnt = 0;
	}

	/*
	 * Restart charging once in a while.  Discharge a few milliseconds
	 * before updating the voltage in our softc if A/C is connected.
	 */
	if (bc_lock && ratecheck(&sc->sc_lastbattchk, &zapm_battchkrate)) {
		if (do_suspend && sc->suspended) {
			/* XXX */
#if 0
			DPRINTF(("zapm_poll: suspended %lu %lu\n",
			    sc->lastbattchk.tv_sec,
			    pxa2x0_rtc_getsecs()));
			if (charging) {
				zapm_set_charging(sc, 0);
				delay(15000);
				zapm_set_charging(sc, 1);
				pxa2x0_rtc_setalarm(pxa2x0_rtc_getsecs() +
				    zapm_battchkrate.tv_sec + 1);
			}
#endif
		} else if (ac_state && sc->battery_full_cnt == 0) {
			DPRINTF(("zapm_poll: discharge on\n"));
			if (charging)
				zapm_set_charging(sc, 0);
			sc->discharging = 1;
			if (ZAURUS_ISC1000 || ZAURUS_ISC3000)
				scoop_discharge_battery(1);
			callout_schedule(&sc->sc_discharge_poll,
			    DISCHARGE_TIMEOUT);
		} else if (!ac_state) {
			volt = zapm_get_battery_volt();
			DPRINTF(("zapm_poll: volt %d\n", volt));
		}
	}

	/* Update the cached power state in our softc. */
	if ((ac_state != sc->ac_state)
	 || (charging != (sc->battery_state & APM_BATT_FLAG_CHARGING))) {
		config_hook_call(CONFIG_HOOK_PMEVENT,
		    CONFIG_HOOK_PMEVENT_AC,
		    (void *)((ac_state == APM_AC_OFF)
		        ? CONFIG_HOOK_AC_OFF
		        : (charging ? CONFIG_HOOK_AC_ON_CHARGE
		                    : CONFIG_HOOK_AC_ON_NOCHARGE)));
	}
	if (volt != sc->battery_volt) {
		sc->battery_volt = volt;
		sc->battery_life = zapm_battery_life(volt);
		config_hook_call(CONFIG_HOOK_PMEVENT,
		    CONFIG_HOOK_PMEVENT_BATTERY,
		    (void *)zapm_battery_state(volt));
	}

	mutex_exit(&sc->sc_mtx);
}
예제 #14
0
int
fork1(struct proc *p1, int exitsig, int flags, void *stack, size_t stacksize,
    void (*func)(void *), void *arg, register_t *retval,
    struct proc **rnewprocp)
{
	struct proc *p2;
	uid_t uid;
	struct vmspace *vm;
	int count;
	vaddr_t uaddr;
	int s;
	extern void endtsleep(void *);
	extern void realitexpire(void *);

	/*
	 * Although process entries are dynamically created, we still keep
	 * a global limit on the maximum number we will create. We reserve
	 * the last 5 processes to root. The variable nprocs is the current
	 * number of processes, maxproc is the limit.
	 */
	uid = p1->p_cred->p_ruid;
	if ((nprocs >= maxproc - 5 && uid != 0) || nprocs >= maxproc) {
		static struct timeval lasttfm;

		if (ratecheck(&lasttfm, &fork_tfmrate))
			tablefull("proc");
		return (EAGAIN);
	}
	nprocs++;

	/*
	 * Increment the count of procs running with this uid. Don't allow
	 * a nonprivileged user to exceed their current limit.
	 */
	count = chgproccnt(uid, 1);
	if (uid != 0 && count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur) {
		(void)chgproccnt(uid, -1);
		nprocs--;
		return (EAGAIN);
	}

	uaddr = uvm_km_alloc1(kernel_map, USPACE, USPACE_ALIGN, 1);
	if (uaddr == 0) {
		chgproccnt(uid, -1);
		nprocs--;
		return (ENOMEM);
	}

	/*
	 * From now on, we're committed to the fork and cannot fail.
	 */

	/* Allocate new proc. */
	p2 = pool_get(&proc_pool, PR_WAITOK);

	p2->p_stat = SIDL;			/* protect against others */
	p2->p_exitsig = exitsig;
	p2->p_forw = p2->p_back = NULL;

#ifdef RTHREADS
	if (flags & FORK_THREAD) {
		atomic_setbits_int(&p2->p_flag, P_THREAD);
		p2->p_p = p1->p_p;
		TAILQ_INSERT_TAIL(&p2->p_p->ps_threads, p2, p_thr_link);
	} else {
		process_new(p2, p1);
	}
#else
	process_new(p2, p1);
#endif

	/*
	 * Make a proc table entry for the new process.
	 * Start by zeroing the section of proc that is zero-initialized,
	 * then copy the section that is copied directly from the parent.
	 */
	bzero(&p2->p_startzero,
	    (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
	bcopy(&p1->p_startcopy, &p2->p_startcopy,
	    (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));

	/*
	 * Initialize the timeouts.
	 */
	timeout_set(&p2->p_sleep_to, endtsleep, p2);
	timeout_set(&p2->p_realit_to, realitexpire, p2);

#if defined(__HAVE_CPUINFO)
	p2->p_cpu = p1->p_cpu;
#endif

	/*
	 * Duplicate sub-structures as needed.
	 * Increase reference counts on shared objects.
	 * The p_stats and p_sigacts substructs are set in vm_fork.
	 */
	p2->p_flag = 0;
	p2->p_emul = p1->p_emul;
	if (p1->p_flag & P_PROFIL)
		startprofclock(p2);
	atomic_setbits_int(&p2->p_flag, p1->p_flag & (P_SUGID | P_SUGIDEXEC));
	if (flags & FORK_PTRACE)
		atomic_setbits_int(&p2->p_flag, p1->p_flag & P_TRACED);
#ifdef RTHREADS
	if (flags & FORK_THREAD) {
		/* nothing */
	} else
#endif
	{
		p2->p_p->ps_cred = pool_get(&pcred_pool, PR_WAITOK);
		bcopy(p1->p_p->ps_cred, p2->p_p->ps_cred, sizeof(*p2->p_p->ps_cred));
		p2->p_p->ps_cred->p_refcnt = 1;
		crhold(p1->p_ucred);
	}

	TAILQ_INIT(&p2->p_selects);

	/* bump references to the text vnode (for procfs) */
	p2->p_textvp = p1->p_textvp;
	if (p2->p_textvp)
		VREF(p2->p_textvp);

	if (flags & FORK_CLEANFILES)
		p2->p_fd = fdinit(p1);
	else if (flags & FORK_SHAREFILES)
		p2->p_fd = fdshare(p1);
	else
		p2->p_fd = fdcopy(p1);

	/*
	 * If ps_limit is still copy-on-write, bump refcnt,
	 * otherwise get a copy that won't be modified.
	 * (If PL_SHAREMOD is clear, the structure is shared
	 * copy-on-write.)
	 */
#ifdef RTHREADS
	if (flags & FORK_THREAD) {
		/* nothing */
	} else
#endif
	{
		if (p1->p_p->ps_limit->p_lflags & PL_SHAREMOD)
			p2->p_p->ps_limit = limcopy(p1->p_p->ps_limit);
		else {
			p2->p_p->ps_limit = p1->p_p->ps_limit;
			p2->p_p->ps_limit->p_refcnt++;
		}
	}

	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
		atomic_setbits_int(&p2->p_flag, P_CONTROLT);
	if (flags & FORK_PPWAIT)
		atomic_setbits_int(&p2->p_flag, P_PPWAIT);
	p2->p_pptr = p1;
	if (flags & FORK_NOZOMBIE)
		atomic_setbits_int(&p2->p_flag, P_NOZOMBIE);
	LIST_INIT(&p2->p_children);

#ifdef KTRACE
	/*
	 * Copy traceflag and tracefile if enabled.
	 * If not inherited, these were zeroed above.
	 */
	if (p1->p_traceflag & KTRFAC_INHERIT) {
		p2->p_traceflag = p1->p_traceflag;
		if ((p2->p_tracep = p1->p_tracep) != NULL)
			VREF(p2->p_tracep);
	}
#endif

	/*
	 * set priority of child to be that of parent
	 * XXX should move p_estcpu into the region of struct proc which gets
	 * copied.
	 */
	scheduler_fork_hook(p1, p2);

	/*
	 * Create signal actions for the child process.
	 */
	if (flags & FORK_SIGHAND)
		sigactsshare(p1, p2);
	else
		p2->p_sigacts = sigactsinit(p1);

	/*
	 * If emulation has process fork hook, call it now.
	 */
	if (p2->p_emul->e_proc_fork)
		(*p2->p_emul->e_proc_fork)(p2, p1);

	p2->p_addr = (struct user *)uaddr;

	/*
	 * Finish creating the child process.  It will return through a
	 * different path later.
	 */
	uvm_fork(p1, p2, ((flags & FORK_SHAREVM) ? TRUE : FALSE), stack,
	    stacksize, func ? func : child_return, arg ? arg : p2);

	timeout_set(&p2->p_stats->p_virt_to, virttimer_trampoline, p2);
	timeout_set(&p2->p_stats->p_prof_to, proftimer_trampoline, p2);

	vm = p2->p_vmspace;

	if (flags & FORK_FORK) {
		forkstat.cntfork++;
		forkstat.sizfork += vm->vm_dsize + vm->vm_ssize;
	} else if (flags & FORK_VFORK) {
		forkstat.cntvfork++;
		forkstat.sizvfork += vm->vm_dsize + vm->vm_ssize;
	} else if (flags & FORK_RFORK) {
		forkstat.cntrfork++;
		forkstat.sizrfork += vm->vm_dsize + vm->vm_ssize;
	} else {
		forkstat.cntkthread++;
		forkstat.sizkthread += vm->vm_dsize + vm->vm_ssize;
	}

	/* Find an unused pid satisfying 1 <= lastpid <= PID_MAX */
	do {
		lastpid = 1 + (randompid ? arc4random() : lastpid) % PID_MAX;
	} while (pidtaken(lastpid));
	p2->p_pid = lastpid;

	LIST_INSERT_HEAD(&allproc, p2, p_list);
	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
	LIST_INSERT_AFTER(p1, p2, p_pglist);
	if (p2->p_flag & P_TRACED) {
		p2->p_oppid = p1->p_pid;
		if (p2->p_pptr != p1->p_pptr)
			proc_reparent(p2, p1->p_pptr);

		/*
		 * Set ptrace status.
		 */
		if (flags & FORK_FORK) {
			p2->p_ptstat = malloc(sizeof(*p2->p_ptstat),
			    M_SUBPROC, M_WAITOK);
			p1->p_ptstat->pe_report_event = PTRACE_FORK;
			p2->p_ptstat->pe_report_event = PTRACE_FORK;
			p1->p_ptstat->pe_other_pid = p2->p_pid;
			p2->p_ptstat->pe_other_pid = p1->p_pid;
		}
	}

#if NSYSTRACE > 0
	if (ISSET(p1->p_flag, P_SYSTRACE))
		systrace_fork(p1, p2);
#endif

	/*
	 * Make child runnable, set start time, and add to run queue.
	 */
	SCHED_LOCK(s);
 	getmicrotime(&p2->p_stats->p_start);
	p2->p_acflag = AFORK;
	p2->p_stat = SRUN;
	setrunqueue(p2);
	SCHED_UNLOCK(s);

	/*
	 * Notify any interested parties about the new process.
	 */
	KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);

	/*
	 * Update stats now that we know the fork was successfull.
	 */
	uvmexp.forks++;
	if (flags & FORK_PPWAIT)
		uvmexp.forks_ppwait++;
	if (flags & FORK_SHAREVM)
		uvmexp.forks_sharevm++;

	/*
	 * Pass a pointer to the new process to the caller.
	 */
	if (rnewprocp != NULL)
		*rnewprocp = p2;

	/*
	 * Preserve synchronization semantics of vfork.  If waiting for
	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
	 * proc (in case of exit).
	 */
	if (flags & FORK_PPWAIT)
		while (p2->p_flag & P_PPWAIT)
			tsleep(p1, PWAIT, "ppwait", 0);

	/*
	 * If we're tracing the child, alert the parent too.
	 */
	if ((flags & FORK_PTRACE) && (p1->p_flag & P_TRACED))
		psignal(p1, SIGTRAP);

	/*
	 * Return child pid to parent process,
	 * marking us as parent via retval[1].
	 */
	if (retval != NULL) {
		retval[0] = p2->p_pid;
		retval[1] = 0;
	}
	return (0);
}