예제 #1
0
bool FirmwareEnableCPU(struct net_device *dev)
{
	bool rtStatus = true;
	u8 tmpU1b, CPUStatus = 0;
	u16 tmpU2b;
	u32 iCheckTime = 200;

	/* Enable CPU. */
	tmpU1b = read_nic_byte(dev, SYS_CLKR);
	/* AFE source */
	write_nic_byte(dev,  SYS_CLKR, (tmpU1b|SYS_CPU_CLKSEL));
	tmpU2b = read_nic_word(dev, SYS_FUNC_EN);
	write_nic_word(dev, SYS_FUNC_EN, (tmpU2b|FEN_CPUEN));
	/* Poll IMEM Ready after CPU has refilled. */
	do {
		CPUStatus = read_nic_byte(dev, TCR);
		if (CPUStatus & IMEM_RDY)
			/* success */
			break;
		udelay(100);
	} while (iCheckTime--);
	if (!(CPUStatus & IMEM_RDY)) {
		RT_TRACE(COMP_ERR, "%s(): failed to enable CPU", __func__);
		rtStatus = false;
	}
	return rtStatus;
}
예제 #2
0
static void eprom_ck_cycle(struct net_device *dev)
{
	write_nic_byte(dev, EPROM_CMD,
		       (1<<EPROM_CK_SHIFT) | read_nic_byte(dev, EPROM_CMD));
	udelay(EPROM_DELAY);
	write_nic_byte(dev, EPROM_CMD,
		       read_nic_byte(dev, EPROM_CMD) & ~(1<<EPROM_CK_SHIFT));
	udelay(EPROM_DELAY);
}
예제 #3
0
/*
 *	Description:
 *		Update Tx power level if necessary.
 *		See also DoRxHighPower() and SetTxPowerLevel8185() for reference.
 *
 *	Note:
 *		The reason why we udpate Tx power level here instead of DoRxHighPower()
 *		is the number of IO to change Tx power is much more than channel TR switch
 *		and they are related to OFDM and MAC registers.
 *		So, we don't want to update it so frequently in per-Rx packet base.
 */
static void DoTxHighPower(struct net_device *dev)
{
    struct r8180_priv *priv = ieee80211_priv(dev);
    u16			HiPwrUpperTh = 0;
    u16			HiPwrLowerTh = 0;
    u8			RSSIHiPwrUpperTh;
    u8			RSSIHiPwrLowerTh;
    u8			u1bTmp;
    char			OfdmTxPwrIdx, CckTxPwrIdx;

    HiPwrUpperTh = priv->RegHiPwrUpperTh;
    HiPwrLowerTh = priv->RegHiPwrLowerTh;

    HiPwrUpperTh = HiPwrUpperTh * 10;
    HiPwrLowerTh = HiPwrLowerTh * 10;
    RSSIHiPwrUpperTh = priv->RegRSSIHiPwrUpperTh;
    RSSIHiPwrLowerTh = priv->RegRSSIHiPwrLowerTh;

    /* lzm add 080826 */
    OfdmTxPwrIdx  = priv->chtxpwr_ofdm[priv->ieee80211->current_network.channel];
    CckTxPwrIdx  = priv->chtxpwr[priv->ieee80211->current_network.channel];

    if ((priv->UndecoratedSmoothedSS > HiPwrUpperTh) ||
            (priv->bCurCCKPkt && (priv->CurCCKRSSI > RSSIHiPwrUpperTh))) {
        /* Stevenl suggested that degrade 8dbm in high power sate. 2007-12-04 Isaiah */

        priv->bToUpdateTxPwr = true;
        u1bTmp = read_nic_byte(dev, CCK_TXAGC);

        /* If it never enter High Power. */
        if (CckTxPwrIdx == u1bTmp) {
            u1bTmp = (u1bTmp > 16) ? (u1bTmp - 16) : 0;  /* 8dbm */
            write_nic_byte(dev, CCK_TXAGC, u1bTmp);

            u1bTmp = read_nic_byte(dev, OFDM_TXAGC);
            u1bTmp = (u1bTmp > 16) ? (u1bTmp - 16) : 0;  /* 8dbm */
            write_nic_byte(dev, OFDM_TXAGC, u1bTmp);
        }

    } else if ((priv->UndecoratedSmoothedSS < HiPwrLowerTh) &&
               (!priv->bCurCCKPkt || priv->CurCCKRSSI < RSSIHiPwrLowerTh)) {
        if (priv->bToUpdateTxPwr) {
            priv->bToUpdateTxPwr = false;
            /* SD3 required. */
            u1bTmp = read_nic_byte(dev, CCK_TXAGC);
            if (u1bTmp < CckTxPwrIdx) {
                write_nic_byte(dev, CCK_TXAGC, CckTxPwrIdx);
            }

            u1bTmp = read_nic_byte(dev, OFDM_TXAGC);
            if (u1bTmp < OfdmTxPwrIdx) {
                write_nic_byte(dev, OFDM_TXAGC, OfdmTxPwrIdx);
            }
        }
    }
}
void DoTxHighPower(struct net_device *dev)
{
	struct r8180_priv *priv = ieee80211_priv(dev);
	u16			HiPwrUpperTh = 0;
	u16			HiPwrLowerTh = 0;
	u8			RSSIHiPwrUpperTh;
	u8			RSSIHiPwrLowerTh;
	u8			u1bTmp;
	char			OfdmTxPwrIdx, CckTxPwrIdx;

	HiPwrUpperTh = priv->RegHiPwrUpperTh;
	HiPwrLowerTh = priv->RegHiPwrLowerTh;

	HiPwrUpperTh = HiPwrUpperTh * 10;
	HiPwrLowerTh = HiPwrLowerTh * 10;
	RSSIHiPwrUpperTh = priv->RegRSSIHiPwrUpperTh;
	RSSIHiPwrLowerTh = priv->RegRSSIHiPwrLowerTh;

	
	OfdmTxPwrIdx  = priv->chtxpwr_ofdm[priv->ieee80211->current_network.channel];
	CckTxPwrIdx  = priv->chtxpwr[priv->ieee80211->current_network.channel];

	if ((priv->UndecoratedSmoothedSS > HiPwrUpperTh) ||
		(priv->bCurCCKPkt && (priv->CurCCKRSSI > RSSIHiPwrUpperTh))) {
		

		priv->bToUpdateTxPwr = true;
		u1bTmp= read_nic_byte(dev, CCK_TXAGC);

		
		if (CckTxPwrIdx == u1bTmp) {
			u1bTmp = (u1bTmp > 16) ? (u1bTmp -16): 0;  
			write_nic_byte(dev, CCK_TXAGC, u1bTmp);

			u1bTmp= read_nic_byte(dev, OFDM_TXAGC);
			u1bTmp = (u1bTmp > 16) ? (u1bTmp -16): 0;  
			write_nic_byte(dev, OFDM_TXAGC, u1bTmp);
		}

	} else if ((priv->UndecoratedSmoothedSS < HiPwrLowerTh) &&
		(!priv->bCurCCKPkt || priv->CurCCKRSSI < RSSIHiPwrLowerTh)) {
		if (priv->bToUpdateTxPwr) {
			priv->bToUpdateTxPwr = false;
			
			u1bTmp= read_nic_byte(dev, CCK_TXAGC);
			if (u1bTmp < CckTxPwrIdx) {
				write_nic_byte(dev, CCK_TXAGC, CckTxPwrIdx);
			}

			u1bTmp= read_nic_byte(dev, OFDM_TXAGC);
			if (u1bTmp < OfdmTxPwrIdx) {
				write_nic_byte(dev, OFDM_TXAGC, OfdmTxPwrIdx);
			}
		}
	}
}
예제 #5
0
static void eprom_w(struct net_device *dev, short bit)
{
	if (bit)
		write_nic_byte(dev, EPROM_CMD, (1<<EPROM_W_SHIFT) |
			       read_nic_byte(dev, EPROM_CMD));
	else
		write_nic_byte(dev, EPROM_CMD, read_nic_byte(dev, EPROM_CMD)
			       & ~(1<<EPROM_W_SHIFT));

	udelay(EPROM_DELAY);
}
예제 #6
0
void eprom_w(struct net_device *dev,short bit)
{
	if(bit)
		write_nic_byte(dev, EPROM_CMD, (1<<EPROM_W_SHIFT) | \
			       read_nic_byte(dev,EPROM_CMD));
	else
		write_nic_byte(dev, EPROM_CMD, read_nic_byte(dev,EPROM_CMD)\
			       &~(1<<EPROM_W_SHIFT));

	force_pci_posting(dev);
	udelay(EPROM_DELAY);
}
예제 #7
0
void eprom_cs(struct net_device *dev, short bit)
{
	if(bit)
		write_nic_byte(dev, EPROM_CMD,
			       (1<<EPROM_CS_SHIFT) | \
			       read_nic_byte(dev, EPROM_CMD)); //enable EPROM
	else
		write_nic_byte(dev, EPROM_CMD, read_nic_byte(dev, EPROM_CMD)\
			       &~(1<<EPROM_CS_SHIFT)); //disable EPROM

	force_pci_posting(dev);
	udelay(EPROM_DELAY);
}
예제 #8
0
void SwLedOn(	struct net_device *dev , PLED_8190 pLed)
{
	u8	LedCfg;

	LedCfg = read_nic_byte(dev, LEDCFG);
	
	switch(pLed->LedPin)
	{
	case LED_PIN_GPIO0:
		break;

	case LED_PIN_LED0:
		write_nic_byte(dev, LEDCFG, LedCfg&0xf0); 
		break;

	case LED_PIN_LED1:
		write_nic_byte(dev, LEDCFG, LedCfg&0x0f); 
		break;

	default:
		break;
	}

	pLed->bLedOn = true;
}
예제 #9
0
void SwLedOff(struct net_device *dev, PLED_8190 pLed)
{
	struct r8192_priv *priv = rtllib_priv(dev);
	u8	LedCfg;
	
	LedCfg = read_nic_byte(dev, LEDCFG);
	
	switch(pLed->LedPin)
	{
	case LED_PIN_GPIO0:
		break;

	case LED_PIN_LED0:
		LedCfg &= 0xf0; 

		if(priv->bLedOpenDrain == true) 
			write_nic_byte(dev, LEDCFG, (LedCfg|BIT1));
		else
			write_nic_byte(dev, LEDCFG, (LedCfg|BIT3));
		break;

	case LED_PIN_LED1:
		LedCfg &= 0x0f; 
		write_nic_byte(dev, LEDCFG, (LedCfg|BIT7));
		break;

	default:
		break;
	}

	pLed->bLedOn = false;
}
예제 #10
0
//
//	Description:
//		Tx Power tracking mechanism routine on 87SE.
// 	Created by Roger, 2007.12.11.
//
void
TxPwrTracking87SE(
	struct net_device *dev
)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
	u8	tmpu1Byte, CurrentThermal, Idx;
	char	CckTxPwrIdx, OfdmTxPwrIdx;
	//u32	u4bRfReg;

	tmpu1Byte = read_nic_byte(dev, EN_LPF_CAL);
	CurrentThermal = (tmpu1Byte & 0xf0)>>4; //[ 7:4]: thermal meter indication.
	CurrentThermal = (CurrentThermal>0x0c)? 0x0c:CurrentThermal;//lzm add 080826

	//printk("TxPwrTracking87SE(): CurrentThermal(%d)\n", CurrentThermal);

	if( CurrentThermal != priv->ThermalMeter)
	{
//		printk("TxPwrTracking87SE(): Thermal meter changed!!!\n");

		// Update Tx Power level on each channel.
		for(Idx = 1; Idx<15; Idx++)
		{
			CckTxPwrIdx = priv->chtxpwr[Idx];
			OfdmTxPwrIdx = priv->chtxpwr_ofdm[Idx];

			if( CurrentThermal > priv->ThermalMeter )
			{ // higher thermal meter.
				CckTxPwrIdx += (CurrentThermal - priv->ThermalMeter)*2;
				OfdmTxPwrIdx += (CurrentThermal - priv->ThermalMeter)*2;

				if(CckTxPwrIdx >35)
					CckTxPwrIdx = 35; // Force TxPower to maximal index.
				if(OfdmTxPwrIdx >35)
					OfdmTxPwrIdx = 35;
			}
			else
			{ // lower thermal meter.
				CckTxPwrIdx -= (priv->ThermalMeter - CurrentThermal)*2;
				OfdmTxPwrIdx -= (priv->ThermalMeter - CurrentThermal)*2;

				if(CckTxPwrIdx <0)
					CckTxPwrIdx = 0;
				if(OfdmTxPwrIdx <0)
					OfdmTxPwrIdx = 0;
			}

			// Update TxPower level on CCK and OFDM resp.
			priv->chtxpwr[Idx] = CckTxPwrIdx;
			priv->chtxpwr_ofdm[Idx] = OfdmTxPwrIdx;
		}

		// Update TxPower level immediately.
		rtl8225z2_SetTXPowerLevel(dev, priv->ieee80211->current_network.channel);
	}
	priv->ThermalMeter = CurrentThermal;
}
예제 #11
0
static void PlatformIOWrite1Byte(struct net_device *dev, u32 offset, u8 data)
{
	write_nic_byte(dev, offset, data);
	/*
	 * To make sure write operation is completed,
	 * 2005.11.09, by rcnjko.
	 */
	read_nic_byte(dev, offset);
}
예제 #12
0
short eprom_r(struct net_device *dev)
{
	short bit;

	bit=(read_nic_byte(dev, EPROM_CMD) & (1<<EPROM_R_SHIFT) );
	udelay(EPROM_DELAY);

	if(bit) return 1;
	return 0;
}
예제 #13
0
static void MlmeDisassociateRequest(struct r8192_priv *priv, u8 *asSta,
				    u8 asRsn)
{
	u8 i;

	RemovePeerTS(priv->ieee80211, asSta);

	SendDisassociation( priv->ieee80211, asSta, asRsn );

	if(memcpy(priv->ieee80211->current_network.bssid,asSta,6) == NULL)
	{
		//ShuChen TODO: change media status.
		//ShuChen TODO: What to do when disassociate.
		priv->ieee80211->state = IEEE80211_NOLINK;
		for(i=0;i<6;i++)  priv->ieee80211->current_network.bssid[i] = 0x22;
		priv->OpMode = RT_OP_MODE_NO_LINK;
		{
			RT_OP_MODE	OpMode = priv->OpMode;
			u8 btMsr = read_nic_byte(priv, MSR);

			btMsr &= 0xfc;

			switch(OpMode)
			{
			case RT_OP_MODE_INFRASTRUCTURE:
				btMsr |= MSR_LINK_MANAGED;
				break;

			case RT_OP_MODE_IBSS:
				btMsr |= MSR_LINK_ADHOC;
				// led link set separate
				break;

			case RT_OP_MODE_AP:
				btMsr |= MSR_LINK_MASTER;
				break;

			default:
				btMsr |= MSR_LINK_NONE;
				break;
			}

			write_nic_byte(priv, MSR, btMsr);
		}
		ieee80211_disassociate(priv->ieee80211);

		write_nic_word(priv, BSSIDR, ((u16*)priv->ieee80211->current_network.bssid)[0]);
		write_nic_dword(priv, BSSIDR+2, ((u32*)(priv->ieee80211->current_network.bssid+2))[0]);

	}

}
bool
FirmwareEnableCPU(struct net_device *dev)
{

	bool rtStatus = true;
	u8		tmpU1b, CPUStatus = 0;
	u16		tmpU2b;	
	u32		iCheckTime = 200;	

	RT_TRACE(COMP_FIRMWARE, "-->FirmwareEnableCPU()\n" );

	fw_SetRQPN(dev);	
	
	tmpU1b = read_nic_byte(dev, SYS_CLKR);
	write_nic_byte(dev,  SYS_CLKR, (tmpU1b|SYS_CPU_CLKSEL)); 

	tmpU2b = read_nic_word(dev, SYS_FUNC_EN);	
	write_nic_word(dev, SYS_FUNC_EN, (tmpU2b|FEN_CPUEN));

	do
	{
		CPUStatus = read_nic_byte(dev, TCR);
		if(CPUStatus& IMEM_RDY)
		{
			RT_TRACE(COMP_FIRMWARE, "IMEM Ready after CPU has refilled.\n");	
			break;		
		}

		udelay(100);
	}while(iCheckTime--);

	if(!(CPUStatus & IMEM_RDY))
		return false;

	RT_TRACE(COMP_FIRMWARE, "<--FirmwareEnableCPU(): rtStatus(%#x)\n", rtStatus);
	return rtStatus;			
}
예제 #15
0
RT_STATUS
FirmwareEnableCPU(struct net_device *dev)
{

	RT_STATUS	rtStatus = RT_STATUS_SUCCESS;
	u8		tmpU1b, CPUStatus = 0;
	u16		tmpU2b;
	u32		iCheckTime = 200;

	RT_TRACE(COMP_FIRMWARE, "-->FirmwareEnableCPU()\n" );
	// Enable CPU.
	tmpU1b = read_nic_byte(dev, SYS_CLKR);
	write_nic_byte(dev,  SYS_CLKR, (tmpU1b|SYS_CPU_CLKSEL)); //AFE source

	tmpU2b = read_nic_word(dev, SYS_FUNC_EN);
	write_nic_word(dev, SYS_FUNC_EN, (tmpU2b|FEN_CPUEN));

	//Polling IMEM Ready after CPU has refilled.
	do
	{
		CPUStatus = read_nic_byte(dev, TCR);
		if(CPUStatus& IMEM_RDY)
		{
			RT_TRACE(COMP_FIRMWARE, "IMEM Ready after CPU has refilled.\n");
			break;
		}

		//usleep(100);
		udelay(100);
	}while(iCheckTime--);

	if(!(CPUStatus & IMEM_RDY))
		return RT_STATUS_FAILURE;

	RT_TRACE(COMP_FIRMWARE, "<--FirmwareEnableCPU(): rtStatus(%#x)\n", rtStatus);
	return rtStatus;
}
예제 #16
0
/* this is only for debug */
void rtl8192_dump_reg(struct net_device *dev)
{
	int i;
	int n;
	int max = 0x5ff;

	RT_TRACE(COMP_INIT, "Dumping NIC register map");

	for (n = 0; n <= max; ) {
		printk( "\nD: %2x> ", n);
		for (i = 0; i < 16 && n <= max; i++, n++)
			printk("%2x ", read_nic_byte(dev, n));
	}
	printk("\n");
}
예제 #17
0
void TxPwrTracking87SE(struct net_device *dev)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
	u8	tmpu1Byte, CurrentThermal, Idx;
	char	CckTxPwrIdx, OfdmTxPwrIdx;

	tmpu1Byte = read_nic_byte(dev, EN_LPF_CAL);
	CurrentThermal = (tmpu1Byte & 0xf0) >> 4; 
	CurrentThermal = (CurrentThermal > 0x0c) ? 0x0c:CurrentThermal;

	if (CurrentThermal != priv->ThermalMeter) {
		
		for (Idx = 1; Idx < 15; Idx++) {
			CckTxPwrIdx = priv->chtxpwr[Idx];
			OfdmTxPwrIdx = priv->chtxpwr_ofdm[Idx];

			if (CurrentThermal > priv->ThermalMeter) {
				
				CckTxPwrIdx += (CurrentThermal - priv->ThermalMeter) * 2;
				OfdmTxPwrIdx += (CurrentThermal - priv->ThermalMeter) * 2;

				if (CckTxPwrIdx > 35)
					CckTxPwrIdx = 35; 
				if (OfdmTxPwrIdx > 35)
					OfdmTxPwrIdx = 35;
			} else {
				
				CckTxPwrIdx -= (priv->ThermalMeter - CurrentThermal) * 2;
				OfdmTxPwrIdx -= (priv->ThermalMeter - CurrentThermal) * 2;

				if (CckTxPwrIdx < 0)
					CckTxPwrIdx = 0;
				if (OfdmTxPwrIdx < 0)
					OfdmTxPwrIdx = 0;
			}

			
			priv->chtxpwr[Idx] = CckTxPwrIdx;
			priv->chtxpwr_ofdm[Idx] = OfdmTxPwrIdx;
		}

		
		rtl8225z2_SetTXPowerLevel(dev, priv->ieee80211->current_network.channel);
	}
	priv->ThermalMeter = CurrentThermal;
}
예제 #18
0
/*
 *	Description:
 *		Tx Power tracking mechanism routine on 87SE.
 */
void TxPwrTracking87SE(struct net_device *dev)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
	u8	tmpu1Byte, CurrentThermal, Idx;
	char	CckTxPwrIdx, OfdmTxPwrIdx;

	tmpu1Byte = read_nic_byte(dev, EN_LPF_CAL);
	CurrentThermal = (tmpu1Byte & 0xf0) >> 4; /*[ 7:4]: thermal meter indication. */
	CurrentThermal = (CurrentThermal > 0x0c) ? 0x0c:CurrentThermal;

	if (CurrentThermal != priv->ThermalMeter) {
		/* Update Tx Power level on each channel. */
		for (Idx = 1; Idx < 15; Idx++) {
			CckTxPwrIdx = priv->chtxpwr[Idx];
			OfdmTxPwrIdx = priv->chtxpwr_ofdm[Idx];

			if (CurrentThermal > priv->ThermalMeter) {
				/* higher thermal meter. */
				CckTxPwrIdx += (CurrentThermal - priv->ThermalMeter) * 2;
				OfdmTxPwrIdx += (CurrentThermal - priv->ThermalMeter) * 2;

				if (CckTxPwrIdx > 35)
					CckTxPwrIdx = 35; /* Force TxPower to maximal index. */
				if (OfdmTxPwrIdx > 35)
					OfdmTxPwrIdx = 35;
			} else {
				/* lower thermal meter. */
				CckTxPwrIdx -= (priv->ThermalMeter - CurrentThermal) * 2;
				OfdmTxPwrIdx -= (priv->ThermalMeter - CurrentThermal) * 2;

				if (CckTxPwrIdx < 0)
					CckTxPwrIdx = 0;
				if (OfdmTxPwrIdx < 0)
					OfdmTxPwrIdx = 0;
			}

			/* Update TxPower level on CCK and OFDM resp. */
			priv->chtxpwr[Idx] = CckTxPwrIdx;
			priv->chtxpwr_ofdm[Idx] = OfdmTxPwrIdx;
		}

		/* Update TxPower level immediately. */
		rtl8225z2_SetTXPowerLevel(dev, priv->ieee80211->current_network.channel);
	}
	priv->ThermalMeter = CurrentThermal;
}
예제 #19
0
void CamPrintDbgReg(struct net_device* dev)
{
	unsigned long rvalue;
	unsigned char ucValue;
	write_nic_dword(dev, DCAM, 0x80000000);
	msleep(40);
	rvalue = read_nic_dword(dev, DCAM);	
	RT_TRACE(COMP_SEC, " TX CAM=%8lX ",rvalue);
	if((rvalue & 0x40000000) != 0x4000000) 
		RT_TRACE(COMP_SEC, "-->TX Key Not Found      ");
	msleep(20);
	write_nic_dword(dev, DCAM, 0x00000000);	
	rvalue = read_nic_dword(dev, DCAM);	
	RT_TRACE(COMP_SEC, "RX CAM=%8lX ",rvalue);
	if((rvalue & 0x40000000) != 0x4000000) 
		RT_TRACE(COMP_SEC, "-->CAM Key Not Found   ");
	ucValue = read_nic_byte(dev, SECR);
	RT_TRACE(COMP_SEC, "WPA_Config=%x \n",ucValue);
}
예제 #20
0
bool SetZebraRFPowerState8185(struct net_device *dev,
			      RT_RF_POWER_STATE eRFPowerState)
{
	struct r8180_priv *priv = ieee80211_priv(dev);
	u8			btCR9346, btConfig3;
	bool bActionAllowed = true, bTurnOffBB = true;
	u8			u1bTmp;
	int			i;
	bool		bResult = true;
	u8			QueueID;

	if (priv->SetRFPowerStateInProgress == true)
		return false;

	priv->SetRFPowerStateInProgress = true;

	btCR9346 = read_nic_byte(dev, CR9346);
	write_nic_byte(dev, CR9346, (btCR9346 | 0xC0));

	btConfig3 = read_nic_byte(dev, CONFIG3);
	write_nic_byte(dev, CONFIG3, (btConfig3 | CONFIG3_PARM_En));

	switch (eRFPowerState) {
	case eRfOn:
		write_nic_word(dev, 0x37C, 0x00EC);

		/* turn on AFE */
		write_nic_byte(dev, 0x54, 0x00);
		write_nic_byte(dev, 0x62, 0x00);

		/* turn on RF */
		RF_WriteReg(dev, 0x0, 0x009f); udelay(500);
		RF_WriteReg(dev, 0x4, 0x0972); udelay(500);

		/* turn on RF again */
		RF_WriteReg(dev, 0x0, 0x009f); udelay(500);
		RF_WriteReg(dev, 0x4, 0x0972); udelay(500);

		/* turn on BB */
		write_phy_ofdm(dev, 0x10, 0x40);
		write_phy_ofdm(dev, 0x12, 0x40);

		/* Avoid power down at init time. */
		write_nic_byte(dev, CONFIG4, priv->RFProgType);

		u1bTmp = read_nic_byte(dev, 0x24E);
		write_nic_byte(dev, 0x24E, (u1bTmp & (~(BIT5 | BIT6))));
		break;
	case eRfSleep:
		for (QueueID = 0, i = 0; QueueID < 6;) {
			if (get_curr_tx_free_desc(dev, QueueID) ==
							priv->txringcount) {
				QueueID++;
				continue;
			} else {
				priv->TxPollingTimes++;
				if (priv->TxPollingTimes >=
					LPS_MAX_SLEEP_WAITING_TIMES_87SE) {
					bActionAllowed = false;
					break;
				} else
					udelay(10);
			}
		}

		if (bActionAllowed) {
			/* turn off BB RXIQ matrix to cut off rx signal */
			write_phy_ofdm(dev, 0x10, 0x00);
			write_phy_ofdm(dev, 0x12, 0x00);

			/* turn off RF */
			RF_WriteReg(dev, 0x4, 0x0000);
			RF_WriteReg(dev, 0x0, 0x0000);

			/* turn off AFE except PLL */
			write_nic_byte(dev, 0x62, 0xff);
			write_nic_byte(dev, 0x54, 0xec);

			mdelay(1);

			{
				int i = 0;
				while (true) {
					u8 tmp24F = read_nic_byte(dev, 0x24f);

					if ((tmp24F == 0x01) ||
							(tmp24F == 0x09)) {
						bTurnOffBB = true;
						break;
					} else {
						udelay(10);
						i++;
						priv->TxPollingTimes++;

						if (priv->TxPollingTimes >= LPS_MAX_SLEEP_WAITING_TIMES_87SE) {
							bTurnOffBB = false;
							break;
						} else
							udelay(10);
					}
				}
			}

			if (bTurnOffBB) {
				/* turn off BB */
				u1bTmp = read_nic_byte(dev, 0x24E);
				write_nic_byte(dev, 0x24E,
						(u1bTmp | BIT5 | BIT6));

				/* turn off AFE PLL */
				write_nic_byte(dev, 0x54, 0xFC);
				write_nic_word(dev, 0x37C, 0x00FC);
			}
		}
		break;
	case eRfOff:
		for (QueueID = 0, i = 0; QueueID < 6;) {
			if (get_curr_tx_free_desc(dev, QueueID) ==
					priv->txringcount) {
				QueueID++;
				continue;
			} else {
				udelay(10);
				i++;
			}

			if (i >= MAX_DOZE_WAITING_TIMES_85B)
				break;
		}

		/* turn off BB RXIQ matrix to cut off rx signal */
		write_phy_ofdm(dev, 0x10, 0x00);
		write_phy_ofdm(dev, 0x12, 0x00);

		/* turn off RF */
		RF_WriteReg(dev, 0x4, 0x0000);
		RF_WriteReg(dev, 0x0, 0x0000);

		/* turn off AFE except PLL */
		write_nic_byte(dev, 0x62, 0xff);
		write_nic_byte(dev, 0x54, 0xec);

		mdelay(1);

		{
			int i = 0;

			while (true) {
				u8 tmp24F = read_nic_byte(dev, 0x24f);

				if ((tmp24F == 0x01) || (tmp24F == 0x09)) {
					bTurnOffBB = true;
					break;
				} else {
					bTurnOffBB = false;
					udelay(10);
					i++;
				}

				if (i > MAX_POLLING_24F_TIMES_87SE)
					break;
			}
		}

		if (bTurnOffBB) {
			/* turn off BB */
			u1bTmp = read_nic_byte(dev, 0x24E);
			write_nic_byte(dev, 0x24E, (u1bTmp | BIT5 | BIT6));

			/* turn off AFE PLL (80M) */
			write_nic_byte(dev, 0x54, 0xFC);
			write_nic_word(dev, 0x37C, 0x00FC);
		}
		break;
	}

	btConfig3 &= ~(CONFIG3_PARM_En);
	write_nic_byte(dev, CONFIG3, btConfig3);

	btCR9346 &= ~(0xC0);
	write_nic_byte(dev, CR9346, btCR9346);

	if (bResult && bActionAllowed)
		priv->eRFPowerState = eRFPowerState;

	priv->SetRFPowerStateInProgress = false;

	return bResult && bActionAllowed;
}
예제 #21
0
bool
FirmwareCheckReady(struct net_device *dev,	u8 LoadFWStatus)
{
	struct r8192_priv 	*priv = ieee80211_priv(dev);
	RT_STATUS	rtStatus = RT_STATUS_SUCCESS;
	rt_firmware	*pFirmware = priv->pFirmware;
	int			PollingCnt = 1000;
	//u8	 	tmpU1b, CPUStatus = 0;
	u8	 	CPUStatus = 0;
	u32		tmpU4b;
	//bool		bOrgIMREnable;

	RT_TRACE(COMP_FIRMWARE, "--->FirmwareCheckReady(): LoadStaus(%d),", LoadFWStatus);

	pFirmware->FWStatus = (FIRMWARE_8192S_STATUS)LoadFWStatus;
	if( LoadFWStatus == FW_STATUS_LOAD_IMEM)
	{
		do
		{//Polling IMEM code done.
			CPUStatus = read_nic_byte(dev, TCR);
			if(CPUStatus& IMEM_CODE_DONE)
				break;

			udelay(5);
		}while(PollingCnt--);
		if(!(CPUStatus & IMEM_CHK_RPT) || PollingCnt <= 0)
		{
			RT_TRACE(COMP_ERR, "FW_STATUS_LOAD_IMEM FAIL CPU, Status=%x\r\n", CPUStatus);
			return false;
		}
	}
	else if( LoadFWStatus == FW_STATUS_LOAD_EMEM)
	{//Check Put Code OK and Turn On CPU
		do
		{//Polling EMEM code done.
			CPUStatus = read_nic_byte(dev, TCR);
			if(CPUStatus& EMEM_CODE_DONE)
				break;

			udelay(5);
		}while(PollingCnt--);
		if(!(CPUStatus & EMEM_CHK_RPT))
		{
			RT_TRACE(COMP_ERR, "FW_STATUS_LOAD_EMEM FAIL CPU, Status=%x\r\n", CPUStatus);
			return false;
		}

		// Turn On CPU
		rtStatus = FirmwareEnableCPU(dev);
		if(rtStatus != RT_STATUS_SUCCESS)
		{
			RT_TRACE(COMP_ERR, "Enable CPU fail ! \n" );
			return false;
		}
	}
	else if( LoadFWStatus == FW_STATUS_LOAD_DMEM)
	{
		do
		{//Polling DMEM code done
			CPUStatus = read_nic_byte(dev, TCR);
			if(CPUStatus& DMEM_CODE_DONE)
				break;

			udelay(5);
		}while(PollingCnt--);

		if(!(CPUStatus & DMEM_CODE_DONE))
		{
			RT_TRACE(COMP_ERR, "Polling  DMEM code done fail ! CPUStatus(%#x)\n", CPUStatus);
			return false;
		}

		RT_TRACE(COMP_FIRMWARE, "DMEM code download success, CPUStatus(%#x)\n", CPUStatus);

//              PollingCnt = 100; // Set polling cycle to 10ms.
              PollingCnt = 10000; // Set polling cycle to 10ms.

		do
		{//Polling Load Firmware ready
			CPUStatus = read_nic_byte(dev, TCR);
			if(CPUStatus & FWRDY)
				break;

			udelay(100);
		}while(PollingCnt--);

		RT_TRACE(COMP_FIRMWARE, "Polling Load Firmware ready, CPUStatus(%x)\n", CPUStatus);

		//if(!(CPUStatus & LOAD_FW_READY))
		//if((CPUStatus & LOAD_FW_READY) != 0xff)
		if((CPUStatus & LOAD_FW_READY) != LOAD_FW_READY)
		{
			RT_TRACE(COMP_ERR, "Polling Load Firmware ready fail ! CPUStatus(%x)\n", CPUStatus);
			return false;
		}

	       //
              // <Roger_Notes> USB interface will update reserved followings parameters later!!
              // 2008.08.28.
              //

	       //
              // <Roger_Notes> If right here, we can set TCR/RCR to desired value
              // and config MAC lookback mode to normal mode. 2008.08.28.
              //
              tmpU4b = read_nic_dword(dev,TCR);
		write_nic_dword(dev, TCR, (tmpU4b&(~TCR_ICV)));

		tmpU4b = read_nic_dword(dev, RCR);
		write_nic_dword(dev, RCR,
			(tmpU4b|RCR_APPFCS|RCR_APP_ICV|RCR_APP_MIC));

		RT_TRACE(COMP_FIRMWARE, "FirmwareCheckReady(): Current RCR settings(%#x)\n", tmpU4b);


		// Set to normal mode.
		write_nic_byte(dev, LBKMD_SEL, LBK_NORMAL);

	}

	RT_TRACE(COMP_FIRMWARE, "<---FirmwareCheckReady(): LoadFWStatus(%d), rtStatus(%x)\n", LoadFWStatus, rtStatus);
	return (rtStatus == RT_STATUS_SUCCESS) ? true:false;
}
bool FirmwareCheckReady(struct net_device *dev, u8 LoadFWStatus)
{
	struct r8192_priv  *priv = rtllib_priv(dev);
	bool rtStatus = true;
	rt_firmware  *pFirmware = priv->pFirmware;
	short  PollingCnt = 1000;
	u8   CPUStatus = 0;
	u32  tmpU4b;

	RT_TRACE(COMP_FIRMWARE, "--->%s(): LoadStaus(%d),", __FUNCTION__, LoadFWStatus);

	pFirmware->FWStatus = (FIRMWARE_8192S_STATUS)LoadFWStatus;	

	switch (LoadFWStatus) {
	case FW_STATUS_LOAD_IMEM:
		do {
			CPUStatus = read_nic_byte(dev, TCR);
			if(CPUStatus& IMEM_CODE_DONE)
				break;	
			udelay(5);
		} while (PollingCnt--);		
		if (!(CPUStatus & IMEM_CHK_RPT) || (PollingCnt <= 0)) {
			RT_TRACE(COMP_ERR, "FW_STATUS_LOAD_IMEM FAIL CPU, Status=%x\r\n", CPUStatus);
			goto status_check_fail;			
		}
		break;

	case FW_STATUS_LOAD_EMEM:
		do {
			CPUStatus = read_nic_byte(dev, TCR);
			if(CPUStatus& EMEM_CODE_DONE)
				break;
			udelay(5);
		} while(PollingCnt--);		
		if (!(CPUStatus & EMEM_CHK_RPT) || (PollingCnt <= 0)) {
			RT_TRACE(COMP_ERR, "FW_STATUS_LOAD_EMEM FAIL CPU, Status=%x\r\n", CPUStatus);
			goto status_check_fail;
		}

		rtStatus = FirmwareEnableCPU(dev);
		if (rtStatus != true) {
			RT_TRACE(COMP_ERR, "Enable CPU fail ! \n" );
			goto status_check_fail;
		}		
		break;

	case FW_STATUS_LOAD_DMEM:
		do {
			CPUStatus = read_nic_byte(dev, TCR);
			if (CPUStatus& DMEM_CODE_DONE)
				break;		
			udelay(5);
		} while(PollingCnt--);

		if (!(CPUStatus & DMEM_CODE_DONE) || (PollingCnt <= 0)) {
			RT_TRACE(COMP_ERR, "Polling  DMEM code done fail ! CPUStatus(%#x)\n", CPUStatus);
			goto status_check_fail;
		}

		RT_TRACE(COMP_FIRMWARE, "DMEM code download success, CPUStatus(%#x)\n", CPUStatus);		
		PollingCnt = 2000; 
		do {
			CPUStatus = read_nic_byte(dev, TCR);
			if(CPUStatus & FWRDY)
				break;		
			udelay(40);
		} while(PollingCnt--);	

		RT_TRACE(COMP_FIRMWARE, "Polling Load Firmware ready, CPUStatus(%x)\n", CPUStatus);		
		if (((CPUStatus & LOAD_FW_READY) != LOAD_FW_READY) || (PollingCnt <= 0)) {
			RT_TRACE(COMP_ERR, "Polling Load Firmware ready fail ! CPUStatus(%x)\n", CPUStatus);
			goto status_check_fail;
		}

#ifdef RTL8192SE
#endif 

		tmpU4b = read_nic_dword(dev,TCR);
		write_nic_dword(dev, TCR, (tmpU4b&(~TCR_ICV)));

		tmpU4b = read_nic_dword(dev, RCR);
		write_nic_dword(dev, RCR, 
				(tmpU4b|RCR_APPFCS|RCR_APP_ICV|RCR_APP_MIC));

		RT_TRACE(COMP_FIRMWARE, "FirmwareCheckReady(): Current RCR settings(%#x)\n", tmpU4b);

#if 0
		priv->TransmitConfig = read_nic_dword_E(dev, TCR);
		RT_TRACE(COMP_FIRMWARE, "FirmwareCheckReady(): Current TCR settings(%#x)\n", priv->TransmitConfig);
#endif

		write_nic_byte(dev, LBKMD_SEL, LBK_NORMAL);		
		break;	
	default :
		RT_TRACE(COMP_FIRMWARE, "Unknown status check!\n");
		rtStatus = false;
		break;
	}

status_check_fail:
	RT_TRACE(COMP_FIRMWARE, "<---%s: LoadFWStatus(%d), rtStatus(%x)\n", __FUNCTION__,
			LoadFWStatus, rtStatus);
	return rtStatus;
}
예제 #23
0
void StaRateAdaptive87SE(struct net_device *dev)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
	unsigned long	CurrTxokCnt;
	u16		CurrRetryCnt;
	u16		CurrRetryRate;
	unsigned long	CurrRxokCnt;
	bool		bTryUp = false;
	bool		bTryDown = false;
	u8		TryUpTh = 1;
	u8		TryDownTh = 2;
	u32		TxThroughput;
	long		CurrSignalStrength;
	bool		bUpdateInitialGain = false;
	u8		u1bOfdm = 0, u1bCck = 0;
	char		OfdmTxPwrIdx, CckTxPwrIdx;

	priv->RateAdaptivePeriod = RATE_ADAPTIVE_TIMER_PERIOD;


	CurrRetryCnt	= priv->CurrRetryCnt;
	CurrTxokCnt	= priv->NumTxOkTotal - priv->LastTxokCnt;
	CurrRxokCnt	= priv->ieee80211->NumRxOkTotal - priv->LastRxokCnt;
	CurrSignalStrength = priv->Stats_RecvSignalPower;
	TxThroughput = (u32)(priv->NumTxOkBytesTotal - priv->LastTxOKBytes);
	priv->LastTxOKBytes = priv->NumTxOkBytesTotal;
	priv->CurrentOperaRate = priv->ieee80211->rate / 5;
	
	if (CurrTxokCnt > 0) {
		CurrRetryRate = (u16)(CurrRetryCnt * 100 / CurrTxokCnt);
	} else {
	
		CurrRetryRate = (u16)(CurrRetryCnt * 100 / 1);
	}

	priv->LastRetryCnt = priv->CurrRetryCnt;
	priv->LastTxokCnt = priv->NumTxOkTotal;
	priv->LastRxokCnt = priv->ieee80211->NumRxOkTotal;
	priv->CurrRetryCnt = 0;

	
	if (CurrRetryRate == 0 && CurrTxokCnt == 0) {
		priv->TryupingCountNoData++;

		
		if (priv->TryupingCountNoData > 30) {
			priv->TryupingCountNoData = 0;
			priv->CurrentOperaRate = GetUpgradeTxRate(dev, priv->CurrentOperaRate);
			
			priv->LastFailTxRate = 0;
			priv->LastFailTxRateSS = -200;
			priv->FailTxRateCount = 0;
		}
		goto SetInitialGain;
	} else {
		priv->TryupingCountNoData = 0; 
	}



	if (priv->CurrentOperaRate == 22 || priv->CurrentOperaRate == 72)
		TryUpTh += 9;
	if (MgntIsCckRate(priv->CurrentOperaRate) || priv->CurrentOperaRate == 36)
		TryDownTh += 1;

	
	if (priv->bTryuping == true) {

		
		if ((CurrRetryRate > 25) && TxThroughput < priv->LastTxThroughput) {
			
			bTryDown = true;
		} else {
			priv->bTryuping = false;
		}
	} else if (CurrSignalStrength > -47 && (CurrRetryRate < 50)) {
		
		if (priv->CurrentOperaRate != priv->ieee80211->current_network.HighestOperaRate) {
			bTryUp = true;
			
			priv->TryupingCount += TryUpTh;
		}

	} else if (CurrTxokCnt > 9 && CurrTxokCnt < 100 && CurrRetryRate >= 600) {
		bTryDown = true;
		
		priv->TryDownCountLowData += TryDownTh;
	} else if (priv->CurrentOperaRate == 108) {
		
		
		if ((CurrRetryRate > 26) && (priv->LastRetryRate > 25)) {
			bTryDown = true;
		}
		
		else if ((CurrRetryRate > 17) && (priv->LastRetryRate > 16) && (CurrSignalStrength > -72)) {
			bTryDown = true;
		}

		if (bTryDown && (CurrSignalStrength < -75)) 
			priv->TryDownCountLowData += TryDownTh;
	}
	else if (priv->CurrentOperaRate == 96) {
		
		
		if (((CurrRetryRate > 48) && (priv->LastRetryRate > 47))) {
			bTryDown = true;
		} else if (((CurrRetryRate > 21) && (priv->LastRetryRate > 20)) && (CurrSignalStrength > -74)) { 
			
			bTryDown = true;
		} else if ((CurrRetryRate > (priv->LastRetryRate + 50)) && (priv->FailTxRateCount > 2)) {
			bTryDown = true;
			priv->TryDownCountLowData += TryDownTh;
		} else if ((CurrRetryRate < 8) && (priv->LastRetryRate < 8)) { 
			bTryUp = true;
		}

		if (bTryDown && (CurrSignalStrength < -75)){
			priv->TryDownCountLowData += TryDownTh;
		}
	} else if (priv->CurrentOperaRate == 72) {
		
		if ((CurrRetryRate > 43) && (priv->LastRetryRate > 41)) {
			
			bTryDown = true;
		} else if ((CurrRetryRate > (priv->LastRetryRate + 50)) && (priv->FailTxRateCount > 2)) {
			bTryDown = true;
			priv->TryDownCountLowData += TryDownTh;
		} else if ((CurrRetryRate < 15) &&  (priv->LastRetryRate < 16)) { 
			bTryUp = true;
		}

		if (bTryDown && (CurrSignalStrength < -80))
			priv->TryDownCountLowData += TryDownTh;

	} else if (priv->CurrentOperaRate == 48) {
		
		
		if (((CurrRetryRate > 63) && (priv->LastRetryRate > 62))) {
			bTryDown = true;
		} else if (((CurrRetryRate > 33) && (priv->LastRetryRate > 32)) && (CurrSignalStrength > -82)) { 
			bTryDown = true;
		} else if ((CurrRetryRate > (priv->LastRetryRate + 50)) && (priv->FailTxRateCount > 2 )) {
			bTryDown = true;
			priv->TryDownCountLowData += TryDownTh;
		} else if ((CurrRetryRate < 20) && (priv->LastRetryRate < 21)) { 
			bTryUp = true;
		}

		if (bTryDown && (CurrSignalStrength < -82))
			priv->TryDownCountLowData += TryDownTh;

	} else if (priv->CurrentOperaRate == 36) {
		if (((CurrRetryRate > 85) && (priv->LastRetryRate > 86))) {
			bTryDown = true;
		} else if ((CurrRetryRate > (priv->LastRetryRate + 50)) && (priv->FailTxRateCount > 2)) {
			bTryDown = true;
			priv->TryDownCountLowData += TryDownTh;
		} else if ((CurrRetryRate < 22) && (priv->LastRetryRate < 23)) { 
			bTryUp = true;
		}
	} else if (priv->CurrentOperaRate == 22) {
		
		if (CurrRetryRate > 95) {
			bTryDown = true;
		}
		else if ((CurrRetryRate < 29) && (priv->LastRetryRate < 30)) { 
			bTryUp = true;
		}
	} else if (priv->CurrentOperaRate == 11) {
		
		if (CurrRetryRate > 149) {
			bTryDown = true;
		} else if ((CurrRetryRate < 60) && (priv->LastRetryRate < 65)) {
			bTryUp = true;
		}
	} else if (priv->CurrentOperaRate == 4) {
		
		if ((CurrRetryRate > 99) && (priv->LastRetryRate > 99)) {
			bTryDown = true;
		} else if ((CurrRetryRate < 65) && (priv->LastRetryRate < 70)) {
			bTryUp = true;
		}
	} else if (priv->CurrentOperaRate == 2) {
		
		if ((CurrRetryRate < 70) && (priv->LastRetryRate < 75)) {
			bTryUp = true;
		}
	}

	if (bTryUp && bTryDown)
	printk("StaRateAdaptive87B(): Tx Rate tried upping and downing simultaneously!\n");

 
	if (!bTryUp && !bTryDown && (priv->TryupingCount == 0) && (priv->TryDownCountLowData == 0)
		&& priv->CurrentOperaRate != priv->ieee80211->current_network.HighestOperaRate && priv->FailTxRateCount < 2) {
		if (jiffies % (CurrRetryRate + 101) == 0) {
			bTryUp = true;
			priv->bTryuping = true;
		}
	}

	
	if (bTryUp) {
		priv->TryupingCount++;
		priv->TryDownCountLowData = 0;


		if ((priv->TryupingCount > (TryUpTh + priv->FailTxRateCount * priv->FailTxRateCount)) ||
			(CurrSignalStrength > priv->LastFailTxRateSS) || priv->bTryuping) {
			priv->TryupingCount = 0;
			if (priv->CurrentOperaRate == 22)
				bUpdateInitialGain = true;

			if (((priv->CurrentOperaRate == 72) || (priv->CurrentOperaRate == 48) || (priv->CurrentOperaRate == 36)) &&
				(priv->FailTxRateCount > 2))
				priv->RateAdaptivePeriod = (RATE_ADAPTIVE_TIMER_PERIOD / 2);

			
			

			priv->CurrentOperaRate = GetUpgradeTxRate(dev, priv->CurrentOperaRate);

			if (priv->CurrentOperaRate == 36) {
				priv->bUpdateARFR = true;
				write_nic_word(dev, ARFR, 0x0F8F); 
			} else if(priv->bUpdateARFR) {
				priv->bUpdateARFR = false;
				write_nic_word(dev, ARFR, 0x0FFF); 
			}

			
			if (priv->LastFailTxRate != priv->CurrentOperaRate) {
				priv->LastFailTxRate = priv->CurrentOperaRate;
				priv->FailTxRateCount = 0;
				priv->LastFailTxRateSS = -200; 
			}
		}
	} else {
		if (priv->TryupingCount > 0)
			priv->TryupingCount --;
	}

	if (bTryDown) {
		priv->TryDownCountLowData++;
		priv->TryupingCount = 0;

		
		if (priv->TryDownCountLowData > TryDownTh || priv->bTryuping) {
			priv->TryDownCountLowData = 0;
			priv->bTryuping = false;
			
			if (priv->LastFailTxRate == priv->CurrentOperaRate) {
				priv->FailTxRateCount++;
				
				if (CurrSignalStrength > priv->LastFailTxRateSS)
					priv->LastFailTxRateSS = CurrSignalStrength;
			} else {
				priv->LastFailTxRate = priv->CurrentOperaRate;
				priv->FailTxRateCount = 1;
				priv->LastFailTxRateSS = CurrSignalStrength;
			}
			priv->CurrentOperaRate = GetDegradeTxRate(dev, priv->CurrentOperaRate);

			
			if ((CurrSignalStrength < -80) && (priv->CurrentOperaRate > 72 )) {
				priv->CurrentOperaRate = 72;
			}

			if (priv->CurrentOperaRate == 36) {
				priv->bUpdateARFR = true;
				write_nic_word(dev, ARFR, 0x0F8F); 
			} else if (priv->bUpdateARFR) {
				priv->bUpdateARFR = false;
				write_nic_word(dev, ARFR, 0x0FFF); 
			}

			if (MgntIsCckRate(priv->CurrentOperaRate)) {
				bUpdateInitialGain = true;
			}
		}
	} else {
		if (priv->TryDownCountLowData > 0)
			priv->TryDownCountLowData--;
	}

	if (priv->FailTxRateCount >= 0x15 ||
		(!bTryUp && !bTryDown && priv->TryDownCountLowData == 0 && priv->TryupingCount && priv->FailTxRateCount > 0x6)) {
		priv->FailTxRateCount--;
	}


	OfdmTxPwrIdx  = priv->chtxpwr_ofdm[priv->ieee80211->current_network.channel];
	CckTxPwrIdx  = priv->chtxpwr[priv->ieee80211->current_network.channel];

	
	if ((priv->CurrentOperaRate < 96) && (priv->CurrentOperaRate > 22)) {
		u1bCck = read_nic_byte(dev, CCK_TXAGC);
		u1bOfdm = read_nic_byte(dev, OFDM_TXAGC);

		
		if (u1bCck == CckTxPwrIdx) {
			if (u1bOfdm != (OfdmTxPwrIdx + 2)) {
			priv->bEnhanceTxPwr = true;
			u1bOfdm = ((u1bOfdm + 2) > 35) ? 35: (u1bOfdm + 2);
			write_nic_byte(dev, OFDM_TXAGC, u1bOfdm);
			}
		} else if (u1bCck < CckTxPwrIdx) {
		
			if (!priv->bEnhanceTxPwr) {
				priv->bEnhanceTxPwr = true;
				u1bOfdm = ((u1bOfdm + 2) > 35) ? 35: (u1bOfdm + 2);
				write_nic_byte(dev, OFDM_TXAGC, u1bOfdm);
			}
		}
	} else if (priv->bEnhanceTxPwr) {  
		u1bCck = read_nic_byte(dev, CCK_TXAGC);
		u1bOfdm = read_nic_byte(dev, OFDM_TXAGC);

		
		if (u1bCck == CckTxPwrIdx) {
			priv->bEnhanceTxPwr = false;
			write_nic_byte(dev, OFDM_TXAGC, OfdmTxPwrIdx);
		}
		
		else if (u1bCck < CckTxPwrIdx) {
			priv->bEnhanceTxPwr = false;
			u1bOfdm = ((u1bOfdm - 2) > 0) ? (u1bOfdm - 2): 0;
			write_nic_byte(dev, OFDM_TXAGC, u1bOfdm);
		}
	}

SetInitialGain:
	if (bUpdateInitialGain) {
		if (MgntIsCckRate(priv->CurrentOperaRate)) { 
			if (priv->InitialGain > priv->RegBModeGainStage) {
				priv->InitialGainBackUp = priv->InitialGain;

				if (CurrSignalStrength < -85) 
					
					priv->InitialGain = priv->RegBModeGainStage;

				else if (priv->InitialGain > priv->RegBModeGainStage + 1)
					priv->InitialGain -= 2;

				else
					priv->InitialGain--;

				printk("StaRateAdaptive87SE(): update init_gain to index %d for date rate %d\n",priv->InitialGain, priv->CurrentOperaRate);
				UpdateInitialGain(dev);
			}
		} else { 
			if (priv->InitialGain < 4) {
				priv->InitialGainBackUp = priv->InitialGain;

				priv->InitialGain++;
				printk("StaRateAdaptive87SE(): update init_gain to index %d for date rate %d\n",priv->InitialGain, priv->CurrentOperaRate);
				UpdateInitialGain(dev);
			}
		}
	}

	
	priv->LastRetryRate = CurrRetryRate;
	priv->LastTxThroughput = TxThroughput;
	priv->ieee80211->rate = priv->CurrentOperaRate * 5;
}
예제 #24
0
static void StaRateAdaptive87SE(struct net_device *dev)
{
    struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
    unsigned long	CurrTxokCnt;
    u16		CurrRetryCnt;
    u16		CurrRetryRate;
    unsigned long	CurrRxokCnt;
    bool		bTryUp = false;
    bool		bTryDown = false;
    u8		TryUpTh = 1;
    u8		TryDownTh = 2;
    u32		TxThroughput;
    long		CurrSignalStrength;
    bool		bUpdateInitialGain = false;
    u8		u1bOfdm = 0, u1bCck = 0;
    char		OfdmTxPwrIdx, CckTxPwrIdx;

    priv->RateAdaptivePeriod = RATE_ADAPTIVE_TIMER_PERIOD;


    CurrRetryCnt	= priv->CurrRetryCnt;
    CurrTxokCnt	= priv->NumTxOkTotal - priv->LastTxokCnt;
    CurrRxokCnt	= priv->ieee80211->NumRxOkTotal - priv->LastRxokCnt;
    CurrSignalStrength = priv->Stats_RecvSignalPower;
    TxThroughput = (u32)(priv->NumTxOkBytesTotal - priv->LastTxOKBytes);
    priv->LastTxOKBytes = priv->NumTxOkBytesTotal;
    priv->CurrentOperaRate = priv->ieee80211->rate / 5;
    /* 2 Compute retry ratio. */
    if (CurrTxokCnt > 0) {
        CurrRetryRate = (u16)(CurrRetryCnt * 100 / CurrTxokCnt);
    } else {
        /* It may be serious retry. To distinguish serious retry or no packets modified by Bruce */
        CurrRetryRate = (u16)(CurrRetryCnt * 100 / 1);
    }

    priv->LastRetryCnt = priv->CurrRetryCnt;
    priv->LastTxokCnt = priv->NumTxOkTotal;
    priv->LastRxokCnt = priv->ieee80211->NumRxOkTotal;
    priv->CurrRetryCnt = 0;

    /* 2No Tx packets, return to init_rate or not? */
    if (CurrRetryRate == 0 && CurrTxokCnt == 0) {
        /*
         * After 9 (30*300ms) seconds in this condition, we try to raise rate.
         */
        priv->TryupingCountNoData++;

        /* [TRC Dell Lab] Extend raised period from 4.5sec to 9sec, Isaiah 2008-02-15 18:00 */
        if (priv->TryupingCountNoData > 30) {
            priv->TryupingCountNoData = 0;
            priv->CurrentOperaRate = GetUpgradeTxRate(dev, priv->CurrentOperaRate);
            /* Reset Fail Record */
            priv->LastFailTxRate = 0;
            priv->LastFailTxRateSS = -200;
            priv->FailTxRateCount = 0;
        }
        goto SetInitialGain;
    } else {
        priv->TryupingCountNoData = 0; /*Reset trying up times. */
    }


    /*
     * For Netgear case, I comment out the following signal strength estimation,
     * which can results in lower rate to transmit when sample is NOT enough (e.g. PING request).
     *
     * Restructure rate adaptive as the following main stages:
     * (1) Add retry threshold in 54M upgrading condition with signal strength.
     * (2) Add the mechanism to degrade to CCK rate according to signal strength
     *		and retry rate.
     * (3) Remove all Initial Gain Updates over OFDM rate. To avoid the complicated
     *		situation, Initial Gain Update is upon on DIG mechanism except CCK rate.
     * (4) Add the mechanism of trying to upgrade tx rate.
     * (5) Record the information of upping tx rate to avoid trying upping tx rate constantly.
     *
     */

    /*
     * 11Mbps or 36Mbps
     * Check more times in these rate(key rates).
     */
    if (priv->CurrentOperaRate == 22 || priv->CurrentOperaRate == 72)
        TryUpTh += 9;
    /*
     * Let these rates down more difficult.
     */
    if (MgntIsCckRate(priv->CurrentOperaRate) || priv->CurrentOperaRate == 36)
        TryDownTh += 1;

    /* 1 Adjust Rate. */
    if (priv->bTryuping == true) {
        /* 2 For Test Upgrading mechanism
         * Note:
         *	Sometimes the throughput is upon on the capability between the AP and NIC,
         *	thus the low data rate does not improve the performance.
         *	We randomly upgrade the data rate and check if the retry rate is improved.
         */

        /* Upgrading rate did not improve the retry rate, fallback to the original rate. */
        if ((CurrRetryRate > 25) && TxThroughput < priv->LastTxThroughput) {
            /*Not necessary raising rate, fall back rate. */
            bTryDown = true;
        } else {
            priv->bTryuping = false;
        }
    } else if (CurrSignalStrength > -47 && (CurrRetryRate < 50)) {
        /*
         * 2For High Power
         *
         * Return to highest data rate, if signal strength is good enough.
         * SignalStrength threshold(-50dbm) is for RTL8186.
         * Revise SignalStrength threshold to -51dbm.
         */
        /* Also need to check retry rate for safety, by Bruce, 2007-06-05. */
        if (priv->CurrentOperaRate != priv->ieee80211->current_network.HighestOperaRate) {
            bTryUp = true;
            /* Upgrade Tx Rate directly. */
            priv->TryupingCount += TryUpTh;
        }

    } else if (CurrTxokCnt > 9 && CurrTxokCnt < 100 && CurrRetryRate >= 600) {
        /*
         *2 For Serious Retry
         *
         * Traffic is not busy but our Tx retry is serious.
         */
        bTryDown = true;
        /* Let Rate Mechanism to degrade tx rate directly. */
        priv->TryDownCountLowData += TryDownTh;
    } else if (priv->CurrentOperaRate == 108) {
        /* 2For 54Mbps */
        /* Air Link */
        if ((CurrRetryRate > 26) && (priv->LastRetryRate > 25)) {
            bTryDown = true;
        }
        /* Cable Link */
        else if ((CurrRetryRate > 17) && (priv->LastRetryRate > 16) && (CurrSignalStrength > -72)) {
            bTryDown = true;
        }

        if (bTryDown && (CurrSignalStrength < -75)) /* cable link */
            priv->TryDownCountLowData += TryDownTh;
    } else if (priv->CurrentOperaRate == 96) {
        /* 2For 48Mbps */
        /* Air Link */
        if (((CurrRetryRate > 48) && (priv->LastRetryRate > 47))) {
            bTryDown = true;
        } else if (((CurrRetryRate > 21) && (priv->LastRetryRate > 20)) && (CurrSignalStrength > -74)) { /* Cable Link */
            /* Down to rate 36Mbps. */
            bTryDown = true;
        } else if ((CurrRetryRate > (priv->LastRetryRate + 50)) && (priv->FailTxRateCount > 2)) {
            bTryDown = true;
            priv->TryDownCountLowData += TryDownTh;
        } else if ((CurrRetryRate < 8) && (priv->LastRetryRate < 8)) { /* TO DO: need to consider (RSSI) */
            bTryUp = true;
        }

        if (bTryDown && (CurrSignalStrength < -75)) {
            priv->TryDownCountLowData += TryDownTh;
        }
    } else if (priv->CurrentOperaRate == 72) {
        /* 2For 36Mbps */
        if ((CurrRetryRate > 43) && (priv->LastRetryRate > 41)) {
            /* Down to rate 24Mbps. */
            bTryDown = true;
        } else if ((CurrRetryRate > (priv->LastRetryRate + 50)) && (priv->FailTxRateCount > 2)) {
            bTryDown = true;
            priv->TryDownCountLowData += TryDownTh;
        } else if ((CurrRetryRate < 15) &&  (priv->LastRetryRate < 16)) { /* TO DO: need to consider (RSSI) */
            bTryUp = true;
        }

        if (bTryDown && (CurrSignalStrength < -80))
            priv->TryDownCountLowData += TryDownTh;

    } else if (priv->CurrentOperaRate == 48) {
        /* 2For 24Mbps */
        /* Air Link */
        if (((CurrRetryRate > 63) && (priv->LastRetryRate > 62))) {
            bTryDown = true;
        } else if (((CurrRetryRate > 33) && (priv->LastRetryRate > 32)) && (CurrSignalStrength > -82)) { /* Cable Link */
            bTryDown = true;
        } else if ((CurrRetryRate > (priv->LastRetryRate + 50)) && (priv->FailTxRateCount > 2)) {
            bTryDown = true;
            priv->TryDownCountLowData += TryDownTh;
        } else if ((CurrRetryRate < 20) && (priv->LastRetryRate < 21)) { /* TO DO: need to consider (RSSI) */
            bTryUp = true;
        }

        if (bTryDown && (CurrSignalStrength < -82))
            priv->TryDownCountLowData += TryDownTh;

    } else if (priv->CurrentOperaRate == 36) {
        if (((CurrRetryRate > 85) && (priv->LastRetryRate > 86))) {
            bTryDown = true;
        } else if ((CurrRetryRate > (priv->LastRetryRate + 50)) && (priv->FailTxRateCount > 2)) {
            bTryDown = true;
            priv->TryDownCountLowData += TryDownTh;
        } else if ((CurrRetryRate < 22) && (priv->LastRetryRate < 23)) { /* TO DO: need to consider (RSSI) */
            bTryUp = true;
        }
    } else if (priv->CurrentOperaRate == 22) {
        /* 2For 11Mbps */
        if (CurrRetryRate > 95) {
            bTryDown = true;
        } else if ((CurrRetryRate < 29) && (priv->LastRetryRate < 30)) { /*TO DO: need to consider (RSSI) */
            bTryUp = true;
        }
    } else if (priv->CurrentOperaRate == 11) {
        /* 2For 5.5Mbps */
        if (CurrRetryRate > 149) {
            bTryDown = true;
        } else if ((CurrRetryRate < 60) && (priv->LastRetryRate < 65)) {
            bTryUp = true;
        }
    } else if (priv->CurrentOperaRate == 4) {
        /* 2For 2 Mbps */
        if ((CurrRetryRate > 99) && (priv->LastRetryRate > 99)) {
            bTryDown = true;
        } else if ((CurrRetryRate < 65) && (priv->LastRetryRate < 70)) {
            bTryUp = true;
        }
    } else if (priv->CurrentOperaRate == 2) {
        /* 2For 1 Mbps */
        if ((CurrRetryRate < 70) && (priv->LastRetryRate < 75)) {
            bTryUp = true;
        }
    }

    if (bTryUp && bTryDown)
        printk("StaRateAdaptive87B(): Tx Rate tried upping and downing simultaneously!\n");

    /* 1 Test Upgrading Tx Rate
     * Sometimes the cause of the low throughput (high retry rate) is the compatibility between the AP and NIC.
     * To test if the upper rate may cause lower retry rate, this mechanism randomly occurs to test upgrading tx rate.
     */
    if (!bTryUp && !bTryDown && (priv->TryupingCount == 0) && (priv->TryDownCountLowData == 0)
            && priv->CurrentOperaRate != priv->ieee80211->current_network.HighestOperaRate && priv->FailTxRateCount < 2) {
        if (jiffies % (CurrRetryRate + 101) == 0) {
            bTryUp = true;
            priv->bTryuping = true;
        }
    }

    /* 1 Rate Mechanism */
    if (bTryUp) {
        priv->TryupingCount++;
        priv->TryDownCountLowData = 0;

        /*
         * Check more times if we need to upgrade indeed.
         * Because the largest value of pHalData->TryupingCount is 0xFFFF and
         * the largest value of pHalData->FailTxRateCount is 0x14,
         * this condition will be satisfied at most every 2 min.
         */

        if ((priv->TryupingCount > (TryUpTh + priv->FailTxRateCount * priv->FailTxRateCount)) ||
                (CurrSignalStrength > priv->LastFailTxRateSS) || priv->bTryuping) {
            priv->TryupingCount = 0;
            /*
             * When transferring from CCK to OFDM, DIG is an important issue.
             */
            if (priv->CurrentOperaRate == 22)
                bUpdateInitialGain = true;

            /*
             * The difference in throughput between 48Mbps and 36Mbps is 8M.
             * So, we must be careful in this rate scale. Isaiah 2008-02-15.
             */
            if (((priv->CurrentOperaRate == 72) || (priv->CurrentOperaRate == 48) || (priv->CurrentOperaRate == 36)) &&
                    (priv->FailTxRateCount > 2))
                priv->RateAdaptivePeriod = (RATE_ADAPTIVE_TIMER_PERIOD / 2);

            /* (1)To avoid upgrade frequently to the fail tx rate, add the FailTxRateCount into the threshold. */
            /* (2)If the signal strength is increased, it may be able to upgrade. */

            priv->CurrentOperaRate = GetUpgradeTxRate(dev, priv->CurrentOperaRate);

            if (priv->CurrentOperaRate == 36) {
                priv->bUpdateARFR = true;
                write_nic_word(dev, ARFR, 0x0F8F); /* bypass 12/9/6 */
            } else if (priv->bUpdateARFR) {
                priv->bUpdateARFR = false;
                write_nic_word(dev, ARFR, 0x0FFF); /* set 1M ~ 54Mbps. */
            }

            /* Update Fail Tx rate and count. */
            if (priv->LastFailTxRate != priv->CurrentOperaRate) {
                priv->LastFailTxRate = priv->CurrentOperaRate;
                priv->FailTxRateCount = 0;
                priv->LastFailTxRateSS = -200; /* Set lowest power. */
            }
        }
    } else {
        if (priv->TryupingCount > 0)
            priv->TryupingCount--;
    }

    if (bTryDown) {
        priv->TryDownCountLowData++;
        priv->TryupingCount = 0;

        /* Check if Tx rate can be degraded or Test trying upgrading should fallback. */
        if (priv->TryDownCountLowData > TryDownTh || priv->bTryuping) {
            priv->TryDownCountLowData = 0;
            priv->bTryuping = false;
            /* Update fail information. */
            if (priv->LastFailTxRate == priv->CurrentOperaRate) {
                priv->FailTxRateCount++;
                /* Record the Tx fail rate signal strength. */
                if (CurrSignalStrength > priv->LastFailTxRateSS)
                    priv->LastFailTxRateSS = CurrSignalStrength;
            } else {
                priv->LastFailTxRate = priv->CurrentOperaRate;
                priv->FailTxRateCount = 1;
                priv->LastFailTxRateSS = CurrSignalStrength;
            }
            priv->CurrentOperaRate = GetDegradeTxRate(dev, priv->CurrentOperaRate);

            /* Reduce chariot training time at weak signal strength situation. SD3 ED demand. */
            if ((CurrSignalStrength < -80) && (priv->CurrentOperaRate > 72)) {
                priv->CurrentOperaRate = 72;
            }

            if (priv->CurrentOperaRate == 36) {
                priv->bUpdateARFR = true;
                write_nic_word(dev, ARFR, 0x0F8F); /* bypass 12/9/6 */
            } else if (priv->bUpdateARFR) {
                priv->bUpdateARFR = false;
                write_nic_word(dev, ARFR, 0x0FFF); /* set 1M ~ 54Mbps. */
            }

            /*
             * When it is CCK rate, it may need to update initial gain to receive lower power packets.
             */
            if (MgntIsCckRate(priv->CurrentOperaRate)) {
                bUpdateInitialGain = true;
            }
        }
    } else {
        if (priv->TryDownCountLowData > 0)
            priv->TryDownCountLowData--;
    }

    /*
     * Keep the Tx fail rate count to equal to 0x15 at most.
     * Reduce the fail count at least to 10 sec if tx rate is tending stable.
     */
    if (priv->FailTxRateCount >= 0x15 ||
            (!bTryUp && !bTryDown && priv->TryDownCountLowData == 0 && priv->TryupingCount && priv->FailTxRateCount > 0x6)) {
        priv->FailTxRateCount--;
    }


    OfdmTxPwrIdx  = priv->chtxpwr_ofdm[priv->ieee80211->current_network.channel];
    CckTxPwrIdx  = priv->chtxpwr[priv->ieee80211->current_network.channel];

    /* Mac0x9e increase 2 level in 36M~18M situation */
    if ((priv->CurrentOperaRate < 96) && (priv->CurrentOperaRate > 22)) {
        u1bCck = read_nic_byte(dev, CCK_TXAGC);
        u1bOfdm = read_nic_byte(dev, OFDM_TXAGC);

        /* case 1: Never enter High power */
        if (u1bCck == CckTxPwrIdx) {
            if (u1bOfdm != (OfdmTxPwrIdx + 2)) {
                priv->bEnhanceTxPwr = true;
                u1bOfdm = ((u1bOfdm + 2) > 35) ? 35 : (u1bOfdm + 2);
                write_nic_byte(dev, OFDM_TXAGC, u1bOfdm);
            }
        } else if (u1bCck < CckTxPwrIdx) {
            /* case 2: enter high power */
            if (!priv->bEnhanceTxPwr) {
                priv->bEnhanceTxPwr = true;
                u1bOfdm = ((u1bOfdm + 2) > 35) ? 35 : (u1bOfdm + 2);
                write_nic_byte(dev, OFDM_TXAGC, u1bOfdm);
            }
        }
    } else if (priv->bEnhanceTxPwr) {  /* 54/48/11/5.5/2/1 */
        u1bCck = read_nic_byte(dev, CCK_TXAGC);
        u1bOfdm = read_nic_byte(dev, OFDM_TXAGC);

        /* case 1: Never enter High power */
        if (u1bCck == CckTxPwrIdx) {
            priv->bEnhanceTxPwr = false;
            write_nic_byte(dev, OFDM_TXAGC, OfdmTxPwrIdx);
        }
        /* case 2: enter high power */
        else if (u1bCck < CckTxPwrIdx) {
            priv->bEnhanceTxPwr = false;
            u1bOfdm = ((u1bOfdm - 2) > 0) ? (u1bOfdm - 2) : 0;
            write_nic_byte(dev, OFDM_TXAGC, u1bOfdm);
        }
    }

    /*
     * We need update initial gain when we set tx rate "from OFDM to CCK" or
     * "from CCK to OFDM".
     */
SetInitialGain:
    if (bUpdateInitialGain) {
        if (MgntIsCckRate(priv->CurrentOperaRate)) { /* CCK */
            if (priv->InitialGain > priv->RegBModeGainStage) {
                priv->InitialGainBackUp = priv->InitialGain;

                if (CurrSignalStrength < -85) /* Low power, OFDM [0x17] = 26. */
                    /* SD3 SYs suggest that CurrSignalStrength < -65, ofdm 0x17=26. */
                    priv->InitialGain = priv->RegBModeGainStage;

                else if (priv->InitialGain > priv->RegBModeGainStage + 1)
                    priv->InitialGain -= 2;

                else
                    priv->InitialGain--;

                printk("StaRateAdaptive87SE(): update init_gain to index %d for date rate %d\n", priv->InitialGain, priv->CurrentOperaRate);
                UpdateInitialGain(dev);
            }
        } else { /* OFDM */
            if (priv->InitialGain < 4) {
                priv->InitialGainBackUp = priv->InitialGain;

                priv->InitialGain++;
                printk("StaRateAdaptive87SE(): update init_gain to index %d for date rate %d\n", priv->InitialGain, priv->CurrentOperaRate);
                UpdateInitialGain(dev);
            }
        }
    }

    /* Record the related info */
    priv->LastRetryRate = CurrRetryRate;
    priv->LastTxThroughput = TxThroughput;
    priv->ieee80211->rate = priv->CurrentOperaRate * 5;
}
예제 #25
0
static bool
SetRFPowerState8190(
	struct net_device* dev,
	RT_RF_POWER_STATE	eRFPowerState
	)
{
	struct r8192_priv *priv = ieee80211_priv(dev);
	PRT_POWER_SAVE_CONTROL	pPSC = (PRT_POWER_SAVE_CONTROL)(&(priv->ieee80211->PowerSaveControl));
	bool bResult = true;
	//u8 eRFPath;
	u8	i = 0, QueueID = 0;
	ptx_ring	head=NULL,tail=NULL;

	if(priv->SetRFPowerStateInProgress == true)
		return false;
	RT_TRACE(COMP_POWER, "===========> SetRFPowerState8190()!\n");
	priv->SetRFPowerStateInProgress = true;

	switch(priv->rf_chip)
	{
		case RF_8256:
		switch( eRFPowerState )
		{
			case eRfOn:
				RT_TRACE(COMP_POWER, "SetRFPowerState8190() eRfOn !\n");
						//RXTX enable control: On
					//for(eRFPath = 0; eRFPath <pHalData->NumTotalRFPath; eRFPath++)
					//	PHY_SetRFReg(Adapter, (RF90_RADIO_PATH_E)eRFPath, 0x4, 0xC00, 0x2);
				#ifdef RTL8190P
				if(priv->rf_type == RF_2T4R)
				{
					//enable RF-Chip A/B
					rtl8192_setBBreg(dev, rFPGA0_XA_RFInterfaceOE, BIT4, 0x1); // 0x860[4]
					//enable RF-Chip C/D
					rtl8192_setBBreg(dev, rFPGA0_XC_RFInterfaceOE, BIT4, 0x1); // 0x868[4]
					//analog to digital on
					rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0xf00, 0xf);// 0x88c[11:8]
					//digital to analog on
					rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x1e0, 0xf); // 0x880[8:5]
					//rx antenna on
					rtl8192_setBBreg(dev, rOFDM0_TRxPathEnable, 0xf, 0xf);// 0xc04[3:0]
					//rx antenna on
					rtl8192_setBBreg(dev, rOFDM1_TRxPathEnable, 0xf, 0xf);// 0xd04[3:0]
					//analog to digital part2 on
					rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x1e00, 0xf); // 0x880[12:9]
				}
				else if(priv->rf_type == RF_1T2R)	//RF-C, RF-D
				{
					//enable RF-Chip C/D
					rtl8192_setBBreg(dev, rFPGA0_XC_RFInterfaceOE, BIT4, 0x1); // 0x868[4]
					//analog to digital on
					rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0xc00, 0x3);// 0x88c[11:10]
					//digital to analog on
					rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x180, 0x3); // 0x880[8:7]
					//rx antenna on
					rtl8192_setBBreg(dev, rOFDM0_TRxPathEnable, 0xc, 0x3);// 0xc04[3:2]
					//rx antenna on
					rtl8192_setBBreg(dev, rOFDM1_TRxPathEnable, 0xc, 0x3);// 0xd04[3:2]
					//analog to digital part2 on
					rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x1800, 0x3); // 0x880[12:11]
				}
				#else
				write_nic_byte(dev, ANAPAR, 0x37);//160MHz
				write_nic_byte(dev, MacBlkCtrl, 0x17); // 0x403
				mdelay(1);
				//enable clock 80/88 MHz

				priv->bHwRfOffAction = 0;
				//}

				// Baseband reset 2008.09.30 add
				write_nic_byte(dev, BB_RESET, (read_nic_byte(dev, BB_RESET)|BIT0));

				//2 AFE
				// 2008.09.30 add
				rtl8192_setBBreg(dev, rFPGA0_AnalogParameter2, 0x20000000, 0x1); // 0x884
				//analog to digital part2 on
					rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x60, 0x3);		// 0x880[6:5]
				//digital to analog on
				rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x98, 0x13); // 0x880[4:3]
				//analog to digital on
				rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0xf03, 0xf03);// 0x88c[9:8]
				//rx antenna on
				//PHY_SetBBReg(Adapter, rOFDM0_TRxPathEnable, 0x3, 0x3);// 0xc04[1:0]
				//rx antenna on 2008.09.30 mark
				//PHY_SetBBReg(Adapter, rOFDM1_TRxPathEnable, 0x3, 0x3);// 0xd04[1:0]

				//2 RF
				//enable RF-Chip A/B
					rtl8192_setBBreg(dev, rFPGA0_XA_RFInterfaceOE, BIT4, 0x1);		// 0x860[4]
				rtl8192_setBBreg(dev, rFPGA0_XB_RFInterfaceOE, BIT4, 0x1);		// 0x864[4]
				#endif
						break;

				//
				// In current solution, RFSleep=RFOff in order to save power under 802.11 power save.
				// By Bruce, 2008-01-16.
				//
			case eRfSleep:
			case eRfOff:
				RT_TRACE(COMP_POWER, "SetRFPowerState8190() eRfOff/Sleep !\n");
				if (pPSC->bLeisurePs)
				{
					for(QueueID = 0, i = 0; QueueID < MAX_TX_QUEUE; )
					{
						switch(QueueID) {
							case MGNT_QUEUE:
								tail=priv->txmapringtail;
								head=priv->txmapringhead;
								break;

							case BK_QUEUE:
								tail=priv->txbkpringtail;
								head=priv->txbkpringhead;
								break;

							case BE_QUEUE:
								tail=priv->txbepringtail;
								head=priv->txbepringhead;
								break;

							case VI_QUEUE:
								tail=priv->txvipringtail;
								head=priv->txvipringhead;
								break;

							case VO_QUEUE:
								tail=priv->txvopringtail;
								head=priv->txvopringhead;
								break;

							default:
								tail=head=NULL;
								break;
						}
						if(tail == head)
						{
							//DbgPrint("QueueID = %d", QueueID);
							QueueID++;
							continue;
						}
						else
						{
							RT_TRACE(COMP_POWER, "eRf Off/Sleep: %d times BusyQueue[%d] !=0 before doze!\n", (i+1), QueueID);
							udelay(10);
							i++;
						}

						if(i >= MAX_DOZE_WAITING_TIMES_9x)
						{
							RT_TRACE(COMP_POWER, "\n\n\n TimeOut!! SetRFPowerState8190(): eRfOff: %d times BusyQueue[%d] != 0 !!!\n\n\n", MAX_DOZE_WAITING_TIMES_9x, QueueID);
							break;
						}
					}
				}
				#ifdef RTL8190P
				if(priv->rf_type == RF_2T4R)
				{
					//disable RF-Chip A/B
					rtl8192_setBBreg(dev, rFPGA0_XA_RFInterfaceOE, BIT4, 0x0);		// 0x860[4]
				}
				//disable RF-Chip C/D
				rtl8192_setBBreg(dev, rFPGA0_XC_RFInterfaceOE, BIT4, 0x0); // 0x868[4]
				//analog to digital off, for power save
				rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0xf00, 0x0);// 0x88c[11:8]
				//digital to analog off, for power save
				rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x1e0, 0x0); // 0x880[8:5]
				//rx antenna off
				rtl8192_setBBreg(dev, rOFDM0_TRxPathEnable, 0xf, 0x0);// 0xc04[3:0]
				//rx antenna off
				rtl8192_setBBreg(dev, rOFDM1_TRxPathEnable, 0xf, 0x0);// 0xd04[3:0]
				//analog to digital part2 off, for power save
				rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x1e00, 0x0); // 0x880[12:9]
#else //8192E
					//2 RF
				//disable RF-Chip A/B
				rtl8192_setBBreg(dev, rFPGA0_XA_RFInterfaceOE, BIT4, 0x0);		// 0x860[4]
					rtl8192_setBBreg(dev, rFPGA0_XB_RFInterfaceOE, BIT4, 0x0);		// 0x864[4]
					//2 AFE
				//analog to digital off, for power save
					//PHY_SetBBReg(Adapter, rFPGA0_AnalogParameter4, 0xf00, 0x0);// 0x88c[11:8]
					rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0xf03, 0x0); //  2008.09.30 Modify
				//digital to analog off, for power save
					//PHY_SetBBReg(Adapter, rFPGA0_AnalogParameter1, 0x18, 0x0); // 0x880[4:3]
					rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x98, 0x0); // 0x880 2008.09.30 Modify
					//rx antenna off  2008.09.30 mark
					//PHY_SetBBReg(Adapter, rOFDM0_TRxPathEnable, 0xf, 0x0);// 0xc04[3:0]
					//rx antenna off  2008.09.30 mark
					//PHY_SetBBReg(Adapter, rOFDM1_TRxPathEnable, 0xf, 0x0);// 0xd04[3:0]
				//analog to digital part2 off, for power save
					rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x60, 0x0);		// 0x880[6:5]
					// 2008.09.30 add
					rtl8192_setBBreg(dev, rFPGA0_AnalogParameter2, 0x20000000, 0x0); // 0x884


					//disable clock 80/88 MHz 2008.09.30 mark
					//PHY_SetBBReg(Adapter, rFPGA0_AnalogParameter1, 0x4, 0x0); // 0x880[2]
					//2 BB
					// Baseband reset 2008.09.30 add
					write_nic_byte(dev, BB_RESET, (read_nic_byte(dev, BB_RESET)|BIT0)); // 0x101
					//MAC: off
					write_nic_byte(dev, MacBlkCtrl, 0x0); // 0x403
					//slow down cpu/lbus clock from 160MHz to Lower
					write_nic_byte(dev, ANAPAR, 0x07); // 0x 17 40MHz
				priv->bHwRfOffAction = 0;
				//}
				#endif
					break;

			default:
					bResult = false;
					RT_TRACE(COMP_ERR, "SetRFPowerState8190(): unknow state to set: 0x%X!!!\n", eRFPowerState);
					break;
		}

		break;

		default:
			RT_TRACE(COMP_ERR, "SetRFPowerState8190(): Unknown RF type\n");
			break;
	}

	if(bResult)
	{
		// Update current RF state variable.
		priv->ieee80211->eRFPowerState = eRFPowerState;

		switch(priv->rf_chip )
		{
			case RF_8256:
			switch(priv->ieee80211->eRFPowerState)
			{
				case eRfOff:
				//
				//If Rf off reason is from IPS, Led should blink with no link, by Maddest 071015
				//
					if(priv->ieee80211->RfOffReason==RF_CHANGE_BY_IPS )
					{
						#ifdef TO_DO
						Adapter->HalFunc.LedControlHandler(Adapter,LED_CTL_NO_LINK);
						#endif
					}
					else
					{
					// Turn off LED if RF is not ON.
						#ifdef TO_DO
						Adapter->HalFunc.LedControlHandler(Adapter, LED_CTL_POWER_OFF);
						#endif
					}
					break;

				case eRfOn:
				// Turn on RF we are still linked, which might happen when
				// we quickly turn off and on HW RF. 2006.05.12, by rcnjko.
					if( priv->ieee80211->state == IEEE80211_LINKED)
					{
						#ifdef TO_DO
						Adapter->HalFunc.LedControlHandler(Adapter, LED_CTL_LINK);
						#endif
					}
					else
					{
					// Turn off LED if RF is not ON.
						#ifdef TO_DO
						Adapter->HalFunc.LedControlHandler(Adapter, LED_CTL_NO_LINK);
						#endif
					}
					break;

				default:
			// do nothing.
					break;
			}// Switch RF state

			break;

			default:
				RT_TRACE(COMP_ERR, "SetRFPowerState8190(): Unknown RF type\n");
				break;
		}// Switch RFChipID
	}

	priv->SetRFPowerStateInProgress = false;
	RT_TRACE(COMP_POWER, "<=========== SetRFPowerState8190() bResult = %d!\n", bResult);
	return bResult;
}
예제 #26
0
static void
MgntDisconnectIBSS(
	struct net_device* dev
)
{
	struct r8192_priv *priv = ieee80211_priv(dev);
	//RT_OP_MODE	OpMode;
	u8			i;
	bool	bFilterOutNonAssociatedBSSID = false;

	//IEEE80211_DEBUG(IEEE80211_DL_TRACE, "XXXXXXXXXX MgntDisconnect IBSS\n");

	priv->ieee80211->state = IEEE80211_NOLINK;

//	PlatformZeroMemory( pMgntInfo->Bssid, 6 );
	for(i=0;i<6;i++)  priv->ieee80211->current_network.bssid[i]= 0x55;
	priv->OpMode = RT_OP_MODE_NO_LINK;
	write_nic_word(dev, BSSIDR, ((u16*)priv->ieee80211->current_network.bssid)[0]);
	write_nic_dword(dev, BSSIDR+2, ((u32*)(priv->ieee80211->current_network.bssid+2))[0]);
	{
			RT_OP_MODE	OpMode = priv->OpMode;
			//LED_CTL_MODE	LedAction = LED_CTL_NO_LINK;
			u8	btMsr = read_nic_byte(dev, MSR);

			btMsr &= 0xfc;

			switch(OpMode)
			{
			case RT_OP_MODE_INFRASTRUCTURE:
				btMsr |= MSR_LINK_MANAGED;
				//LedAction = LED_CTL_LINK;
				break;

			case RT_OP_MODE_IBSS:
				btMsr |= MSR_LINK_ADHOC;
				// led link set seperate
				break;

			case RT_OP_MODE_AP:
				btMsr |= MSR_LINK_MASTER;
				//LedAction = LED_CTL_LINK;
				break;

			default:
				btMsr |= MSR_LINK_NONE;
				break;
			}

			write_nic_byte(dev, MSR, btMsr);

			// LED control
			//Adapter->HalFunc.LedControlHandler(Adapter, LedAction);
	}
	ieee80211_stop_send_beacons(priv->ieee80211);

	// If disconnect, clear RCR CBSSID bit
	bFilterOutNonAssociatedBSSID = false;
	{
			u32 RegRCR, Type;
			Type = bFilterOutNonAssociatedBSSID;
			RegRCR = read_nic_dword(dev,RCR);
			priv->ReceiveConfig = RegRCR;
			if (Type == true)
				RegRCR |= (RCR_CBSSID);
			else if (Type == false)
				RegRCR &= (~RCR_CBSSID);

			{
				write_nic_dword(dev, RCR,RegRCR);
				priv->ReceiveConfig = RegRCR;
			}

		}
	//MgntIndicateMediaStatus( Adapter, RT_MEDIA_DISCONNECT, GENERAL_INDICATE );
	notify_wx_assoc_event(priv->ieee80211);

}
예제 #27
0
static void
MlmeDisassociateRequest(
	struct net_device* dev,
	u8* 		asSta,
	u8			asRsn
	)
{
	struct r8192_priv *priv = ieee80211_priv(dev);
	u8 i;

	RemovePeerTS(priv->ieee80211, asSta);

	SendDisassociation( priv->ieee80211, asSta, asRsn );

	if(memcpy(priv->ieee80211->current_network.bssid,asSta,6) == NULL)
	{
		//ShuChen TODO: change media status.
		//ShuChen TODO: What to do when disassociate.
		priv->ieee80211->state = IEEE80211_NOLINK;
		//pMgntInfo->AsocTimestamp = 0;
		for(i=0;i<6;i++)  priv->ieee80211->current_network.bssid[i] = 0x22;
//		pMgntInfo->mBrates.Length = 0;
//		Adapter->HalFunc.SetHwRegHandler( Adapter, HW_VAR_BASIC_RATE, (pu1Byte)(&pMgntInfo->mBrates) );
		priv->OpMode = RT_OP_MODE_NO_LINK;
		{
			RT_OP_MODE	OpMode = priv->OpMode;
			//LED_CTL_MODE	LedAction = LED_CTL_NO_LINK;
			u8 btMsr = read_nic_byte(dev, MSR);

			btMsr &= 0xfc;

			switch(OpMode)
			{
			case RT_OP_MODE_INFRASTRUCTURE:
				btMsr |= MSR_LINK_MANAGED;
				//LedAction = LED_CTL_LINK;
				break;

			case RT_OP_MODE_IBSS:
				btMsr |= MSR_LINK_ADHOC;
				// led link set seperate
				break;

			case RT_OP_MODE_AP:
				btMsr |= MSR_LINK_MASTER;
				//LedAction = LED_CTL_LINK;
				break;

			default:
				btMsr |= MSR_LINK_NONE;
				break;
			}

			write_nic_byte(dev, MSR, btMsr);

			// LED control
			//Adapter->HalFunc.LedControlHandler(Adapter, LedAction);
		}
		ieee80211_disassociate(priv->ieee80211);

		write_nic_word(dev, BSSIDR, ((u16*)priv->ieee80211->current_network.bssid)[0]);
		write_nic_dword(dev, BSSIDR+2, ((u32*)(priv->ieee80211->current_network.bssid+2))[0]);

	}

}
예제 #28
0
//
//	Description:
//		Update Tx power level if necessary.
//		See also DoRxHighPower() and SetTxPowerLevel8185() for reference.
//
//	Note:
//		The reason why we udpate Tx power level here instead of DoRxHighPower()
//		is the number of IO to change Tx power is much more than channel TR switch
//		and they are related to OFDM and MAC registers.
//		So, we don't want to update it so frequently in per-Rx packet base.
//
void
DoTxHighPower(
	struct net_device *dev
	)
{
	struct r8180_priv *priv = ieee80211_priv(dev);
	u16			HiPwrUpperTh = 0;
	u16			HiPwrLowerTh = 0;
	u8			RSSIHiPwrUpperTh;
	u8			RSSIHiPwrLowerTh;
	u8			u1bTmp;
	char			OfdmTxPwrIdx, CckTxPwrIdx;

	//printk("----> DoTxHighPower()\n");

	HiPwrUpperTh = priv->RegHiPwrUpperTh;
	HiPwrLowerTh = priv->RegHiPwrLowerTh;

	HiPwrUpperTh = HiPwrUpperTh * 10;
	HiPwrLowerTh = HiPwrLowerTh * 10;
	RSSIHiPwrUpperTh = priv->RegRSSIHiPwrUpperTh;
	RSSIHiPwrLowerTh = priv->RegRSSIHiPwrLowerTh;

	//lzm add 080826
	OfdmTxPwrIdx  = priv->chtxpwr_ofdm[priv->ieee80211->current_network.channel];
	CckTxPwrIdx  = priv->chtxpwr[priv->ieee80211->current_network.channel];

	//	printk("DoTxHighPower() - UndecoratedSmoothedSS:%d, CurCCKRSSI = %d , bCurCCKPkt= %d \n", priv->UndecoratedSmoothedSS, priv->CurCCKRSSI, priv->bCurCCKPkt );

	if((priv->UndecoratedSmoothedSS > HiPwrUpperTh) ||
		(priv->bCurCCKPkt && (priv->CurCCKRSSI > RSSIHiPwrUpperTh)))
	{
		// Stevenl suggested that degrade 8dbm in high power sate. 2007-12-04 Isaiah

	//	printk("=====>DoTxHighPower() - High Power - UndecoratedSmoothedSS:%d,  HiPwrUpperTh = %d \n", priv->UndecoratedSmoothedSS, HiPwrUpperTh );
		priv->bToUpdateTxPwr = true;
		u1bTmp= read_nic_byte(dev, CCK_TXAGC);

		// If it never enter High Power.
		if( CckTxPwrIdx == u1bTmp)
		{
		u1bTmp = (u1bTmp > 16) ? (u1bTmp -16): 0;  // 8dbm
		write_nic_byte(dev, CCK_TXAGC, u1bTmp);

		u1bTmp= read_nic_byte(dev, OFDM_TXAGC);
		u1bTmp = (u1bTmp > 16) ? (u1bTmp -16): 0;  // 8dbm
		write_nic_byte(dev, OFDM_TXAGC, u1bTmp);
		}

	}
	else if((priv->UndecoratedSmoothedSS < HiPwrLowerTh) &&
		(!priv->bCurCCKPkt || priv->CurCCKRSSI < RSSIHiPwrLowerTh))
	{
	//	 printk("DoTxHighPower() - lower Power - UndecoratedSmoothedSS:%d,  HiPwrUpperTh = %d \n", priv->UndecoratedSmoothedSS, HiPwrLowerTh );
		if(priv->bToUpdateTxPwr)
		{
			priv->bToUpdateTxPwr = false;
			//SD3 required.
			u1bTmp= read_nic_byte(dev, CCK_TXAGC);
			if(u1bTmp < CckTxPwrIdx)
			{
			//u1bTmp = ((u1bTmp+16) > 35) ? 35: (u1bTmp+16);  // 8dbm
			//write_nic_byte(dev, CCK_TXAGC, u1bTmp);
			write_nic_byte(dev, CCK_TXAGC, CckTxPwrIdx);
			}

			u1bTmp= read_nic_byte(dev, OFDM_TXAGC);
			if(u1bTmp < OfdmTxPwrIdx)
			{
			//u1bTmp = ((u1bTmp+16) > 35) ? 35: (u1bTmp+16);  // 8dbm
			//write_nic_byte(dev, OFDM_TXAGC, u1bTmp);
			write_nic_byte(dev, OFDM_TXAGC, OfdmTxPwrIdx);
			}
		}
	}

	//printk("<---- DoTxHighPower()\n");
}
static u8 PlatformIORead1Byte(struct net_device *dev, u32 offset)
{
	return read_nic_byte(dev, offset);
}
예제 #30
0
void
StaRateAdaptive87SE(
	struct net_device *dev
	)
{
	struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
	unsigned long 			CurrTxokCnt;
	u16			CurrRetryCnt;
	u16			CurrRetryRate;
	//u16			i,idx;
	unsigned long       	CurrRxokCnt;
	bool			bTryUp = false;
	bool			bTryDown = false;
	u8			TryUpTh = 1;
	u8			TryDownTh = 2;
	u32			TxThroughput;
	long		CurrSignalStrength;
	bool		bUpdateInitialGain = false;
    	u8			u1bOfdm=0, u1bCck = 0;
	char		OfdmTxPwrIdx, CckTxPwrIdx;

	priv->RateAdaptivePeriod= RATE_ADAPTIVE_TIMER_PERIOD;

	CurrRetryCnt	= priv->CurrRetryCnt;
	CurrTxokCnt	= priv->NumTxOkTotal - priv->LastTxokCnt;
	CurrRxokCnt	= priv->ieee80211->NumRxOkTotal - priv->LastRxokCnt;
	CurrSignalStrength = priv->Stats_RecvSignalPower;
	TxThroughput = (u32)(priv->NumTxOkBytesTotal - priv->LastTxOKBytes);
	priv->LastTxOKBytes = priv->NumTxOkBytesTotal;
	priv->CurrentOperaRate = priv->ieee80211->rate/5;
	//printk("priv->CurrentOperaRate is %d\n",priv->CurrentOperaRate);
	//2 Compute retry ratio.
	if (CurrTxokCnt>0)
	{
		CurrRetryRate = (u16)(CurrRetryCnt*100/CurrTxokCnt);
	}
	else
	{ // It may be serious retry. To distinguish serious retry or no packets modified by Bruce
		CurrRetryRate = (u16)(CurrRetryCnt*100/1);
	}

	//
	// Added by Roger, 2007.01.02.
	// For debug information.
	//
	//printk("\n(1) pHalData->LastRetryRate: %d \n",priv->LastRetryRate);
	//printk("(2) RetryCnt = %d  \n", CurrRetryCnt);
	//printk("(3) TxokCnt = %d \n", CurrTxokCnt);
	//printk("(4) CurrRetryRate = %d \n", CurrRetryRate);
	//printk("(5) CurrSignalStrength = %d \n",CurrSignalStrength);
	//printk("(6) TxThroughput is %d\n",TxThroughput);
	//printk("priv->NumTxOkBytesTotal is %d\n",priv->NumTxOkBytesTotal);

	priv->LastRetryCnt = priv->CurrRetryCnt;
	priv->LastTxokCnt = priv->NumTxOkTotal;
	priv->LastRxokCnt = priv->ieee80211->NumRxOkTotal;
	priv->CurrRetryCnt = 0;

	//2No Tx packets, return to init_rate or not?
	if (CurrRetryRate==0 && CurrTxokCnt == 0)
	{
		//
		//After 9 (30*300ms) seconds in this condition, we try to raise rate.
		//
		priv->TryupingCountNoData++;

//		printk("No Tx packets, TryupingCountNoData(%d)\n", priv->TryupingCountNoData);
		//[TRC Dell Lab] Extend raised period from 4.5sec to 9sec, Isaiah 2008-02-15 18:00
		if (priv->TryupingCountNoData>30)
		{
			priv->TryupingCountNoData = 0;
		 	priv->CurrentOperaRate = GetUpgradeTxRate(dev, priv->CurrentOperaRate);
			// Reset Fail Record
			priv->LastFailTxRate = 0;
			priv->LastFailTxRateSS = -200;
			priv->FailTxRateCount = 0;
		}
		goto SetInitialGain;
	}
        else
	{
		priv->TryupingCountNoData=0; //Reset trying up times.
	}

	//
	// For Netgear case, I comment out the following signal strength estimation,
	// which can results in lower rate to transmit when sample is NOT enough (e.g. PING request).
	// 2007.04.09, by Roger.
	//

	//
	// Restructure rate adaptive as the following main stages:
	// (1) Add retry threshold in 54M upgrading condition with signal strength.
	// (2) Add the mechanism to degrade to CCK rate according to signal strength
	//		and retry rate.
	// (3) Remove all Initial Gain Updates over OFDM rate. To avoid the complicated
	//		situation, Initial Gain Update is upon on DIG mechanism except CCK rate.
	// (4) Add the mehanism of trying to upgrade tx rate.
	// (5) Record the information of upping tx rate to avoid trying upping tx rate constantly.
	// By Bruce, 2007-06-05.
	//
	//

	// 11Mbps or 36Mbps
	// Check more times in these rate(key rates).
	//
	if(priv->CurrentOperaRate == 22 || priv->CurrentOperaRate == 72)
	{
		TryUpTh += 9;
	}
	//
	// Let these rates down more difficult.
	//
	if(MgntIsCckRate(priv->CurrentOperaRate) || priv->CurrentOperaRate == 36)
	{
			TryDownTh += 1;
	}

	//1 Adjust Rate.
	if (priv->bTryuping == true)
	{
		//2 For Test Upgrading mechanism
		// Note:
		// 	Sometimes the throughput is upon on the capability bwtween the AP and NIC,
		// 	thus the low data rate does not improve the performance.
		// 	We randomly upgrade the data rate and check if the retry rate is improved.

		// Upgrading rate did not improve the retry rate, fallback to the original rate.
		if ( (CurrRetryRate > 25) && TxThroughput < priv->LastTxThroughput)
		{
			//Not necessary raising rate, fall back rate.
			bTryDown = true;
			//printk("case1-1: Not necessary raising rate, fall back rate....\n");
			//printk("case1-1: pMgntInfo->CurrentOperaRate =%d, TxThroughput = %d, LastThroughput = %d\n",
			//		priv->CurrentOperaRate, TxThroughput, priv->LastTxThroughput);
		}
		else
		{
			priv->bTryuping = false;
		}
	}
	else if (CurrSignalStrength > -47 && (CurrRetryRate < 50))
	{
		//2For High Power
		//
		// Added by Roger, 2007.04.09.
		// Return to highest data rate, if signal strength is good enough.
		// SignalStrength threshold(-50dbm) is for RTL8186.
		// Revise SignalStrength threshold to -51dbm.
		//
		// Also need to check retry rate for safety, by Bruce, 2007-06-05.
		if(priv->CurrentOperaRate != priv->ieee80211->current_network.HighestOperaRate )
		{
			bTryUp = true;
			// Upgrade Tx Rate directly.
			priv->TryupingCount += TryUpTh;
		}
//		printk("case2: StaRateAdaptive87SE: Power(%d) is high enough!!. \n", CurrSignalStrength);

	}
	else if(CurrTxokCnt > 9 && CurrTxokCnt< 100 && CurrRetryRate >= 600)
	{
		//2 For Serious Retry
		//
		// Traffic is not busy but our Tx retry is serious.
		//
		bTryDown = true;
		// Let Rate Mechanism to degrade tx rate directly.
		priv->TryDownCountLowData += TryDownTh;
//		printk("case3: RA: Tx Retry is serious. Degrade Tx Rate to %d directly...\n", priv->CurrentOperaRate);
	}
	else if ( priv->CurrentOperaRate == 108 )
	{
		//2For 54Mbps
		// Air Link
		if ( (CurrRetryRate>26)&&(priv->LastRetryRate>25))
//		if ( (CurrRetryRate>40)&&(priv->LastRetryRate>39))
		{
			//Down to rate 48Mbps.
			bTryDown = true;
		}
		// Cable Link
		else if ( (CurrRetryRate>17)&&(priv->LastRetryRate>16) && (CurrSignalStrength > -72))
//		else if ( (CurrRetryRate>17)&&(priv->LastRetryRate>16) && (CurrSignalStrength > -72))
		{
			//Down to rate 48Mbps.
			bTryDown = true;
		}

		if(bTryDown && (CurrSignalStrength < -75)) //cable link
		{
			priv->TryDownCountLowData += TryDownTh;
		}
		//printk("case4---54M \n");

	}
	else if ( priv->CurrentOperaRate == 96 )
	{
		//2For 48Mbps
		//Air Link
		if ( ((CurrRetryRate>48) && (priv->LastRetryRate>47)))
//		if ( ((CurrRetryRate>65) && (priv->LastRetryRate>64)))

		{
			//Down to rate 36Mbps.
			bTryDown = true;
		}
		//Cable Link
		else if ( ((CurrRetryRate>21) && (priv->LastRetryRate>20)) && (CurrSignalStrength > -74))
		{
			//Down to rate 36Mbps.
			bTryDown = true;
		}
		else if((CurrRetryRate>  (priv->LastRetryRate + 50 )) && (priv->FailTxRateCount >2 ))
//		else if((CurrRetryRate>  (priv->LastRetryRate + 70 )) && (priv->FailTxRateCount >2 ))
		{
			bTryDown = true;
			priv->TryDownCountLowData += TryDownTh;
		}
		else if ( (CurrRetryRate<8) && (priv->LastRetryRate<8) ) //TO DO: need to consider (RSSI)
//		else if ( (CurrRetryRate<28) && (priv->LastRetryRate<8) )
		{
			bTryUp = true;
		}

		if(bTryDown && (CurrSignalStrength < -75))
		{
			priv->TryDownCountLowData += TryDownTh;
		}
		//printk("case5---48M \n");
	}
	else if ( priv->CurrentOperaRate == 72 )
	{
		//2For 36Mbps
		if ( (CurrRetryRate>43) && (priv->LastRetryRate>41))
//		if ( (CurrRetryRate>60) && (priv->LastRetryRate>59))
		{
			//Down to rate 24Mbps.
			bTryDown = true;
		}
		else if((CurrRetryRate>  (priv->LastRetryRate + 50 )) && (priv->FailTxRateCount >2 ))
//		else if((CurrRetryRate>  (priv->LastRetryRate + 70 )) && (priv->FailTxRateCount >2 ))
		{
			bTryDown = true;
			priv->TryDownCountLowData += TryDownTh;
		}
		else if ( (CurrRetryRate<15) &&  (priv->LastRetryRate<16)) //TO DO: need to consider (RSSI)
//		else if ( (CurrRetryRate<35) &&  (priv->LastRetryRate<36))
		{
			bTryUp = true;
		}

		if(bTryDown && (CurrSignalStrength < -80))
		{
			priv->TryDownCountLowData += TryDownTh;
		}
		//printk("case6---36M \n");
	}
	else if ( priv->CurrentOperaRate == 48 )
	{
		//2For 24Mbps
		// Air Link
		if ( ((CurrRetryRate>63) && (priv->LastRetryRate>62)))
//		if ( ((CurrRetryRate>83) && (priv->LastRetryRate>82)))
		{
			//Down to rate 18Mbps.
			bTryDown = true;
		}
		//Cable Link
		else if ( ((CurrRetryRate>33) && (priv->LastRetryRate>32)) && (CurrSignalStrength > -82) )
//		 else if ( ((CurrRetryRate>50) && (priv->LastRetryRate>49)) && (CurrSignalStrength > -82) )
		{
			//Down to rate 18Mbps.
			bTryDown = true;
		}
		else if((CurrRetryRate>  (priv->LastRetryRate + 50 )) && (priv->FailTxRateCount >2 ))
//		else if((CurrRetryRate>  (priv->LastRetryRate + 70 )) && (priv->FailTxRateCount >2 ))

		{
			bTryDown = true;
			priv->TryDownCountLowData += TryDownTh;
		}
  		else if ( (CurrRetryRate<20) && (priv->LastRetryRate<21)) //TO DO: need to consider (RSSI)
//		else if ( (CurrRetryRate<40) && (priv->LastRetryRate<41))
		{
			bTryUp = true;
		}

		if(bTryDown && (CurrSignalStrength < -82))
		{
			priv->TryDownCountLowData += TryDownTh;
		}
		//printk("case7---24M \n");
	}
	else if ( priv->CurrentOperaRate == 36 )
	{
		//2For 18Mbps
		// original (109, 109)
		//[TRC Dell Lab] (90, 91), Isaiah 2008-02-18 23:24
		//			     (85, 86), Isaiah 2008-02-18 24:00
		if ( ((CurrRetryRate>85) && (priv->LastRetryRate>86)))
//		if ( ((CurrRetryRate>115) && (priv->LastRetryRate>116)))
		{
			//Down to rate 11Mbps.
			bTryDown = true;
		}
		//[TRC Dell Lab]  Isaiah 2008-02-18 23:24
		else if((CurrRetryRate>  (priv->LastRetryRate + 50 )) && (priv->FailTxRateCount >2 ))
//		else if((CurrRetryRate>  (priv->LastRetryRate + 70 )) && (priv->FailTxRateCount >2 ))
		{
			bTryDown = true;
			priv->TryDownCountLowData += TryDownTh;
		}
		else if ( (CurrRetryRate<22) && (priv->LastRetryRate<23)) //TO DO: need to consider (RSSI)
//		else if ( (CurrRetryRate<42) && (priv->LastRetryRate<43))
		{
			bTryUp = true;
		}
		//printk("case8---18M \n");
	}
	else if ( priv->CurrentOperaRate == 22 )
	{
		//2For 11Mbps
		if (CurrRetryRate>95)
//		if (CurrRetryRate>155)
		{
			bTryDown = true;
		}
		else if ( (CurrRetryRate<29) && (priv->LastRetryRate <30) )//TO DO: need to consider (RSSI)
//		else if ( (CurrRetryRate<49) && (priv->LastRetryRate <50) )
			{
			bTryUp = true;
			}
		//printk("case9---11M \n");
		}
	else if ( priv->CurrentOperaRate == 11 )
	{
		//2For 5.5Mbps
		if (CurrRetryRate>149)
//		if (CurrRetryRate>189)
		{
			bTryDown = true;
		}
		else if ( (CurrRetryRate<60) && (priv->LastRetryRate < 65))
//		else if ( (CurrRetryRate<80) && (priv->LastRetryRate < 85))

			{
			bTryUp = true;
			}
		//printk("case10---5.5M \n");
		}
	else if ( priv->CurrentOperaRate == 4 )
	{
		//2For 2 Mbps
		if((CurrRetryRate>99) && (priv->LastRetryRate>99))
//		if((CurrRetryRate>199) && (priv->LastRetryRate>199))
		{
			bTryDown = true;
		}
		else if ( (CurrRetryRate < 65) && (priv->LastRetryRate < 70))
//		else if ( (CurrRetryRate < 85) && (priv->LastRetryRate < 90))
		{
			bTryUp = true;
		}
		//printk("case11---2M \n");
	}
	else if ( priv->CurrentOperaRate == 2 )
	{
		//2For 1 Mbps
		if( (CurrRetryRate<70) && (priv->LastRetryRate<75))
//		if( (CurrRetryRate<90) && (priv->LastRetryRate<95))
		{
			bTryUp = true;
		}
		//printk("case12---1M \n");
	}

	if(bTryUp && bTryDown)
    	printk("StaRateAdaptive87B(): Tx Rate tried upping and downing simultaneously!\n");

	//1 Test Upgrading Tx Rate
	// Sometimes the cause of the low throughput (high retry rate) is the compatibility between the AP and NIC.
	// To test if the upper rate may cause lower retry rate, this mechanism randomly occurs to test upgrading tx rate.
	if(!bTryUp && !bTryDown && (priv->TryupingCount == 0) && (priv->TryDownCountLowData == 0)
		&& priv->CurrentOperaRate != priv->ieee80211->current_network.HighestOperaRate && priv->FailTxRateCount < 2)
	{
		if(jiffies% (CurrRetryRate + 101) == 0)
		{
			bTryUp = true;
			priv->bTryuping = true;
			//printk("StaRateAdaptive87SE(): Randomly try upgrading...\n");
		}
	}

	//1 Rate Mechanism
	if(bTryUp)
	{
		priv->TryupingCount++;
		priv->TryDownCountLowData = 0;

		{
//			printk("UP: pHalData->TryupingCount = %d\n", priv->TryupingCount);
//			printk("UP: TryUpTh(%d)+ (FailTxRateCount(%d))^2 =%d\n",
//				TryUpTh, priv->FailTxRateCount, (TryUpTh + priv->FailTxRateCount * priv->FailTxRateCount) );
//			printk("UP: pHalData->bTryuping=%d\n",  priv->bTryuping);

		}

		//
		// Check more times if we need to upgrade indeed.
		// Because the largest value of pHalData->TryupingCount is 0xFFFF and
		// the largest value of pHalData->FailTxRateCount is 0x14,
		// this condition will be satisfied at most every 2 min.
		//

		if((priv->TryupingCount > (TryUpTh + priv->FailTxRateCount * priv->FailTxRateCount)) ||
			(CurrSignalStrength > priv->LastFailTxRateSS) || priv->bTryuping)
		{
			priv->TryupingCount = 0;
			//
			// When transferring from CCK to OFDM, DIG is an important issue.
			//
			if(priv->CurrentOperaRate == 22)
				bUpdateInitialGain = true;

			// The difference in throughput between 48Mbps and 36Mbps is 8M.
			// So, we must be carefully in this rate scale. Isaiah 2008-02-15.
			//
			if(  ((priv->CurrentOperaRate == 72) || (priv->CurrentOperaRate == 48) || (priv->CurrentOperaRate == 36)) &&
				(priv->FailTxRateCount > 2) )
				priv->RateAdaptivePeriod= (RATE_ADAPTIVE_TIMER_PERIOD/2);

			// (1)To avoid upgrade frequently to the fail tx rate, add the FailTxRateCount into the threshold.
			// (2)If the signal strength is increased, it may be able to upgrade.

			priv->CurrentOperaRate = GetUpgradeTxRate(dev, priv->CurrentOperaRate);
//			printk("StaRateAdaptive87SE(): Upgrade Tx Rate to %d\n", priv->CurrentOperaRate);

			//[TRC Dell Lab] Bypass 12/9/6, Isaiah 2008-02-18 20:00
			if(priv->CurrentOperaRate ==36)
			{
				priv->bUpdateARFR=true;
				write_nic_word(dev, ARFR, 0x0F8F); //bypass 12/9/6
//				printk("UP: ARFR=0xF8F\n");
			}
			else if(priv->bUpdateARFR)
			{
				priv->bUpdateARFR=false;
				write_nic_word(dev, ARFR, 0x0FFF); //set 1M ~ 54Mbps.
//				printk("UP: ARFR=0xFFF\n");
			}

			// Update Fail Tx rate and count.
			if(priv->LastFailTxRate != priv->CurrentOperaRate)
			{
				priv->LastFailTxRate = priv->CurrentOperaRate;
				priv->FailTxRateCount = 0;
				priv->LastFailTxRateSS = -200; // Set lowest power.
			}
		}
	}
	else
	{
		if(priv->TryupingCount > 0)
			priv->TryupingCount --;
	}

	if(bTryDown)
	{
		priv->TryDownCountLowData++;
		priv->TryupingCount = 0;
		{
//			printk("DN: pHalData->TryDownCountLowData = %d\n",priv->TryDownCountLowData);
//			printk("DN: TryDownTh =%d\n", TryDownTh);
//			printk("DN: pHalData->bTryuping=%d\n",  priv->bTryuping);
		}

		//Check if Tx rate can be degraded or Test trying upgrading should fallback.
		if(priv->TryDownCountLowData > TryDownTh || priv->bTryuping)
		{
			priv->TryDownCountLowData = 0;
			priv->bTryuping = false;
			// Update fail information.
			if(priv->LastFailTxRate == priv->CurrentOperaRate)
			{
				priv->FailTxRateCount ++;
				// Record the Tx fail rate signal strength.
				if(CurrSignalStrength > priv->LastFailTxRateSS)
				{
					priv->LastFailTxRateSS = CurrSignalStrength;
				}
			}
			else
			{
				priv->LastFailTxRate = priv->CurrentOperaRate;
				priv->FailTxRateCount = 1;
				priv->LastFailTxRateSS = CurrSignalStrength;
			}
			priv->CurrentOperaRate = GetDegradeTxRate(dev, priv->CurrentOperaRate);

			// Reduce chariot training time at weak signal strength situation. SD3 ED demand.
			//[TRC Dell Lab] Revise Signal Threshold from -75 to -80 , Isaiah 2008-02-18 20:00
			if( (CurrSignalStrength < -80) && (priv->CurrentOperaRate > 72 ))
			{
				priv->CurrentOperaRate = 72;
//				printk("DN: weak signal strength (%d), degrade to 36Mbps\n", CurrSignalStrength);
			}

			//[TRC Dell Lab] Bypass 12/9/6, Isaiah 2008-02-18 20:00
			if(priv->CurrentOperaRate ==36)
			{
				priv->bUpdateARFR=true;
				write_nic_word(dev, ARFR, 0x0F8F); //bypass 12/9/6
//				printk("DN: ARFR=0xF8F\n");
			}
			else if(priv->bUpdateARFR)
			{
				priv->bUpdateARFR=false;
				write_nic_word(dev, ARFR, 0x0FFF); //set 1M ~ 54Mbps.
//				printk("DN: ARFR=0xFFF\n");
			}

			//
			// When it is CCK rate, it may need to update initial gain to receive lower power packets.
			//
			if(MgntIsCckRate(priv->CurrentOperaRate))
			{
				bUpdateInitialGain = true;
			}
//			printk("StaRateAdaptive87SE(): Degrade Tx Rate to %d\n", priv->CurrentOperaRate);
		}
	}
	else
	{
		if(priv->TryDownCountLowData > 0)
			priv->TryDownCountLowData --;
	}

	// Keep the Tx fail rate count to equal to 0x15 at most.
	// Reduce the fail count at least to 10 sec if tx rate is tending stable.
	if(priv->FailTxRateCount >= 0x15 ||
		(!bTryUp && !bTryDown && priv->TryDownCountLowData == 0 && priv->TryupingCount && priv->FailTxRateCount > 0x6))
	{
		priv->FailTxRateCount --;
	}

	OfdmTxPwrIdx  = priv->chtxpwr_ofdm[priv->ieee80211->current_network.channel];
	CckTxPwrIdx  = priv->chtxpwr[priv->ieee80211->current_network.channel];

	//[TRC Dell Lab] Mac0x9e increase 2 level in 36M~18M situation, Isaiah 2008-02-18 24:00
	if((priv->CurrentOperaRate < 96) &&(priv->CurrentOperaRate > 22))
	{
		u1bCck = read_nic_byte(dev, CCK_TXAGC);
		u1bOfdm = read_nic_byte(dev, OFDM_TXAGC);

		// case 1: Never enter High power
		if(u1bCck == CckTxPwrIdx )
		{
			if(u1bOfdm != (OfdmTxPwrIdx+2) )
			{
			priv->bEnhanceTxPwr= true;
			u1bOfdm = ((u1bOfdm+2) > 35) ? 35: (u1bOfdm+2);
			write_nic_byte(dev, OFDM_TXAGC, u1bOfdm);
//			printk("Enhance OFDM_TXAGC : +++++ u1bOfdm= 0x%x\n", u1bOfdm);
			}
		}
		// case 2: enter high power
		else if(u1bCck < CckTxPwrIdx)
		{
			if(!priv->bEnhanceTxPwr)
			{
				priv->bEnhanceTxPwr= true;
				u1bOfdm = ((u1bOfdm+2) > 35) ? 35: (u1bOfdm+2);
				write_nic_byte(dev, OFDM_TXAGC, u1bOfdm);
				//RT_TRACE(COMP_RATE, DBG_TRACE, ("Enhance OFDM_TXAGC(2) : +++++ u1bOfdm= 0x%x\n", u1bOfdm));
			}
		}
	}
	else if(priv->bEnhanceTxPwr)  //54/48/11/5.5/2/1
	{
		u1bCck = read_nic_byte(dev, CCK_TXAGC);
		u1bOfdm = read_nic_byte(dev, OFDM_TXAGC);

		// case 1: Never enter High power
		if(u1bCck == CckTxPwrIdx )
		{
		priv->bEnhanceTxPwr= false;
		write_nic_byte(dev, OFDM_TXAGC, OfdmTxPwrIdx);
		//printk("Recover OFDM_TXAGC : ===== u1bOfdm= 0x%x\n", OfdmTxPwrIdx);
		}
		// case 2: enter high power
		else if(u1bCck < CckTxPwrIdx)
		{
			priv->bEnhanceTxPwr= false;
			u1bOfdm = ((u1bOfdm-2) > 0) ? (u1bOfdm-2): 0;
			write_nic_byte(dev, OFDM_TXAGC, u1bOfdm);
			//RT_TRACE(COMP_RATE, DBG_TRACE, ("Recover OFDM_TXAGC(2): ===== u1bOfdm= 0x%x\n", u1bOfdm));

		}
	}

	//
	// We need update initial gain when we set tx rate "from OFDM to CCK" or
	// "from CCK to OFDM".
	//
SetInitialGain:
	if(bUpdateInitialGain)
	{
		if(MgntIsCckRate(priv->CurrentOperaRate)) // CCK
		{
			if(priv->InitialGain > priv->RegBModeGainStage)
			{
				priv->InitialGainBackUp= priv->InitialGain;

				if(CurrSignalStrength < -85) // Low power, OFDM [0x17] = 26.
				{
					//SD3 SYs suggest that CurrSignalStrength < -65, ofdm 0x17=26.
					priv->InitialGain = priv->RegBModeGainStage;
				}
				else if(priv->InitialGain > priv->RegBModeGainStage + 1)
				{
					priv->InitialGain -= 2;
				}
				else
				{
					priv->InitialGain --;
				}
				printk("StaRateAdaptive87SE(): update init_gain to index %d for date rate %d\n",priv->InitialGain, priv->CurrentOperaRate);
				UpdateInitialGain(dev);
			}
		}
		else // OFDM
		{
			if(priv->InitialGain < 4)
			{
				priv->InitialGainBackUp= priv->InitialGain;

				priv->InitialGain ++;
				printk("StaRateAdaptive87SE(): update init_gain to index %d for date rate %d\n",priv->InitialGain, priv->CurrentOperaRate);
				UpdateInitialGain(dev);
			}
		}
	}

	//Record the related info
	priv->LastRetryRate = CurrRetryRate;
	priv->LastTxThroughput = TxThroughput;
	priv->ieee80211->rate = priv->CurrentOperaRate * 5;
}