예제 #1
0
static CORE_ADDR
amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
		       struct regcache *regcache, CORE_ADDR bp_addr,
		       int nargs, struct value **args,	CORE_ADDR sp,
		       int struct_return, CORE_ADDR struct_addr)
{
  gdb_byte buf[8];

  /* Pass arguments.  */
  sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);

  /* Pass "hidden" argument".  */
  if (struct_return)
    {
      store_unsigned_integer (buf, 8, struct_addr);
      regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
    }

  /* Store return address.  */
  sp -= 8;
  store_unsigned_integer (buf, 8, bp_addr);
  write_memory (sp, buf, 8);

  /* Finally, update the stack pointer...  */
  store_unsigned_integer (buf, 8, sp);
  regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);

  /* ...and fake a frame pointer.  */
  regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);

  return sp + 16;
}
예제 #2
0
파일: arm-macosx-tdep.c 프로젝트: aosm/gdb
static void
arm_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
                          int reg, const gdb_byte *buf)
{
  int s_reg_lsw = 2 * (reg - ARM_FIRST_VFP_PSEUDO_REGNUM)
    + ARM_FIRST_VFP_REGNUM;
  int s_reg_msw = s_reg_lsw + 1;
  regcache_cooked_write (regcache, s_reg_lsw, buf);
  regcache_cooked_write (regcache, s_reg_msw, buf + 4);
}
예제 #3
0
파일: m68k-tdep.c 프로젝트: ChrisG0x20/gdb
static CORE_ADDR
m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
		      struct value **args, CORE_ADDR sp, int struct_return,
		      CORE_ADDR struct_addr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte buf[4];
  int i;

  /* Push arguments in reverse order.  */
  for (i = nargs - 1; i >= 0; i--)
    {
      struct type *value_type = value_enclosing_type (args[i]);
      int len = TYPE_LENGTH (value_type);
      int container_len = (len + 3) & ~3;
      int offset;

      /* Non-scalars bigger than 4 bytes are left aligned, others are
	 right aligned.  */
      if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
	   || TYPE_CODE (value_type) == TYPE_CODE_UNION
	   || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
	  && len > 4)
	offset = 0;
      else
	offset = container_len - len;
      sp -= container_len;
      write_memory (sp + offset, value_contents_all (args[i]), len);
    }

  /* Store struct value address.  */
  if (struct_return)
    {
      store_unsigned_integer (buf, 4, byte_order, struct_addr);
      regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
    }

  /* Store return address.  */
  sp -= 4;
  store_unsigned_integer (buf, 4, byte_order, bp_addr);
  write_memory (sp, buf, 4);

  /* Finally, update the stack pointer...  */
  store_unsigned_integer (buf, 4, byte_order, sp);
  regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);

  /* ...and fake a frame pointer.  */
  regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);

  /* DWARF2/GCC uses the stack address *before* the function call as a
     frame's CFA.  */
  return sp + 8;
}
예제 #4
0
static CORE_ADDR
vax_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
		     struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
		     struct value **args, CORE_ADDR sp, int struct_return,
		     CORE_ADDR struct_addr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR fp = sp;
  gdb_byte buf[4];

  /* Set up the function arguments.  */
  sp = vax_store_arguments (regcache, nargs, args, sp);

  /* Store return value address.  */
  if (struct_return)
    regcache_cooked_write_unsigned (regcache, VAX_R1_REGNUM, struct_addr);

  /* Store return address in the PC slot.  */
  sp -= 4;
  store_unsigned_integer (buf, 4, byte_order, bp_addr);
  write_memory (sp, buf, 4);

  /* Store the (fake) frame pointer in the FP slot.  */
  sp -= 4;
  store_unsigned_integer (buf, 4, byte_order, fp);
  write_memory (sp, buf, 4);

  /* Skip the AP slot.  */
  sp -= 4;

  /* Store register save mask and control bits.  */
  sp -= 4;
  store_unsigned_integer (buf, 4, byte_order, 0);
  write_memory (sp, buf, 4);

  /* Store condition handler.  */
  sp -= 4;
  store_unsigned_integer (buf, 4, byte_order, 0);
  write_memory (sp, buf, 4);

  /* Update the stack pointer and frame pointer.  */
  store_unsigned_integer (buf, 4, byte_order, sp);
  regcache_cooked_write (regcache, VAX_SP_REGNUM, buf);
  regcache_cooked_write (regcache, VAX_FP_REGNUM, buf);

  /* Return the saved (fake) frame pointer.  */
  return fp;
}
예제 #5
0
파일: m88k-tdep.c 프로젝트: 5kg/gdb
static enum return_value_convention
m88k_return_value (struct gdbarch *gdbarch, struct value *function,
		   struct type *type, struct regcache *regcache,
		   gdb_byte *readbuf, const gdb_byte *writebuf)
{
  int len = TYPE_LENGTH (type);
  gdb_byte buf[8];

  if (!m88k_integral_or_pointer_p (type) && !m88k_floating_p (type))
    return RETURN_VALUE_STRUCT_CONVENTION;

  if (readbuf)
    {
      /* Read the contents of R2 and (if necessary) R3.  */
      regcache_cooked_read (regcache, M88K_R2_REGNUM, buf);
      if (len > 4)
	{
	  regcache_cooked_read (regcache, M88K_R3_REGNUM, buf + 4);
	  gdb_assert (len == 8);
	  memcpy (readbuf, buf, len);
	}
      else
	{
	  /* Just stripping off any unused bytes should preserve the
             signed-ness just fine.  */
	  memcpy (readbuf, buf + 4 - len, len);
	}
    }

  if (writebuf)
    {
      /* Read the contents to R2 and (if necessary) R3.  */
      if (len > 4)
	{
	  gdb_assert (len == 8);
	  memcpy (buf, writebuf, 8);
	  regcache_cooked_write (regcache, M88K_R3_REGNUM, buf + 4);
	}
      else
	{
	  /* ??? Do we need to do any sign-extension here?  */
	  memcpy (buf + 4 - len, writebuf, len);
	}
      regcache_cooked_write (regcache, M88K_R2_REGNUM, buf);
    }

  return RETURN_VALUE_REGISTER_CONVENTION;
}
예제 #6
0
static void
ppc_copy_into_greg (struct regcache *regcache, int regno, int wordsize, 
		    int len, const gdb_byte *contents)
{
  int reg_size = register_size (current_gdbarch, regno);

  if (reg_size == wordsize)
    {
      regcache_raw_write (current_regcache, regno, contents);
    }
  else
    {
      int upper_half_size = reg_size - wordsize;
      int num_regs = (len/wordsize);
      int i;

      if (num_regs == 0)
	num_regs = 1;

      
      for (i = 0; i < num_regs; i++)
	{
	  char buf[8];
	  memset (buf, 0, 8);
	  memcpy (buf + upper_half_size, contents, wordsize);
	  regcache_cooked_write (regcache, regno + i,
				 (const bfd_byte *) buf);

	  contents += wordsize;
	}
    }
}
예제 #7
0
static CORE_ADDR
vax_store_arguments (struct regcache *regcache, int nargs,
		     struct value **args, CORE_ADDR sp)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte buf[4];
  int count = 0;
  int i;

  /* We create an argument list on the stack, and make the argument
     pointer to it.  */

  /* Push arguments in reverse order.  */
  for (i = nargs - 1; i >= 0; i--)
    {
      int len = TYPE_LENGTH (value_enclosing_type (args[i]));

      sp -= (len + 3) & ~3;
      count += (len + 3) / 4;
      write_memory (sp, value_contents_all (args[i]), len);
    }

  /* Push argument count.  */
  sp -= 4;
  store_unsigned_integer (buf, 4, byte_order, count);
  write_memory (sp, buf, 4);

  /* Update the argument pointer.  */
  store_unsigned_integer (buf, 4, byte_order, sp);
  regcache_cooked_write (regcache, VAX_AP_REGNUM, buf);

  return sp;
}
예제 #8
0
static void
nios2_store_return_value (struct gdbarch *gdbarch, struct type *valtype,
			  struct regcache *regcache, const gdb_byte *valbuf)
{
  int len = TYPE_LENGTH (valtype);

  /* Return values of up to 8 bytes are returned in $r2 $r3.  */
  if (len <= register_size (gdbarch, NIOS2_R2_REGNUM))
    regcache_cooked_write (regcache, NIOS2_R2_REGNUM, valbuf);
  else
    {
      gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM)
			  + register_size (gdbarch, NIOS2_R3_REGNUM)));
      regcache_cooked_write (regcache, NIOS2_R2_REGNUM, valbuf);
      regcache_cooked_write (regcache, NIOS2_R3_REGNUM, valbuf + 4);
    }
}
예제 #9
0
static enum return_value_convention
vax_return_value (struct gdbarch *gdbarch, struct value *function,
		  struct type *type, struct regcache *regcache,
		  gdb_byte *readbuf, const gdb_byte *writebuf)
{
  int len = TYPE_LENGTH (type);
  gdb_byte buf[8];

  if (TYPE_CODE (type) == TYPE_CODE_STRUCT
      || TYPE_CODE (type) == TYPE_CODE_UNION
      || TYPE_CODE (type) == TYPE_CODE_ARRAY)
    {
      /* The default on VAX is to return structures in static memory.
         Consequently a function must return the address where we can
         find the return value.  */

      if (readbuf)
	{
	  ULONGEST addr;

	  regcache_raw_read_unsigned (regcache, VAX_R0_REGNUM, &addr);
	  read_memory (addr, readbuf, len);
	}

      return RETURN_VALUE_ABI_RETURNS_ADDRESS;
    }

  if (readbuf)
    {
      /* Read the contents of R0 and (if necessary) R1.  */
      regcache_cooked_read (regcache, VAX_R0_REGNUM, buf);
      if (len > 4)
	regcache_cooked_read (regcache, VAX_R1_REGNUM, buf + 4);
      memcpy (readbuf, buf, len);
    }
  if (writebuf)
    {
      /* Read the contents to R0 and (if necessary) R1.  */
      memcpy (buf, writebuf, len);
      regcache_cooked_write (regcache, VAX_R0_REGNUM, buf);
      if (len > 4)
	regcache_cooked_write (regcache, VAX_R1_REGNUM, buf + 4);
    }

  return RETURN_VALUE_REGISTER_CONVENTION;
}
예제 #10
0
static CORE_ADDR
amd64_windows_push_dummy_call
  (struct gdbarch *gdbarch, struct value *function,
   struct regcache *regcache, CORE_ADDR bp_addr,
   int nargs, struct value **args,
   CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte buf[8];

  /* Pass arguments.  */
  sp = amd64_windows_push_arguments (regcache, nargs, args, sp,
				     struct_return);

  /* Pass "hidden" argument".  */
  if (struct_return)
    {
      /* The "hidden" argument is passed throught the first argument
         register.  */
      const int arg_regnum = amd64_windows_dummy_call_integer_regs[0];

      store_unsigned_integer (buf, 8, byte_order, struct_addr);
      regcache_cooked_write (regcache, arg_regnum, buf);
    }

  /* Reserve some memory on the stack for the integer-parameter
     registers, as required by the ABI.  */
  sp -= ARRAY_SIZE (amd64_windows_dummy_call_integer_regs) * 8;

  /* Store return address.  */
  sp -= 8;
  store_unsigned_integer (buf, 8, byte_order, bp_addr);
  write_memory (sp, buf, 8);

  /* Update the stack pointer...  */
  store_unsigned_integer (buf, 8, byte_order, sp);
  regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);

  /* ...and fake a frame pointer.  */
  regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);

  return sp + 16;
}
예제 #11
0
static void
amd64_windows_store_arg_in_reg (struct regcache *regcache,
				struct value *arg, int regno)
{
  struct type *type = value_type (arg);
  const gdb_byte *valbuf = value_contents (arg);
  gdb_byte buf[8];

  gdb_assert (TYPE_LENGTH (type) <= 8);
  memset (buf, 0, sizeof buf);
  memcpy (buf, valbuf, min (TYPE_LENGTH (type), 8));
  regcache_cooked_write (regcache, regno, buf);
}
예제 #12
0
static void
sparc32_store_return_value (struct type *type, struct regcache *regcache,
			    const gdb_byte *valbuf)
{
  int len = TYPE_LENGTH (type);
  gdb_byte buf[8];

  gdb_assert (!sparc_structure_or_union_p (type));
  gdb_assert (!(sparc_floating_p (type) && len == 16));

  if (sparc_floating_p (type))
    {
      /* Floating return values.  */
      memcpy (buf, valbuf, len);
      regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
      if (len > 4)
	regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
    }
  else
    {
      /* Integral and pointer return values.  */
      gdb_assert (sparc_integral_or_pointer_p (type));

      if (len > 4)
	{
	  gdb_assert (len == 8);
	  memcpy (buf, valbuf, 8);
	  regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
	}
      else
	{
	  /* ??? Do we need to do any sign-extension here?  */
	  memcpy (buf + 4 - len, valbuf, len);
	}
      regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
    }
}
예제 #13
0
CORE_ADDR
ppc_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
                              struct regcache *regcache, CORE_ADDR bp_addr,
                              int nargs, struct value **args, CORE_ADDR sp,
                              int struct_return, CORE_ADDR struct_addr)
{
    struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
    const CORE_ADDR saved_sp = read_sp ();
    int argspace = 0;		/* 0 is an initial wrong guess.  */
    int write_pass;

    /* Go through the argument list twice.

       Pass 1: Figure out how much new stack space is required for
       arguments and pushed values.  Unlike the PowerOpen ABI, the SysV
       ABI doesn't reserve any extra space for parameters which are put
       in registers, but does always push structures and then pass their
       address.

       Pass 2: Replay the same computation but this time also write the
       values out to the target.  */

    for (write_pass = 0; write_pass < 2; write_pass++)
    {
        int argno;
        /* Next available floating point register for float and double
           arguments.  */
        int freg = 1;
        /* Next available general register for non-float, non-vector
           arguments.  */
        int greg = 3;
        /* Next available vector register for vector arguments.  */
        int vreg = 2;
        /* Arguments start above the "LR save word" and "Back chain".  */
        int argoffset = 2 * tdep->wordsize;
        /* Structures start after the arguments.  */
        int structoffset = argoffset + argspace;

        /* If the function is returning a `struct', then the first word
           (which will be passed in r3) is used for struct return
           address.  In that case we should advance one word and start
           from r4 register to copy parameters.  */
        if (struct_return)
        {
            if (write_pass)
                regcache_cooked_write_signed (regcache,
                                              tdep->ppc_gp0_regnum + greg,
                                              struct_addr);
            greg++;
        }

        for (argno = 0; argno < nargs; argno++)
        {
            struct value *arg = args[argno];
            struct type *type = check_typedef (VALUE_TYPE (arg));
            int len = TYPE_LENGTH (type);
            char *val = VALUE_CONTENTS (arg);

            if (TYPE_CODE (type) == TYPE_CODE_FLT
                    && ppc_floating_point_unit_p (current_gdbarch) && len <= 8)
            {
                /* Floating point value converted to "double" then
                   passed in an FP register, when the registers run out,
                   8 byte aligned stack is used.  */
                if (freg <= 8)
                {
                    if (write_pass)
                    {
                        /* Always store the floating point value using
                           the register's floating-point format.  */
                        char regval[MAX_REGISTER_SIZE];
                        struct type *regtype
                            = register_type (gdbarch, tdep->ppc_fp0_regnum + freg);
                        convert_typed_floating (val, type, regval, regtype);
                        regcache_cooked_write (regcache,
                                               tdep->ppc_fp0_regnum + freg,
                                               regval);
                    }
                    freg++;
                }
                else
                {
                    /* SysV ABI converts floats to doubles before
                       writing them to an 8 byte aligned stack location.  */
                    argoffset = align_up (argoffset, 8);
                    if (write_pass)
                    {
                        char memval[8];
                        struct type *memtype;
                        switch (TARGET_BYTE_ORDER)
                        {
                        case BFD_ENDIAN_BIG:
                            memtype = builtin_type_ieee_double_big;
                            break;
                        case BFD_ENDIAN_LITTLE:
                            memtype = builtin_type_ieee_double_little;
                            break;
                        default:
                            internal_error (__FILE__, __LINE__, "bad switch");
                        }
                        convert_typed_floating (val, type, memval, memtype);
                        write_memory (sp + argoffset, val, len);
                    }
                    argoffset += 8;
                }
            }
            else if (len == 8 && (TYPE_CODE (type) == TYPE_CODE_INT	/* long long */
                                  || (!ppc_floating_point_unit_p (current_gdbarch) && TYPE_CODE (type) == TYPE_CODE_FLT)))	/* double */
            {
                /* "long long" or "double" passed in an odd/even
                   register pair with the low addressed word in the odd
                   register and the high addressed word in the even
                   register, or when the registers run out an 8 byte
                   aligned stack location.  */
                if (greg > 9)
                {
                    /* Just in case GREG was 10.  */
                    greg = 11;
                    argoffset = align_up (argoffset, 8);
                    if (write_pass)
                        write_memory (sp + argoffset, val, len);
                    argoffset += 8;
                }
                else if (tdep->wordsize == 8)
                {
                    if (write_pass)
                        regcache_cooked_write (regcache,
                                               tdep->ppc_gp0_regnum + greg, val);
                    greg += 1;
                }
                else
                {
                    /* Must start on an odd register - r3/r4 etc.  */
                    if ((greg & 1) == 0)
                        greg++;
                    if (write_pass)
                    {
                        regcache_cooked_write (regcache,
                                               tdep->ppc_gp0_regnum + greg + 0,
                                               val + 0);
                        regcache_cooked_write (regcache,
                                               tdep->ppc_gp0_regnum + greg + 1,
                                               val + 4);
                    }
                    greg += 2;
                }
            }
            else if (len == 16
                     && TYPE_CODE (type) == TYPE_CODE_ARRAY
                     && TYPE_VECTOR (type) && tdep->ppc_vr0_regnum >= 0)
            {
                /* Vector parameter passed in an Altivec register, or
                   when that runs out, 16 byte aligned stack location.  */
                if (vreg <= 13)
                {
                    if (write_pass)
                        regcache_cooked_write (current_regcache,
                                               tdep->ppc_vr0_regnum + vreg, val);
                    vreg++;
                }
                else
                {
                    argoffset = align_up (argoffset, 16);
                    if (write_pass)
                        write_memory (sp + argoffset, val, 16);
                    argoffset += 16;
                }
            }
            else if (len == 8
                     && TYPE_CODE (type) == TYPE_CODE_ARRAY
                     && TYPE_VECTOR (type) && tdep->ppc_ev0_regnum >= 0)
            {
                /* Vector parameter passed in an e500 register, or when
                   that runs out, 8 byte aligned stack location.  Note
                   that since e500 vector and general purpose registers
                   both map onto the same underlying register set, a
                   "greg" and not a "vreg" is consumed here.  A cooked
                   write stores the value in the correct locations
                   within the raw register cache.  */
                if (greg <= 10)
                {
                    if (write_pass)
                        regcache_cooked_write (current_regcache,
                                               tdep->ppc_ev0_regnum + greg, val);
                    greg++;
                }
                else
                {
                    argoffset = align_up (argoffset, 8);
                    if (write_pass)
                        write_memory (sp + argoffset, val, 8);
                    argoffset += 8;
                }
            }
            else
            {
                /* Reduce the parameter down to something that fits in a
                   "word".  */
                char word[MAX_REGISTER_SIZE];
                memset (word, 0, MAX_REGISTER_SIZE);
                if (len > tdep->wordsize
                        || TYPE_CODE (type) == TYPE_CODE_STRUCT
                        || TYPE_CODE (type) == TYPE_CODE_UNION)
                {
                    /* Structs and large values are put on an 8 byte
                       aligned stack ... */
                    structoffset = align_up (structoffset, 8);
                    if (write_pass)
                        write_memory (sp + structoffset, val, len);
                    /* ... and then a "word" pointing to that address is
                       passed as the parameter.  */
                    store_unsigned_integer (word, tdep->wordsize,
                                            sp + structoffset);
                    structoffset += len;
                }
                else if (TYPE_CODE (type) == TYPE_CODE_INT)
                    /* Sign or zero extend the "int" into a "word".  */
                    store_unsigned_integer (word, tdep->wordsize,
                                            unpack_long (type, val));
                else
                    /* Always goes in the low address.  */
                    memcpy (word, val, len);
                /* Store that "word" in a register, or on the stack.
                   The words have "4" byte alignment.  */
                if (greg <= 10)
                {
                    if (write_pass)
                        regcache_cooked_write (regcache,
                                               tdep->ppc_gp0_regnum + greg, word);
                    greg++;
                }
                else
                {
                    argoffset = align_up (argoffset, tdep->wordsize);
                    if (write_pass)
                        write_memory (sp + argoffset, word, tdep->wordsize);
                    argoffset += tdep->wordsize;
                }
            }
        }

        /* Compute the actual stack space requirements.  */
        if (!write_pass)
        {
            /* Remember the amount of space needed by the arguments.  */
            argspace = argoffset;
            /* Allocate space for both the arguments and the structures.  */
            sp -= (argoffset + structoffset);
            /* Ensure that the stack is still 16 byte aligned.  */
            sp = align_down (sp, 16);
        }
    }

    /* Update %sp.   */
    regcache_cooked_write_signed (regcache, SP_REGNUM, sp);

    /* Write the backchain (it occupies WORDSIZED bytes).  */
    write_memory_signed_integer (sp, tdep->wordsize, saved_sp);

    /* Point the inferior function call's return address at the dummy's
       breakpoint.  */
    regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);

    return sp;
}
예제 #14
0
static CORE_ADDR
sparc32_store_arguments (struct regcache *regcache, int nargs,
			 struct value **args, CORE_ADDR sp,
			 int struct_return, CORE_ADDR struct_addr)
{
  /* Number of words in the "parameter array".  */
  int num_elements = 0;
  int element = 0;
  int i;

  for (i = 0; i < nargs; i++)
    {
      struct type *type = value_type (args[i]);
      int len = TYPE_LENGTH (type);

      if (sparc_structure_or_union_p (type)
	  || (sparc_floating_p (type) && len == 16))
	{
	  /* Structure, Union and Quad-Precision Arguments.  */
	  sp -= len;

	  /* Use doubleword alignment for these values.  That's always
             correct, and wasting a few bytes shouldn't be a problem.  */
	  sp &= ~0x7;

	  write_memory (sp, value_contents (args[i]), len);
	  args[i] = value_from_pointer (lookup_pointer_type (type), sp);
	  num_elements++;
	}
      else if (sparc_floating_p (type))
	{
	  /* Floating arguments.  */
	  gdb_assert (len == 4 || len == 8);
	  num_elements += (len / 4);
	}
      else
	{
	  /* Integral and pointer arguments.  */
	  gdb_assert (sparc_integral_or_pointer_p (type));

	  if (len < 4)
	    args[i] = value_cast (builtin_type_int32, args[i]);
	  num_elements += ((len + 3) / 4);
	}
    }

  /* Always allocate at least six words.  */
  sp -= max (6, num_elements) * 4;

  /* The psABI says that "Software convention requires space for the
     struct/union return value pointer, even if the word is unused."  */
  sp -= 4;

  /* The psABI says that "Although software convention and the
     operating system require every stack frame to be doubleword
     aligned."  */
  sp &= ~0x7;

  for (i = 0; i < nargs; i++)
    {
      const bfd_byte *valbuf = value_contents (args[i]);
      struct type *type = value_type (args[i]);
      int len = TYPE_LENGTH (type);

      gdb_assert (len == 4 || len == 8);

      if (element < 6)
	{
	  int regnum = SPARC_O0_REGNUM + element;

	  regcache_cooked_write (regcache, regnum, valbuf);
	  if (len > 4 && element < 5)
	    regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
	}

      /* Always store the argument in memory.  */
      write_memory (sp + 4 + element * 4, valbuf, len);
      element += len / 4;
    }

  gdb_assert (element == num_elements);

  if (struct_return)
    {
      gdb_byte buf[4];

      store_unsigned_integer (buf, 4, struct_addr);
      write_memory (sp, buf, 4);
    }

  return sp;
}
/* Handle the return-value conventions for Decimal Floating Point values
   in both ppc32 and ppc64, which are the same.  */
static int
get_decimal_float_return_value (struct gdbarch *gdbarch, struct type *valtype,
				struct regcache *regcache, gdb_byte *readbuf,
				const gdb_byte *writebuf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  gdb_assert (TYPE_CODE (valtype) == TYPE_CODE_DECFLOAT);

  /* 32-bit and 64-bit decimal floats in f1.  */
  if (TYPE_LENGTH (valtype) <= 8)
    {
      if (writebuf != NULL)
	{
	  gdb_byte regval[MAX_REGISTER_SIZE];
	  const gdb_byte *p;

	  /* 32-bit decimal float is right aligned in the doubleword.  */
	  if (TYPE_LENGTH (valtype) == 4)
	    {
	      memcpy (regval + 4, writebuf, 4);
	      p = regval;
	    }
	  else
	    p = writebuf;

	  regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, p);
	}
      if (readbuf != NULL)
	{
	  regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, readbuf);

	  /* Left align 32-bit decimal float.  */
	  if (TYPE_LENGTH (valtype) == 4)
	    memcpy (readbuf, readbuf + 4, 4);
	}
    }
  /* 128-bit decimal floats in f2,f3.  */
  else if (TYPE_LENGTH (valtype) == 16)
    {
      if (writebuf != NULL || readbuf != NULL)
	{
	  int i;

	  for (i = 0; i < 2; i++)
	    {
	      if (writebuf != NULL)
		regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 2 + i,
				       writebuf + i * 8);
	      if (readbuf != NULL)
		regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 2 + i,
				      readbuf + i * 8);
	    }
	}
    }
  else
    /* Can't happen.  */
    internal_error (__FILE__, __LINE__, "Unknown decimal float size.");

  return RETURN_VALUE_REGISTER_CONVENTION;
}
CORE_ADDR
ppc_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
			      struct regcache *regcache, CORE_ADDR bp_addr,
			      int nargs, struct value **args, CORE_ADDR sp,
			      int struct_return, CORE_ADDR struct_addr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  ULONGEST saved_sp;
  int argspace = 0;		/* 0 is an initial wrong guess.  */
  int write_pass;

  gdb_assert (tdep->wordsize == 4);

  regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch),
				 &saved_sp);

  /* Go through the argument list twice.

     Pass 1: Figure out how much new stack space is required for
     arguments and pushed values.  Unlike the PowerOpen ABI, the SysV
     ABI doesn't reserve any extra space for parameters which are put
     in registers, but does always push structures and then pass their
     address.

     Pass 2: Replay the same computation but this time also write the
     values out to the target.  */

  for (write_pass = 0; write_pass < 2; write_pass++)
    {
      int argno;
      /* Next available floating point register for float and double
         arguments.  */
      int freg = 1;
      /* Next available general register for non-float, non-vector
         arguments.  */
      int greg = 3;
      /* Next available vector register for vector arguments.  */
      int vreg = 2;
      /* Arguments start above the "LR save word" and "Back chain".  */
      int argoffset = 2 * tdep->wordsize;
      /* Structures start after the arguments.  */
      int structoffset = argoffset + argspace;

      /* If the function is returning a `struct', then the first word
         (which will be passed in r3) is used for struct return
         address.  In that case we should advance one word and start
         from r4 register to copy parameters.  */
      if (struct_return)
	{
	  if (write_pass)
	    regcache_cooked_write_signed (regcache,
					  tdep->ppc_gp0_regnum + greg,
					  struct_addr);
	  greg++;
	}

      for (argno = 0; argno < nargs; argno++)
	{
	  struct value *arg = args[argno];
	  struct type *type = check_typedef (value_type (arg));
	  int len = TYPE_LENGTH (type);
	  const bfd_byte *val = value_contents (arg);

	  if (TYPE_CODE (type) == TYPE_CODE_FLT && len <= 8
	      && !tdep->soft_float)
	    {
	      /* Floating point value converted to "double" then
	         passed in an FP register, when the registers run out,
	         8 byte aligned stack is used.  */
	      if (freg <= 8)
		{
		  if (write_pass)
		    {
		      /* Always store the floating point value using
		         the register's floating-point format.  */
		      gdb_byte regval[MAX_REGISTER_SIZE];
		      struct type *regtype
			= register_type (gdbarch, tdep->ppc_fp0_regnum + freg);
		      convert_typed_floating (val, type, regval, regtype);
		      regcache_cooked_write (regcache,
                                             tdep->ppc_fp0_regnum + freg,
					     regval);
		    }
		  freg++;
		}
	      else
		{
		  /* The SysV ABI tells us to convert floats to
		     doubles before writing them to an 8 byte aligned
		     stack location.  Unfortunately GCC does not do
		     that, and stores floats into 4 byte aligned
		     locations without converting them to doubles.
		     Since there is no know compiler that actually
		     follows the ABI here, we implement the GCC
		     convention.  */

		  /* Align to 4 bytes or 8 bytes depending on the type of
		     the argument (float or double).  */
		  argoffset = align_up (argoffset, len);
		  if (write_pass)
		      write_memory (sp + argoffset, val, len);
		  argoffset += len;
		}
	    }
	  else if (TYPE_CODE (type) == TYPE_CODE_FLT
		   && len == 16
		   && !tdep->soft_float
		   && (gdbarch_long_double_format (gdbarch)
		       == floatformats_ibm_long_double))
	    {
	      /* IBM long double passed in two FP registers if
		 available, otherwise 8-byte aligned stack.  */
	      if (freg <= 7)
		{
		  if (write_pass)
		    {
		      regcache_cooked_write (regcache,
					     tdep->ppc_fp0_regnum + freg,
					     val);
		      regcache_cooked_write (regcache,
					     tdep->ppc_fp0_regnum + freg + 1,
					     val + 8);
		    }
		  freg += 2;
		}
	      else
		{
		  argoffset = align_up (argoffset, 8);
		  if (write_pass)
		    write_memory (sp + argoffset, val, len);
		  argoffset += 16;
		}
	    }
	  else if (len == 8
		   && (TYPE_CODE (type) == TYPE_CODE_INT	/* long long */
		       || TYPE_CODE (type) == TYPE_CODE_FLT	/* double */
		       || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT
			   && tdep->soft_float)))
	    {
	      /* "long long" or soft-float "double" or "_Decimal64"
	         passed in an odd/even register pair with the low
	         addressed word in the odd register and the high
	         addressed word in the even register, or when the
	         registers run out an 8 byte aligned stack
	         location.  */
	      if (greg > 9)
		{
		  /* Just in case GREG was 10.  */
		  greg = 11;
		  argoffset = align_up (argoffset, 8);
		  if (write_pass)
		    write_memory (sp + argoffset, val, len);
		  argoffset += 8;
		}
	      else
		{
		  /* Must start on an odd register - r3/r4 etc.  */
		  if ((greg & 1) == 0)
		    greg++;
		  if (write_pass)
		    {
		      regcache_cooked_write (regcache,
					     tdep->ppc_gp0_regnum + greg + 0,
					     val + 0);
		      regcache_cooked_write (regcache,
					     tdep->ppc_gp0_regnum + greg + 1,
					     val + 4);
		    }
		  greg += 2;
		}
	    }
	  else if (len == 16
		   && ((TYPE_CODE (type) == TYPE_CODE_FLT
			&& (gdbarch_long_double_format (gdbarch)
			    == floatformats_ibm_long_double))
		       || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT
			   && tdep->soft_float)))
	    {
	      /* Soft-float IBM long double or _Decimal128 passed in
		 four consecutive registers, or on the stack.  The
		 registers are not necessarily odd/even pairs.  */
	      if (greg > 7)
		{
		  greg = 11;
		  argoffset = align_up (argoffset, 8);
		  if (write_pass)
		    write_memory (sp + argoffset, val, len);
		  argoffset += 16;
		}
	      else
		{
		  if (write_pass)
		    {
		      regcache_cooked_write (regcache,
					     tdep->ppc_gp0_regnum + greg + 0,
					     val + 0);
		      regcache_cooked_write (regcache,
					     tdep->ppc_gp0_regnum + greg + 1,
					     val + 4);
		      regcache_cooked_write (regcache,
					     tdep->ppc_gp0_regnum + greg + 2,
					     val + 8);
		      regcache_cooked_write (regcache,
					     tdep->ppc_gp0_regnum + greg + 3,
					     val + 12);
		    }
		  greg += 4;
		}
	    }
	  else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && len <= 8
		   && !tdep->soft_float)
	    {
	      /* 32-bit and 64-bit decimal floats go in f1 .. f8.  They can
	         end up in memory.  */

	      if (freg <= 8)
		{
		  if (write_pass)
		    {
		      gdb_byte regval[MAX_REGISTER_SIZE];
		      const gdb_byte *p;

		      /* 32-bit decimal floats are right aligned in the
			 doubleword.  */
		      if (TYPE_LENGTH (type) == 4)
		      {
			memcpy (regval + 4, val, 4);
			p = regval;
		      }
		      else
			p = val;

		      regcache_cooked_write (regcache,
			  tdep->ppc_fp0_regnum + freg, p);
		    }

		  freg++;
		}
	      else
		{
		  argoffset = align_up (argoffset, len);

		  if (write_pass)
		    /* Write value in the stack's parameter save area.  */
		    write_memory (sp + argoffset, val, len);

		  argoffset += len;
		}
	    }
	  else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && len == 16
		   && !tdep->soft_float)
	    {
	      /* 128-bit decimal floats go in f2 .. f7, always in even/odd
		 pairs.  They can end up in memory, using two doublewords.  */

	      if (freg <= 6)
		{
		  /* Make sure freg is even.  */
		  freg += freg & 1;

		  if (write_pass)
		    {
		      regcache_cooked_write (regcache,
					     tdep->ppc_fp0_regnum + freg, val);
		      regcache_cooked_write (regcache,
			  tdep->ppc_fp0_regnum + freg + 1, val + 8);
		    }
		}
	      else
		{
		  argoffset = align_up (argoffset, 8);

		  if (write_pass)
		    write_memory (sp + argoffset, val, 16);

		  argoffset += 16;
		}

	      /* If a 128-bit decimal float goes to the stack because only f7
	         and f8 are free (thus there's no even/odd register pair
		 available), these registers should be marked as occupied.
		 Hence we increase freg even when writing to memory.  */
	      freg += 2;
	    }
	  else if (len == 16
		   && TYPE_CODE (type) == TYPE_CODE_ARRAY
		   && TYPE_VECTOR (type)
		   && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
	    {
	      /* Vector parameter passed in an Altivec register, or
	         when that runs out, 16 byte aligned stack location.  */
	      if (vreg <= 13)
		{
		  if (write_pass)
		    regcache_cooked_write (regcache,
					   tdep->ppc_vr0_regnum + vreg, val);
		  vreg++;
		}
	      else
		{
		  argoffset = align_up (argoffset, 16);
		  if (write_pass)
		    write_memory (sp + argoffset, val, 16);
		  argoffset += 16;
		}
	    }
	  else if (len == 8
		   && TYPE_CODE (type) == TYPE_CODE_ARRAY
		   && TYPE_VECTOR (type)
		   && tdep->vector_abi == POWERPC_VEC_SPE)
	    {
	      /* Vector parameter passed in an e500 register, or when
	         that runs out, 8 byte aligned stack location.  Note
	         that since e500 vector and general purpose registers
	         both map onto the same underlying register set, a
	         "greg" and not a "vreg" is consumed here.  A cooked
	         write stores the value in the correct locations
	         within the raw register cache.  */
	      if (greg <= 10)
		{
		  if (write_pass)
		    regcache_cooked_write (regcache,
					   tdep->ppc_ev0_regnum + greg, val);
		  greg++;
		}
	      else
		{
		  argoffset = align_up (argoffset, 8);
		  if (write_pass)
		    write_memory (sp + argoffset, val, 8);
		  argoffset += 8;
		}
	    }
	  else
	    {
	      /* Reduce the parameter down to something that fits in a
	         "word".  */
	      gdb_byte word[MAX_REGISTER_SIZE];
	      memset (word, 0, MAX_REGISTER_SIZE);
	      if (len > tdep->wordsize
		  || TYPE_CODE (type) == TYPE_CODE_STRUCT
		  || TYPE_CODE (type) == TYPE_CODE_UNION)
		{
		  /* Structs and large values are put in an
		     aligned stack slot ... */
		  if (TYPE_CODE (type) == TYPE_CODE_ARRAY
		      && TYPE_VECTOR (type)
		      && len >= 16)
		    structoffset = align_up (structoffset, 16);
		  else
		    structoffset = align_up (structoffset, 8);

		  if (write_pass)
		    write_memory (sp + structoffset, val, len);
		  /* ... and then a "word" pointing to that address is
		     passed as the parameter.  */
		  store_unsigned_integer (word, tdep->wordsize, byte_order,
					  sp + structoffset);
		  structoffset += len;
		}
	      else if (TYPE_CODE (type) == TYPE_CODE_INT)
		/* Sign or zero extend the "int" into a "word".  */
		store_unsigned_integer (word, tdep->wordsize, byte_order,
					unpack_long (type, val));
	      else
		/* Always goes in the low address.  */
		memcpy (word, val, len);
	      /* Store that "word" in a register, or on the stack.
	         The words have "4" byte alignment.  */
	      if (greg <= 10)
		{
		  if (write_pass)
		    regcache_cooked_write (regcache,
					   tdep->ppc_gp0_regnum + greg, word);
		  greg++;
		}
	      else
		{
		  argoffset = align_up (argoffset, tdep->wordsize);
		  if (write_pass)
		    write_memory (sp + argoffset, word, tdep->wordsize);
		  argoffset += tdep->wordsize;
		}
	    }
	}

      /* Compute the actual stack space requirements.  */
      if (!write_pass)
	{
	  /* Remember the amount of space needed by the arguments.  */
	  argspace = argoffset;
	  /* Allocate space for both the arguments and the structures.  */
	  sp -= (argoffset + structoffset);
	  /* Ensure that the stack is still 16 byte aligned.  */
	  sp = align_down (sp, 16);
	}

      /* The psABI says that "A caller of a function that takes a
	 variable argument list shall set condition register bit 6 to
	 1 if it passes one or more arguments in the floating-point
	 registers. It is strongly recommended that the caller set the
	 bit to 0 otherwise..."  Doing this for normal functions too
	 shouldn't hurt.  */
      if (write_pass)
	{
	  ULONGEST cr;

	  regcache_cooked_read_unsigned (regcache, tdep->ppc_cr_regnum, &cr);
	  if (freg > 1)
	    cr |= 0x02000000;
	  else
	    cr &= ~0x02000000;
	  regcache_cooked_write_unsigned (regcache, tdep->ppc_cr_regnum, cr);
	}
    }

  /* Update %sp.   */
  regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);

  /* Write the backchain (it occupies WORDSIZED bytes).  */
  write_memory_signed_integer (sp, tdep->wordsize, byte_order, saved_sp);

  /* Point the inferior function call's return address at the dummy's
     breakpoint.  */
  regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);

  return sp;
}
예제 #17
0
static CORE_ADDR
rs6000_lynx178_push_dummy_call (struct gdbarch *gdbarch,
				struct value *function,
				struct regcache *regcache, CORE_ADDR bp_addr,
				int nargs, struct value **args, CORE_ADDR sp,
				int struct_return, CORE_ADDR struct_addr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int ii;
  int len = 0;
  int argno;			/* current argument number */
  int argbytes;			/* current argument byte */
  gdb_byte tmp_buffer[50];
  int f_argno = 0;		/* current floating point argno */
  int wordsize = gdbarch_tdep (gdbarch)->wordsize;
  CORE_ADDR func_addr = find_function_addr (function, NULL);

  struct value *arg = 0;
  struct type *type;

  ULONGEST saved_sp;

  /* The calling convention this function implements assumes the
     processor has floating-point registers.  We shouldn't be using it
     on PPC variants that lack them.  */
  gdb_assert (ppc_floating_point_unit_p (gdbarch));

  /* The first eight words of ther arguments are passed in registers.
     Copy them appropriately.  */
  ii = 0;

  /* If the function is returning a `struct', then the first word
     (which will be passed in r3) is used for struct return address.
     In that case we should advance one word and start from r4
     register to copy parameters.  */
  if (struct_return)
    {
      regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
				   struct_addr);
      ii++;
    }

  /* Effectively indirect call... gcc does...

     return_val example( float, int);

     eabi:
     float in fp0, int in r3
     offset of stack on overflow 8/16
     for varargs, must go by type.
     power open:
     float in r3&r4, int in r5
     offset of stack on overflow different
     both:
     return in r3 or f0.  If no float, must study how gcc emulates floats;
     pay attention to arg promotion.
     User may have to cast\args to handle promotion correctly
     since gdb won't know if prototype supplied or not.  */

  for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
    {
      int reg_size = register_size (gdbarch, ii + 3);

      arg = args[argno];
      type = check_typedef (value_type (arg));
      len = TYPE_LENGTH (type);

      if (TYPE_CODE (type) == TYPE_CODE_FLT)
	{

	  /* Floating point arguments are passed in fpr's, as well as gpr's.
	     There are 13 fpr's reserved for passing parameters.  At this point
	     there is no way we would run out of them.

	     Always store the floating point value using the register's
	     floating-point format.  */
	  const int fp_regnum = tdep->ppc_fp0_regnum + 1 + f_argno;
	  gdb_byte reg_val[MAX_REGISTER_SIZE];
	  struct type *reg_type = register_type (gdbarch, fp_regnum);

	  gdb_assert (len <= 8);

	  convert_typed_floating (value_contents (arg), type,
				  reg_val, reg_type);
	  regcache_cooked_write (regcache, fp_regnum, reg_val);
	  ++f_argno;
	}

      if (len > reg_size)
	{

	  /* Argument takes more than one register.  */
	  while (argbytes < len)
	    {
	      gdb_byte word[MAX_REGISTER_SIZE];
	      memset (word, 0, reg_size);
	      memcpy (word,
		      ((char *) value_contents (arg)) + argbytes,
		      (len - argbytes) > reg_size
		        ? reg_size : len - argbytes);
	      regcache_cooked_write (regcache,
	                            tdep->ppc_gp0_regnum + 3 + ii,
				    word);
	      ++ii, argbytes += reg_size;

	      if (ii >= 8)
		goto ran_out_of_registers_for_arguments;
	    }
	  argbytes = 0;
	  --ii;
	}
      else
	{
	  /* Argument can fit in one register.  No problem.  */
	  int adj = gdbarch_byte_order (gdbarch)
		    == BFD_ENDIAN_BIG ? reg_size - len : 0;
	  gdb_byte word[MAX_REGISTER_SIZE];

	  memset (word, 0, reg_size);
	  memcpy (word, value_contents (arg), len);
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
	}
      ++argno;
    }

ran_out_of_registers_for_arguments:

  regcache_cooked_read_unsigned (regcache,
				 gdbarch_sp_regnum (gdbarch),
				 &saved_sp);

  /* Location for 8 parameters are always reserved.  */
  sp -= wordsize * 8;

  /* Another six words for back chain, TOC register, link register, etc.  */
  sp -= wordsize * 6;

  /* Stack pointer must be quadword aligned.  */
  sp = align_down (sp, 16);

  /* If there are more arguments, allocate space for them in
     the stack, then push them starting from the ninth one.  */

  if ((argno < nargs) || argbytes)
    {
      int space = 0, jj;

      if (argbytes)
	{
	  space += align_up (len - argbytes, 4);
	  jj = argno + 1;
	}
      else
	jj = argno;

      for (; jj < nargs; ++jj)
	{
	  struct value *val = args[jj];

	  space += align_up (TYPE_LENGTH (value_type (val)), 4);
	}

      /* Add location required for the rest of the parameters.  */
      space = align_up (space, 16);
      sp -= space;

      /* This is another instance we need to be concerned about
         securing our stack space.  If we write anything underneath %sp
         (r1), we might conflict with the kernel who thinks he is free
         to use this area.  So, update %sp first before doing anything
         else.  */

      regcache_raw_write_signed (regcache,
				 gdbarch_sp_regnum (gdbarch), sp);

      /* If the last argument copied into the registers didn't fit there
         completely, push the rest of it into stack.  */

      if (argbytes)
	{
	  write_memory (sp + 24 + (ii * 4),
			value_contents (arg) + argbytes,
			len - argbytes);
	  ++argno;
	  ii += align_up (len - argbytes, 4) / 4;
	}

      /* Push the rest of the arguments into stack.  */
      for (; argno < nargs; ++argno)
	{

	  arg = args[argno];
	  type = check_typedef (value_type (arg));
	  len = TYPE_LENGTH (type);


	  /* Float types should be passed in fpr's, as well as in the
             stack.  */
	  if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
	    {

	      gdb_assert (len <= 8);

	      regcache_cooked_write (regcache,
				     tdep->ppc_fp0_regnum + 1 + f_argno,
				     value_contents (arg));
	      ++f_argno;
	    }

	  write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
	  ii += align_up (len, 4) / 4;
	}
    }

  /* Set the stack pointer.  According to the ABI, the SP is meant to
     be set _before_ the corresponding stack space is used.  On AIX,
     this even applies when the target has been completely stopped!
     Not doing this can lead to conflicts with the kernel which thinks
     that it still has control over this not-yet-allocated stack
     region.  */
  regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);

  /* Set back chain properly.  */
  store_unsigned_integer (tmp_buffer, wordsize, byte_order, saved_sp);
  write_memory (sp, tmp_buffer, wordsize);

  /* Point the inferior function call's return address at the dummy's
     breakpoint.  */
  regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);

  target_store_registers (regcache, -1);
  return sp;
}
static enum return_value_convention
do_ppc_sysv_return_value (struct gdbarch *gdbarch, struct type *type,
			  struct regcache *regcache, gdb_byte *readbuf,
			  const gdb_byte *writebuf, int broken_gcc)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_assert (tdep->wordsize == 4);
  if (TYPE_CODE (type) == TYPE_CODE_FLT
      && TYPE_LENGTH (type) <= 8
      && !tdep->soft_float)
    {
      if (readbuf)
	{
	  /* Floats and doubles stored in "f1".  Convert the value to
	     the required type.  */
	  gdb_byte regval[MAX_REGISTER_SIZE];
	  struct type *regtype = register_type (gdbarch,
                                                tdep->ppc_fp0_regnum + 1);
	  regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
	  convert_typed_floating (regval, regtype, readbuf, type);
	}
      if (writebuf)
	{
	  /* Floats and doubles stored in "f1".  Convert the value to
	     the register's "double" type.  */
	  gdb_byte regval[MAX_REGISTER_SIZE];
	  struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
	  convert_typed_floating (writebuf, type, regval, regtype);
	  regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_CODE (type) == TYPE_CODE_FLT
      && TYPE_LENGTH (type) == 16
      && !tdep->soft_float
      && (gdbarch_long_double_format (gdbarch) == floatformats_ibm_long_double))
    {
      /* IBM long double stored in f1 and f2.  */
      if (readbuf)
	{
	  regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, readbuf);
	  regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 2,
				readbuf + 8);
	}
      if (writebuf)
	{
	  regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, writebuf);
	  regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 2,
				 writebuf + 8);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_LENGTH (type) == 16
      && ((TYPE_CODE (type) == TYPE_CODE_FLT
	   && (gdbarch_long_double_format (gdbarch) == floatformats_ibm_long_double))
	  || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && tdep->soft_float)))
    {
      /* Soft-float IBM long double or _Decimal128 stored in r3, r4,
	 r5, r6.  */
      if (readbuf)
	{
	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, readbuf);
	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
				readbuf + 4);
	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 5,
				readbuf + 8);
	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 6,
				readbuf + 12);
	}
      if (writebuf)
	{
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
				 writebuf + 4);
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 5,
				 writebuf + 8);
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 6,
				 writebuf + 12);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if ((TYPE_CODE (type) == TYPE_CODE_INT && TYPE_LENGTH (type) == 8)
      || (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
      || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 8
	  && tdep->soft_float))
    {
      if (readbuf)
	{
	  /* A long long, double or _Decimal64 stored in the 32 bit
	     r3/r4.  */
	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
				readbuf + 0);
	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
				readbuf + 4);
	}
      if (writebuf)
	{
	  /* A long long, double or _Decimal64 stored in the 32 bit
	     r3/r4.  */
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
				 writebuf + 0);
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
				 writebuf + 4);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && !tdep->soft_float)
    return get_decimal_float_return_value (gdbarch, type, regcache, readbuf,
					   writebuf);
  else if ((TYPE_CODE (type) == TYPE_CODE_INT
	    || TYPE_CODE (type) == TYPE_CODE_CHAR
	    || TYPE_CODE (type) == TYPE_CODE_BOOL
	    || TYPE_CODE (type) == TYPE_CODE_PTR
	    || TYPE_CODE (type) == TYPE_CODE_REF
	    || TYPE_CODE (type) == TYPE_CODE_ENUM)
	   && TYPE_LENGTH (type) <= tdep->wordsize)
    {
      if (readbuf)
	{
	  /* Some sort of integer stored in r3.  Since TYPE isn't
	     bigger than the register, sign extension isn't a problem
	     - just do everything unsigned.  */
	  ULONGEST regval;
	  regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
					 &regval);
	  store_unsigned_integer (readbuf, TYPE_LENGTH (type), byte_order,
				  regval);
	}
      if (writebuf)
	{
	  /* Some sort of integer stored in r3.  Use unpack_long since
	     that should handle any required sign extension.  */
	  regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
					  unpack_long (type, writebuf));
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_LENGTH (type) == 16
      && TYPE_CODE (type) == TYPE_CODE_ARRAY
      && TYPE_VECTOR (type)
      && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
    {
      if (readbuf)
	{
	  /* Altivec places the return value in "v2".  */
	  regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
	}
      if (writebuf)
	{
	  /* Altivec places the return value in "v2".  */
	  regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_LENGTH (type) == 16
      && TYPE_CODE (type) == TYPE_CODE_ARRAY
      && TYPE_VECTOR (type)
      && tdep->vector_abi == POWERPC_VEC_GENERIC)
    {
      /* GCC -maltivec -mabi=no-altivec returns vectors in r3/r4/r5/r6.
	 GCC without AltiVec returns them in memory, but it warns about
	 ABI risks in that case; we don't try to support it.  */
      if (readbuf)
	{
	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
				readbuf + 0);
	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
				readbuf + 4);
	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 5,
				readbuf + 8);
	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 6,
				readbuf + 12);
	}
      if (writebuf)
	{
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
				 writebuf + 0);
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
				 writebuf + 4);
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 5,
				 writebuf + 8);
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 6,
				 writebuf + 12);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_LENGTH (type) == 8
      && TYPE_CODE (type) == TYPE_CODE_ARRAY
      && TYPE_VECTOR (type)
      && tdep->vector_abi == POWERPC_VEC_SPE)
    {
      /* The e500 ABI places return values for the 64-bit DSP types
	 (__ev64_opaque__) in r3.  However, in GDB-speak, ev3
	 corresponds to the entire r3 value for e500, whereas GDB's r3
	 only corresponds to the least significant 32-bits.  So place
	 the 64-bit DSP type's value in ev3.  */
      if (readbuf)
	regcache_cooked_read (regcache, tdep->ppc_ev0_regnum + 3, readbuf);
      if (writebuf)
	regcache_cooked_write (regcache, tdep->ppc_ev0_regnum + 3, writebuf);
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (broken_gcc && TYPE_LENGTH (type) <= 8)
    {
      /* GCC screwed up for structures or unions whose size is less
	 than or equal to 8 bytes..  Instead of left-aligning, it
	 right-aligns the data into the buffer formed by r3, r4.  */
      gdb_byte regvals[MAX_REGISTER_SIZE * 2];
      int len = TYPE_LENGTH (type);
      int offset = (2 * tdep->wordsize - len) % tdep->wordsize;

      if (readbuf)
	{
	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
				regvals + 0 * tdep->wordsize);
	  if (len > tdep->wordsize)
	    regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
				  regvals + 1 * tdep->wordsize);
	  memcpy (readbuf, regvals + offset, len);
	}
      if (writebuf)
	{
	  memset (regvals, 0, sizeof regvals);
	  memcpy (regvals + offset, writebuf, len);
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
				 regvals + 0 * tdep->wordsize);
	  if (len > tdep->wordsize)
	    regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
				   regvals + 1 * tdep->wordsize);
	}

      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_LENGTH (type) <= 8)
    {
      if (readbuf)
	{
	  /* This matches SVr4 PPC, it does not match GCC.  */
	  /* The value is right-padded to 8 bytes and then loaded, as
	     two "words", into r3/r4.  */
	  gdb_byte regvals[MAX_REGISTER_SIZE * 2];
	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
				regvals + 0 * tdep->wordsize);
	  if (TYPE_LENGTH (type) > tdep->wordsize)
	    regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
				  regvals + 1 * tdep->wordsize);
	  memcpy (readbuf, regvals, TYPE_LENGTH (type));
	}
      if (writebuf)
	{
	  /* This matches SVr4 PPC, it does not match GCC.  */
	  /* The value is padded out to 8 bytes and then loaded, as
	     two "words" into r3/r4.  */
	  gdb_byte regvals[MAX_REGISTER_SIZE * 2];
	  memset (regvals, 0, sizeof regvals);
	  memcpy (regvals, writebuf, TYPE_LENGTH (type));
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
				 regvals + 0 * tdep->wordsize);
	  if (TYPE_LENGTH (type) > tdep->wordsize)
	    regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
				   regvals + 1 * tdep->wordsize);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  return RETURN_VALUE_STRUCT_CONVENTION;
}
예제 #19
0
CORE_ADDR
ppc64_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
				struct regcache *regcache, CORE_ADDR bp_addr,
				int nargs, struct value **args, CORE_ADDR sp,
				int struct_return, CORE_ADDR struct_addr)
{
  CORE_ADDR func_addr = find_function_addr (function, NULL);
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
  /* By this stage in the proceedings, SP has been decremented by "red
     zone size" + "struct return size".  Fetch the stack-pointer from
     before this and use that as the BACK_CHAIN.  */
  const CORE_ADDR back_chain = read_sp ();
  /* See for-loop comment below.  */
  int write_pass;
  /* Size of the Altivec's vector parameter region, the final value is
     computed in the for-loop below.  */
  LONGEST vparam_size = 0;
  /* Size of the general parameter region, the final value is computed
     in the for-loop below.  */
  LONGEST gparam_size = 0;
  /* Kevin writes ... I don't mind seeing tdep->wordsize used in the
     calls to align_up(), align_down(), etc.  because this makes it
     easier to reuse this code (in a copy/paste sense) in the future,
     but it is a 64-bit ABI and asserting that the wordsize is 8 bytes
     at some point makes it easier to verify that this function is
     correct without having to do a non-local analysis to figure out
     the possible values of tdep->wordsize.  */
  gdb_assert (tdep->wordsize == 8);

  /* Go through the argument list twice.

     Pass 1: Compute the function call's stack space and register
     requirements.

     Pass 2: Replay the same computation but this time also write the
     values out to the target.  */

  for (write_pass = 0; write_pass < 2; write_pass++)
    {
      int argno;
      /* Next available floating point register for float and double
         arguments.  */
      int freg = 1;
      /* Next available general register for non-vector (but possibly
         float) arguments.  */
      int greg = 3;
      /* Next available vector register for vector arguments.  */
      int vreg = 2;
      /* The address, at which the next general purpose parameter
         (integer, struct, float, ...) should be saved.  */
      CORE_ADDR gparam;
      /* Address, at which the next Altivec vector parameter should be
         saved.  */
      CORE_ADDR vparam;

      if (!write_pass)
	{
	  /* During the first pass, GPARAM and VPARAM are more like
	     offsets (start address zero) than addresses.  That way
	     the accumulate the total stack space each region
	     requires.  */
	  gparam = 0;
	  vparam = 0;
	}
      else
	{
	  /* Decrement the stack pointer making space for the Altivec
	     and general on-stack parameters.  Set vparam and gparam
	     to their corresponding regions.  */
	  vparam = align_down (sp - vparam_size, 16);
	  gparam = align_down (vparam - gparam_size, 16);
	  /* Add in space for the TOC, link editor double word,
	     compiler double word, LR save area, CR save area.  */
	  sp = align_down (gparam - 48, 16);
	}

      /* If the function is returning a `struct', then there is an
         extra hidden parameter (which will be passed in r3)
         containing the address of that struct..  In that case we
         should advance one word and start from r4 register to copy
         parameters.  This also consumes one on-stack parameter slot.  */
      if (struct_return)
	{
	  if (write_pass)
	    regcache_cooked_write_signed (regcache,
					  tdep->ppc_gp0_regnum + greg,
					  struct_addr);
	  greg++;
	  gparam = align_up (gparam + tdep->wordsize, tdep->wordsize);
	}

      for (argno = 0; argno < nargs; argno++)
	{
	  struct value *arg = args[argno];
	  struct type *type = check_typedef (value_type (arg));
	  const bfd_byte *val = value_contents (arg);
	  if (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) <= 8)
	    {
	      /* Floats and Doubles go in f1 .. f13.  They also
	         consume a left aligned GREG,, and can end up in
	         memory.  */
	      if (write_pass)
		{
		  if (ppc_floating_point_unit_p (current_gdbarch)
		      && freg <= 13)
		    {
		      gdb_byte regval[MAX_REGISTER_SIZE];
		      struct type *regtype
                        = register_type (gdbarch, tdep->ppc_fp0_regnum);
		      convert_typed_floating (val, type, regval, regtype);
		      regcache_cooked_write (regcache,
                                             tdep->ppc_fp0_regnum + freg,
					     regval);
		    }
		  if (greg <= 10)
		    {
		      /* The ABI states "Single precision floating
		         point values are mapped to the first word in
		         a single doubleword" and "... floating point
		         values mapped to the first eight doublewords
		         of the parameter save area are also passed in
		         general registers").

		         This code interprets that to mean: store it,
		         left aligned, in the general register.  */
		      gdb_byte regval[MAX_REGISTER_SIZE];
		      memset (regval, 0, sizeof regval);
		      memcpy (regval, val, TYPE_LENGTH (type));
		      regcache_cooked_write (regcache,
					     tdep->ppc_gp0_regnum + greg,
					     regval);
		    }
		  write_memory (gparam, val, TYPE_LENGTH (type));
		}
	      /* Always consume parameter stack space.  */
	      freg++;
	      greg++;
	      gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
	    }
	  else if (TYPE_LENGTH (type) == 16 && TYPE_VECTOR (type)
		   && TYPE_CODE (type) == TYPE_CODE_ARRAY
		   && tdep->ppc_vr0_regnum >= 0)
	    {
	      /* In the Altivec ABI, vectors go in the vector
	         registers v2 .. v13, or when that runs out, a vector
	         annex which goes above all the normal parameters.
	         NOTE: cagney/2003-09-21: This is a guess based on the
	         PowerOpen Altivec ABI.  */
	      if (vreg <= 13)
		{
		  if (write_pass)
		    regcache_cooked_write (regcache,
					   tdep->ppc_vr0_regnum + vreg, val);
		  vreg++;
		}
	      else
		{
		  if (write_pass)
		    write_memory (vparam, val, TYPE_LENGTH (type));
		  vparam = align_up (vparam + TYPE_LENGTH (type), 16);
		}
	    }
	  else if ((TYPE_CODE (type) == TYPE_CODE_INT
		    || TYPE_CODE (type) == TYPE_CODE_ENUM
		    || TYPE_CODE (type) == TYPE_CODE_PTR)
		   && TYPE_LENGTH (type) <= 8)
	    {
	      /* Scalars and Pointers get sign[un]extended and go in
	         gpr3 .. gpr10.  They can also end up in memory.  */
	      if (write_pass)
		{
		  /* Sign extend the value, then store it unsigned.  */
		  ULONGEST word = unpack_long (type, val);
		  /* Convert any function code addresses into
		     descriptors.  */
		  if (TYPE_CODE (type) == TYPE_CODE_PTR
		      && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
		    {
		      CORE_ADDR desc = word;
		      convert_code_addr_to_desc_addr (word, &desc);
		      word = desc;
		    }
		  if (greg <= 10)
		    regcache_cooked_write_unsigned (regcache,
						    tdep->ppc_gp0_regnum +
						    greg, word);
		  write_memory_unsigned_integer (gparam, tdep->wordsize,
						 word);
		}
	      greg++;
	      gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
	    }
	  else
	    {
	      int byte;
	      for (byte = 0; byte < TYPE_LENGTH (type);
		   byte += tdep->wordsize)
		{
		  if (write_pass && greg <= 10)
		    {
		      gdb_byte regval[MAX_REGISTER_SIZE];
		      int len = TYPE_LENGTH (type) - byte;
		      if (len > tdep->wordsize)
			len = tdep->wordsize;
		      memset (regval, 0, sizeof regval);
		      /* WARNING: cagney/2003-09-21: As best I can
		         tell, the ABI specifies that the value should
		         be left aligned.  Unfortunately, GCC doesn't
		         do this - it instead right aligns even sized
		         values and puts odd sized values on the
		         stack.  Work around that by putting both a
		         left and right aligned value into the
		         register (hopefully no one notices :-^).
		         Arrrgh!  */
		      /* Left aligned (8 byte values such as pointers
		         fill the buffer).  */
		      memcpy (regval, val + byte, len);
		      /* Right aligned (but only if even).  */
		      if (len == 1 || len == 2 || len == 4)
			memcpy (regval + tdep->wordsize - len,
				val + byte, len);
		      regcache_cooked_write (regcache, greg, regval);
		    }
		  greg++;
		}
	      if (write_pass)
		/* WARNING: cagney/2003-09-21: Strictly speaking, this
		   isn't necessary, unfortunately, GCC appears to get
		   "struct convention" parameter passing wrong putting
		   odd sized structures in memory instead of in a
		   register.  Work around this by always writing the
		   value to memory.  Fortunately, doing this
		   simplifies the code.  */
		write_memory (gparam, val, TYPE_LENGTH (type));
	      if (write_pass)
		/* WARNING: cagney/2004-06-20: It appears that GCC
		   likes to put structures containing a single
		   floating-point member in an FP register instead of
		   general general purpose.  */
	      /* Always consume parameter stack space.  */
	      gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
	    }
	}

      if (!write_pass)
	{
	  /* Save the true region sizes ready for the second pass.  */
	  vparam_size = vparam;
	  /* Make certain that the general parameter save area is at
	     least the minimum 8 registers (or doublewords) in size.  */
	  if (greg < 8)
	    gparam_size = 8 * tdep->wordsize;
	  else
	    gparam_size = gparam;
	}
    }

  /* Update %sp.   */
  regcache_cooked_write_signed (regcache, SP_REGNUM, sp);

  /* Write the backchain (it occupies WORDSIZED bytes).  */
  write_memory_signed_integer (sp, tdep->wordsize, back_chain);

  /* Point the inferior function call's return address at the dummy's
     breakpoint.  */
  regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);

  /* Use the func_addr to find the descriptor, and use that to find
     the TOC.  */
  {
    CORE_ADDR desc_addr;
    if (convert_code_addr_to_desc_addr (func_addr, &desc_addr))
      {
	/* The TOC is the second double word in the descriptor.  */
	CORE_ADDR toc =
	  read_memory_unsigned_integer (desc_addr + tdep->wordsize,
					tdep->wordsize);
	regcache_cooked_write_unsigned (regcache,
					tdep->ppc_gp0_regnum + 2, toc);
      }
  }

  return sp;
}
예제 #20
0
static enum return_value_convention
rs6000_lynx178_return_value (struct gdbarch *gdbarch, struct value *function,
			     struct type *valtype, struct regcache *regcache,
			     gdb_byte *readbuf, const gdb_byte *writebuf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  /* The calling convention this function implements assumes the
     processor has floating-point registers.  We shouldn't be using it
     on PowerPC variants that lack them.  */
  gdb_assert (ppc_floating_point_unit_p (gdbarch));

  /* AltiVec extension: Functions that declare a vector data type as a
     return value place that return value in VR2.  */
  if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
      && TYPE_LENGTH (valtype) == 16)
    {
      if (readbuf)
	regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
      if (writebuf)
	regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);

      return RETURN_VALUE_REGISTER_CONVENTION;
    }

  /* If the called subprogram returns an aggregate, there exists an
     implicit first argument, whose value is the address of a caller-
     allocated buffer into which the callee is assumed to store its
     return value.  All explicit parameters are appropriately
     relabeled.  */
  if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
      || TYPE_CODE (valtype) == TYPE_CODE_UNION
      || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
    return RETURN_VALUE_STRUCT_CONVENTION;

  /* Scalar floating-point values are returned in FPR1 for float or
     double, and in FPR1:FPR2 for quadword precision.  Fortran
     complex*8 and complex*16 are returned in FPR1:FPR2, and
     complex*32 is returned in FPR1:FPR4.  */
  if (TYPE_CODE (valtype) == TYPE_CODE_FLT
      && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
    {
      struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
      gdb_byte regval[8];

      /* FIXME: kettenis/2007-01-01: Add support for quadword
	 precision and complex.  */

      if (readbuf)
	{
	  regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
	  convert_typed_floating (regval, regtype, readbuf, valtype);
	}
      if (writebuf)
	{
	  convert_typed_floating (writebuf, valtype, regval, regtype);
	  regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
	}

      return RETURN_VALUE_REGISTER_CONVENTION;
  }

  /* Values of the types int, long, short, pointer, and char (length
     is less than or equal to four bytes), as well as bit values of
     lengths less than or equal to 32 bits, must be returned right
     justified in GPR3 with signed values sign extended and unsigned
     values zero extended, as necessary.  */
  if (TYPE_LENGTH (valtype) <= tdep->wordsize)
    {
      if (readbuf)
	{
	  ULONGEST regval;

	  /* For reading we don't have to worry about sign extension.  */
	  regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
					 &regval);
	  store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), byte_order,
				  regval);
	}
      if (writebuf)
	{
	  /* For writing, use unpack_long since that should handle any
	     required sign extension.  */
	  regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
					  unpack_long (valtype, writebuf));
	}

      return RETURN_VALUE_REGISTER_CONVENTION;
    }

  /* Eight-byte non-floating-point scalar values must be returned in
     GPR3:GPR4.  */

  if (TYPE_LENGTH (valtype) == 8)
    {
      gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
      gdb_assert (tdep->wordsize == 4);

      if (readbuf)
	{
	  gdb_byte regval[8];

	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
				regval + 4);
	  memcpy (readbuf, regval, 8);
	}
      if (writebuf)
	{
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
				 writebuf + 4);
	}

      return RETURN_VALUE_REGISTER_CONVENTION;
    }

  return RETURN_VALUE_STRUCT_CONVENTION;
}
예제 #21
0
static enum return_value_convention
do_ppc_sysv_return_value (struct gdbarch *gdbarch, struct type *type,
			  /* APPLE LOCAL gdb_byte */
			  struct regcache *regcache, gdb_byte *readbuf,
			  /* APPLE LOCAL gdb_byte */
			  const gdb_byte *writebuf, int broken_gcc)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  gdb_assert (tdep->wordsize == 4);
  if (TYPE_CODE (type) == TYPE_CODE_FLT
      && TYPE_LENGTH (type) <= 8
      && ppc_floating_point_unit_p (gdbarch))
    {
      if (readbuf)
	{
	  /* Floats and doubles stored in "f1".  Convert the value to
	     the required type.  */
	  gdb_byte regval[MAX_REGISTER_SIZE];
	  struct type *regtype = register_type (gdbarch,
                                                tdep->ppc_fp0_regnum + 1);
	  regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
	  convert_typed_floating (regval, regtype, readbuf, type);
	}
      if (writebuf)
	{
	  /* Floats and doubles stored in "f1".  Convert the value to
	     the register's "double" type.  */
	  gdb_byte regval[MAX_REGISTER_SIZE];
	  struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
	  convert_typed_floating (writebuf, type, regval, regtype);
	  regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  /* APPLE LOCAL: gcc 3.3 had 8 byte long doubles, but gcc 4.0 uses 16 byte
     long doubles even for 32 bit ppc.  They are stored across f1 & f2. */
  /* Big floating point values get stored in adjacent floating
     point registers.  */
  if (TYPE_CODE (type) == TYPE_CODE_FLT
      && (TYPE_LENGTH (type) == 16 || TYPE_LENGTH (type) == 32))
    {
      if (writebuf || readbuf != NULL)
	{
	  int i;
	  for (i = 0; i < TYPE_LENGTH (type) / 8; i++)
	    {
	      if (writebuf != NULL)
		regcache_cooked_write (regcache, FP0_REGNUM + 1 + i,
				       (const bfd_byte *) writebuf + i * 8);
	      if (readbuf != NULL)
		regcache_cooked_read (regcache, FP0_REGNUM + 1 + i,
				      (bfd_byte *) readbuf + i * 8);
	    }
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  /* END APPLE LOCAL */
  if ((TYPE_CODE (type) == TYPE_CODE_INT && TYPE_LENGTH (type) == 8)
      || (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8))
    {
      if (readbuf)
	{
	  /* A long long, or a double stored in the 32 bit r3/r4.  */
	  ppc_copy_from_greg (regcache, tdep->ppc_gp0_regnum + 3, 
			      tdep->wordsize, 8, (bfd_byte *) readbuf);
	}
      if (writebuf)
	{
	  /* A long long, or a double stored in the 32 bit r3/r4.  */
	  ppc_copy_into_greg (regcache, tdep->ppc_gp0_regnum + 3, 
			      tdep->wordsize, 8, writebuf);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_CODE (type) == TYPE_CODE_INT
      && TYPE_LENGTH (type) <= tdep->wordsize)
    {
      if (readbuf)
	{
	  /* Some sort of integer stored in r3.  Since TYPE isn't
	     bigger than the register, sign extension isn't a problem
	     - just do everything unsigned.  */
	  ULONGEST regval;
	  regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
					 &regval);
	  store_unsigned_integer (readbuf, TYPE_LENGTH (type), regval);
	}
      if (writebuf)
	{
	  /* Some sort of integer stored in r3.  Use unpack_long since
	     that should handle any required sign extension.  */
	  regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
					  unpack_long (type, writebuf));
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_LENGTH (type) == 16
      && TYPE_CODE (type) == TYPE_CODE_ARRAY
      && TYPE_VECTOR (type) && tdep->ppc_vr0_regnum >= 0)
    {
      if (readbuf)
	{
	  /* Altivec places the return value in "v2".  */
	  regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
	}
      if (writebuf)
	{
	  /* Altivec places the return value in "v2".  */
	  regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_LENGTH (type) == 8
      && TYPE_CODE (type) == TYPE_CODE_ARRAY
      && TYPE_VECTOR (type) && tdep->ppc_ev0_regnum >= 0)
    {
      /* The e500 ABI places return values for the 64-bit DSP types
	 (__ev64_opaque__) in r3.  However, in GDB-speak, ev3
	 corresponds to the entire r3 value for e500, whereas GDB's r3
	 only corresponds to the least significant 32-bits.  So place
	 the 64-bit DSP type's value in ev3.  */
      if (readbuf)
	regcache_cooked_read (regcache, tdep->ppc_ev0_regnum + 3, readbuf);
      if (writebuf)
	regcache_cooked_write (regcache, tdep->ppc_ev0_regnum + 3, writebuf);
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (broken_gcc && TYPE_LENGTH (type) <= 8)
    {
      if (readbuf)
	{
	  /* GCC screwed up.  The last register isn't "left" aligned.
	     Need to extract the least significant part of each
	     register and then store that.  */
	  /* Transfer any full words.  */
	  int word = 0;
	  while (1)
	    {
	      ULONGEST reg;
	      int len = TYPE_LENGTH (type) - word * tdep->wordsize;
	      if (len <= 0)
		break;
	      if (len > tdep->wordsize)
		len = tdep->wordsize;
	      regcache_cooked_read_unsigned (regcache,
					     tdep->ppc_gp0_regnum + 3 + word,
					     &reg);
	      store_unsigned_integer (((bfd_byte *) readbuf
				       + word * tdep->wordsize), len, reg);
	      word++;
	    }
	}
      if (writebuf)
	{
	  /* GCC screwed up.  The last register isn't "left" aligned.
	     Need to extract the least significant part of each
	     register and then store that.  */
	  /* Transfer any full words.  */
	  int word = 0;
	  while (1)
	    {
	      ULONGEST reg;
	      int len = TYPE_LENGTH (type) - word * tdep->wordsize;
	      if (len <= 0)
		break;
	      if (len > tdep->wordsize)
		len = tdep->wordsize;
	      reg = extract_unsigned_integer (((const bfd_byte *) writebuf
					       + word * tdep->wordsize), len);
	      regcache_cooked_write_unsigned (regcache,
					      tdep->ppc_gp0_regnum + 3 + word,
					      reg);
	      word++;
	    }
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_LENGTH (type) <= 8)
    {
      if (readbuf)
	{
	  /* This matches SVr4 PPC, it does not match GCC.  */
	  /* The value is right-padded to 8 bytes and then loaded, as
	     two "words", into r3/r4.  */
	  ppc_copy_from_greg (regcache, tdep->ppc_gp0_regnum + 3,
                              tdep->wordsize, TYPE_LENGTH (type), readbuf);
	}
      if (writebuf)
	{
	  /* This matches SVr4 PPC, it does not match GCC.  */
	  /* The value is padded out to 8 bytes and then loaded, as
	     two "words" into r3/r4.  */
	  gdb_byte regvals[MAX_REGISTER_SIZE * 2];
	  memset (regvals, 0, sizeof regvals);
	  memcpy (regvals, writebuf, TYPE_LENGTH (type));
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
				 regvals + 0 * tdep->wordsize);
	  if (TYPE_LENGTH (type) > tdep->wordsize)
	    regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
				   regvals + 1 * tdep->wordsize);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  return RETURN_VALUE_STRUCT_CONVENTION;
}
예제 #22
0
/* The 64 bit ABI retun value convention.

   Return non-zero if the return-value is stored in a register, return
   0 if the return-value is instead stored on the stack (a.k.a.,
   struct return convention).

   For a return-value stored in a register: when WRITEBUF is non-NULL,
   copy the buffer to the corresponding register return-value location
   location; when READBUF is non-NULL, fill the buffer from the
   corresponding register return-value location.  */
enum return_value_convention
ppc64_sysv_abi_return_value (struct gdbarch *gdbarch, struct type *valtype,
			     struct regcache *regcache, gdb_byte *readbuf,
			     const gdb_byte *writebuf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* This function exists to support a calling convention that
     requires floating-point registers.  It shouldn't be used on
     processors that lack them.  */
  gdb_assert (ppc_floating_point_unit_p (gdbarch));

  /* Floats and doubles in F1.  */
  if (TYPE_CODE (valtype) == TYPE_CODE_FLT && TYPE_LENGTH (valtype) <= 8)
    {
      gdb_byte regval[MAX_REGISTER_SIZE];
      struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
      if (writebuf != NULL)
	{
	  convert_typed_floating (writebuf, valtype, regval, regtype);
	  regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
	}
      if (readbuf != NULL)
	{
	  regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
	  convert_typed_floating (regval, regtype, readbuf, valtype);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if ((TYPE_CODE (valtype) == TYPE_CODE_INT
       || TYPE_CODE (valtype) == TYPE_CODE_ENUM)
      && TYPE_LENGTH (valtype) <= 8)
    {
      /* Integers in r3.  */
      if (writebuf != NULL)
	{
	  /* Be careful to sign extend the value.  */
	  regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
					  unpack_long (valtype, writebuf));
	}
      if (readbuf != NULL)
	{
	  /* Extract the integer from r3.  Since this is truncating the
	     value, there isn't a sign extension problem.  */
	  ULONGEST regval;
	  regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
					 &regval);
	  store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  /* All pointers live in r3.  */
  if (TYPE_CODE (valtype) == TYPE_CODE_PTR)
    {
      /* All pointers live in r3.  */
      if (writebuf != NULL)
	regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
      if (readbuf != NULL)
	regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, readbuf);
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
      && TYPE_LENGTH (valtype) <= 8
      && TYPE_CODE (TYPE_TARGET_TYPE (valtype)) == TYPE_CODE_INT
      && TYPE_LENGTH (TYPE_TARGET_TYPE (valtype)) == 1)
    {
      /* Small character arrays are returned, right justified, in r3.  */
      int offset = (register_size (gdbarch, tdep->ppc_gp0_regnum + 3)
		    - TYPE_LENGTH (valtype));
      if (writebuf != NULL)
	regcache_cooked_write_part (regcache, tdep->ppc_gp0_regnum + 3,
				    offset, TYPE_LENGTH (valtype), writebuf);
      if (readbuf != NULL)
	regcache_cooked_read_part (regcache, tdep->ppc_gp0_regnum + 3,
				   offset, TYPE_LENGTH (valtype), readbuf);
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  /* Big floating point values get stored in adjacent floating
     point registers.  */
  if (TYPE_CODE (valtype) == TYPE_CODE_FLT
      && (TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 32))
    {
      if (writebuf || readbuf != NULL)
	{
	  int i;
	  for (i = 0; i < TYPE_LENGTH (valtype) / 8; i++)
	    {
	      if (writebuf != NULL)
		regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1 + i,
				       (const bfd_byte *) writebuf + i * 8);
	      if (readbuf != NULL)
		regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1 + i,
				      (bfd_byte *) readbuf + i * 8);
	    }
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  /* Complex values get returned in f1:f2, need to convert.  */
  if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX
      && (TYPE_LENGTH (valtype) == 8 || TYPE_LENGTH (valtype) == 16))
    {
      if (regcache != NULL)
	{
	  int i;
	  for (i = 0; i < 2; i++)
	    {
	      gdb_byte regval[MAX_REGISTER_SIZE];
	      struct type *regtype =
		register_type (current_gdbarch, tdep->ppc_fp0_regnum);
	      if (writebuf != NULL)
		{
		  convert_typed_floating ((const bfd_byte *) writebuf +
					  i * (TYPE_LENGTH (valtype) / 2),
					  valtype, regval, regtype);
		  regcache_cooked_write (regcache,
                                         tdep->ppc_fp0_regnum + 1 + i,
					 regval);
		}
	      if (readbuf != NULL)
		{
		  regcache_cooked_read (regcache,
                                        tdep->ppc_fp0_regnum + 1 + i,
                                        regval);
		  convert_typed_floating (regval, regtype,
					  (bfd_byte *) readbuf +
					  i * (TYPE_LENGTH (valtype) / 2),
					  valtype);
		}
	    }
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  /* Big complex values get stored in f1:f4.  */
  if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX && TYPE_LENGTH (valtype) == 32)
    {
      if (regcache != NULL)
	{
	  int i;
	  for (i = 0; i < 4; i++)
	    {
	      if (writebuf != NULL)
		regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1 + i,
				       (const bfd_byte *) writebuf + i * 8);
	      if (readbuf != NULL)
		regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1 + i,
				      (bfd_byte *) readbuf + i * 8);
	    }
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  return RETURN_VALUE_STRUCT_CONVENTION;
}
CORE_ADDR
ppc64_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
				struct regcache *regcache, CORE_ADDR bp_addr,
				int nargs, struct value **args, CORE_ADDR sp,
				int struct_return, CORE_ADDR struct_addr)
{
  CORE_ADDR func_addr = find_function_addr (function, NULL);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  ULONGEST back_chain;
  /* See for-loop comment below.  */
  int write_pass;
  /* Size of the Altivec's vector parameter region, the final value is
     computed in the for-loop below.  */
  LONGEST vparam_size = 0;
  /* Size of the general parameter region, the final value is computed
     in the for-loop below.  */
  LONGEST gparam_size = 0;
  /* Kevin writes ... I don't mind seeing tdep->wordsize used in the
     calls to align_up(), align_down(), etc.  because this makes it
     easier to reuse this code (in a copy/paste sense) in the future,
     but it is a 64-bit ABI and asserting that the wordsize is 8 bytes
     at some point makes it easier to verify that this function is
     correct without having to do a non-local analysis to figure out
     the possible values of tdep->wordsize.  */
  gdb_assert (tdep->wordsize == 8);

  /* This function exists to support a calling convention that
     requires floating-point registers.  It shouldn't be used on
     processors that lack them.  */
  gdb_assert (ppc_floating_point_unit_p (gdbarch));

  /* By this stage in the proceedings, SP has been decremented by "red
     zone size" + "struct return size".  Fetch the stack-pointer from
     before this and use that as the BACK_CHAIN.  */
  regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch),
				 &back_chain);

  /* Go through the argument list twice.

     Pass 1: Compute the function call's stack space and register
     requirements.

     Pass 2: Replay the same computation but this time also write the
     values out to the target.  */

  for (write_pass = 0; write_pass < 2; write_pass++)
    {
      int argno;
      /* Next available floating point register for float and double
         arguments.  */
      int freg = 1;
      /* Next available general register for non-vector (but possibly
         float) arguments.  */
      int greg = 3;
      /* Next available vector register for vector arguments.  */
      int vreg = 2;
      /* The address, at which the next general purpose parameter
         (integer, struct, float, ...) should be saved.  */
      CORE_ADDR gparam;
      /* Address, at which the next Altivec vector parameter should be
         saved.  */
      CORE_ADDR vparam;

      if (!write_pass)
	{
	  /* During the first pass, GPARAM and VPARAM are more like
	     offsets (start address zero) than addresses.  That way
	     they accumulate the total stack space each region
	     requires.  */
	  gparam = 0;
	  vparam = 0;
	}
      else
	{
	  /* Decrement the stack pointer making space for the Altivec
	     and general on-stack parameters.  Set vparam and gparam
	     to their corresponding regions.  */
	  vparam = align_down (sp - vparam_size, 16);
	  gparam = align_down (vparam - gparam_size, 16);
	  /* Add in space for the TOC, link editor double word,
	     compiler double word, LR save area, CR save area.  */
	  sp = align_down (gparam - 48, 16);
	}

      /* If the function is returning a `struct', then there is an
         extra hidden parameter (which will be passed in r3)
         containing the address of that struct..  In that case we
         should advance one word and start from r4 register to copy
         parameters.  This also consumes one on-stack parameter slot.  */
      if (struct_return)
	{
	  if (write_pass)
	    regcache_cooked_write_signed (regcache,
					  tdep->ppc_gp0_regnum + greg,
					  struct_addr);
	  greg++;
	  gparam = align_up (gparam + tdep->wordsize, tdep->wordsize);
	}

      for (argno = 0; argno < nargs; argno++)
	{
	  struct value *arg = args[argno];
	  struct type *type = check_typedef (value_type (arg));
	  const bfd_byte *val = value_contents (arg);

	  if (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) <= 8)
	    {
	      /* Floats and Doubles go in f1 .. f13.  They also
	         consume a left aligned GREG,, and can end up in
	         memory.  */
	      if (write_pass)
		{
		  gdb_byte regval[MAX_REGISTER_SIZE];
		  const gdb_byte *p;

		  /* Version 1.7 of the 64-bit PowerPC ELF ABI says:

		     "Single precision floating point values are mapped to
		     the first word in a single doubleword."

		     And version 1.9 says:

		     "Single precision floating point values are mapped to
		     the second word in a single doubleword."

		     GDB then writes single precision floating point values
		     at both words in a doubleword, to support both ABIs.  */
		  if (TYPE_LENGTH (type) == 4)
		    {
		      memcpy (regval, val, 4);
		      memcpy (regval + 4, val, 4);
		      p = regval;
		    }
		  else
		    p = val;

		  /* Write value in the stack's parameter save area.  */
		  write_memory (gparam, p, 8);

		  if (freg <= 13)
		    {
		      struct type *regtype
                        = register_type (gdbarch, tdep->ppc_fp0_regnum);

		      convert_typed_floating (val, type, regval, regtype);
		      regcache_cooked_write (regcache,
                                             tdep->ppc_fp0_regnum + freg,
					     regval);
		    }
		  if (greg <= 10)
		    regcache_cooked_write (regcache,
					   tdep->ppc_gp0_regnum + greg,
					   regval);
		}

	      freg++;
	      greg++;
	      /* Always consume parameter stack space.  */
	      gparam = align_up (gparam + 8, tdep->wordsize);
	    }
	  else if (TYPE_CODE (type) == TYPE_CODE_FLT
		   && TYPE_LENGTH (type) == 16
		   && (gdbarch_long_double_format (gdbarch)
		       == floatformats_ibm_long_double))
	    {
	      /* IBM long double stored in two doublewords of the
		 parameter save area and corresponding registers.  */
	      if (write_pass)
		{
		  if (!tdep->soft_float && freg <= 13)
		    {
		      regcache_cooked_write (regcache,
                                             tdep->ppc_fp0_regnum + freg,
					     val);
		      if (freg <= 12)
			regcache_cooked_write (regcache,
					       tdep->ppc_fp0_regnum + freg + 1,
					       val + 8);
		    }
		  if (greg <= 10)
		    {
		      regcache_cooked_write (regcache,
					     tdep->ppc_gp0_regnum + greg,
					     val);
		      if (greg <= 9)
			regcache_cooked_write (regcache,
					       tdep->ppc_gp0_regnum + greg + 1,
					       val + 8);
		    }
		  write_memory (gparam, val, TYPE_LENGTH (type));
		}
	      freg += 2;
	      greg += 2;
	      gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
	    }
	  else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT
		   && TYPE_LENGTH (type) <= 8)
	    {
	      /* 32-bit and 64-bit decimal floats go in f1 .. f13.  They can
	         end up in memory.  */
	      if (write_pass)
		{
		  gdb_byte regval[MAX_REGISTER_SIZE];
		  const gdb_byte *p;

		  /* 32-bit decimal floats are right aligned in the
		     doubleword.  */
		  if (TYPE_LENGTH (type) == 4)
		    {
		      memcpy (regval + 4, val, 4);
		      p = regval;
		    }
		  else
		    p = val;

		  /* Write value in the stack's parameter save area.  */
		  write_memory (gparam, p, 8);

		  if (freg <= 13)
		    regcache_cooked_write (regcache,
					   tdep->ppc_fp0_regnum + freg, p);
		}

	      freg++;
	      greg++;
	      /* Always consume parameter stack space.  */
	      gparam = align_up (gparam + 8, tdep->wordsize);
	    }
	  else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT &&
		   TYPE_LENGTH (type) == 16)
	    {
	      /* 128-bit decimal floats go in f2 .. f12, always in even/odd
	         pairs.  They can end up in memory, using two doublewords.  */
	      if (write_pass)
		{
		  if (freg <= 12)
		    {
		      /* Make sure freg is even.  */
		      freg += freg & 1;
		      regcache_cooked_write (regcache,
                                             tdep->ppc_fp0_regnum + freg, val);
		      regcache_cooked_write (regcache,
			  tdep->ppc_fp0_regnum + freg + 1, val + 8);
		    }

		  write_memory (gparam, val, TYPE_LENGTH (type));
		}

	      freg += 2;
	      greg += 2;
	      gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
	    }
	  else if (TYPE_LENGTH (type) == 16 && TYPE_VECTOR (type)
		   && TYPE_CODE (type) == TYPE_CODE_ARRAY
		   && tdep->ppc_vr0_regnum >= 0)
	    {
	      /* In the Altivec ABI, vectors go in the vector
	         registers v2 .. v13, or when that runs out, a vector
	         annex which goes above all the normal parameters.
	         NOTE: cagney/2003-09-21: This is a guess based on the
	         PowerOpen Altivec ABI.  */
	      if (vreg <= 13)
		{
		  if (write_pass)
		    regcache_cooked_write (regcache,
					   tdep->ppc_vr0_regnum + vreg, val);
		  vreg++;
		}
	      else
		{
		  if (write_pass)
		    write_memory (vparam, val, TYPE_LENGTH (type));
		  vparam = align_up (vparam + TYPE_LENGTH (type), 16);
		}
	    }
	  else if ((TYPE_CODE (type) == TYPE_CODE_INT
		    || TYPE_CODE (type) == TYPE_CODE_ENUM
		    || TYPE_CODE (type) == TYPE_CODE_BOOL
		    || TYPE_CODE (type) == TYPE_CODE_CHAR
		    || TYPE_CODE (type) == TYPE_CODE_PTR
		    || TYPE_CODE (type) == TYPE_CODE_REF)
		   && TYPE_LENGTH (type) <= 8)
	    {
	      /* Scalars and Pointers get sign[un]extended and go in
	         gpr3 .. gpr10.  They can also end up in memory.  */
	      if (write_pass)
		{
		  /* Sign extend the value, then store it unsigned.  */
		  ULONGEST word = unpack_long (type, val);
		  /* Convert any function code addresses into
		     descriptors.  */
		  if (TYPE_CODE (type) == TYPE_CODE_PTR
		      || TYPE_CODE (type) == TYPE_CODE_REF)
		    {
		      struct type *target_type;
		      target_type = check_typedef (TYPE_TARGET_TYPE (type));

		      if (TYPE_CODE (target_type) == TYPE_CODE_FUNC
			  || TYPE_CODE (target_type) == TYPE_CODE_METHOD)
			{
			  CORE_ADDR desc = word;
			  convert_code_addr_to_desc_addr (word, &desc);
			  word = desc;
			}
		    }
		  if (greg <= 10)
		    regcache_cooked_write_unsigned (regcache,
						    tdep->ppc_gp0_regnum +
						    greg, word);
		  write_memory_unsigned_integer (gparam, tdep->wordsize,
						 byte_order, word);
		}
	      greg++;
	      gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
	    }
	  else
	    {
	      int byte;
	      for (byte = 0; byte < TYPE_LENGTH (type);
		   byte += tdep->wordsize)
		{
		  if (write_pass && greg <= 10)
		    {
		      gdb_byte regval[MAX_REGISTER_SIZE];
		      int len = TYPE_LENGTH (type) - byte;
		      if (len > tdep->wordsize)
			len = tdep->wordsize;
		      memset (regval, 0, sizeof regval);
		      /* The ABI (version 1.9) specifies that values
			 smaller than one doubleword are right-aligned
			 and those larger are left-aligned.  GCC
			 versions before 3.4 implemented this
			 incorrectly; see
			 <http://gcc.gnu.org/gcc-3.4/powerpc-abi.html>.  */
		      if (byte == 0)
			memcpy (regval + tdep->wordsize - len,
				val + byte, len);
		      else
			memcpy (regval, val + byte, len);
		      regcache_cooked_write (regcache, greg, regval);
		    }
		  greg++;
		}
	      if (write_pass)
		{
		  /* WARNING: cagney/2003-09-21: Strictly speaking, this
		     isn't necessary, unfortunately, GCC appears to get
		     "struct convention" parameter passing wrong putting
		     odd sized structures in memory instead of in a
		     register.  Work around this by always writing the
		     value to memory.  Fortunately, doing this
		     simplifies the code.  */
		  int len = TYPE_LENGTH (type);
		  if (len < tdep->wordsize)
		    write_memory (gparam + tdep->wordsize - len, val, len);
		  else
		    write_memory (gparam, val, len);
		}
	      if (freg <= 13
		  && TYPE_CODE (type) == TYPE_CODE_STRUCT
		  && TYPE_NFIELDS (type) == 1
		  && TYPE_LENGTH (type) <= 16)
		{
		  /* The ABI (version 1.9) specifies that structs
		     containing a single floating-point value, at any
		     level of nesting of single-member structs, are
		     passed in floating-point registers.  */
		  while (TYPE_CODE (type) == TYPE_CODE_STRUCT
			 && TYPE_NFIELDS (type) == 1)
		    type = check_typedef (TYPE_FIELD_TYPE (type, 0));
		  if (TYPE_CODE (type) == TYPE_CODE_FLT)
		    {
		      if (TYPE_LENGTH (type) <= 8)
			{
			  if (write_pass)
			    {
			      gdb_byte regval[MAX_REGISTER_SIZE];
			      struct type *regtype
				= register_type (gdbarch,
						 tdep->ppc_fp0_regnum);
			      convert_typed_floating (val, type, regval,
						      regtype);
			      regcache_cooked_write (regcache,
						     (tdep->ppc_fp0_regnum
						      + freg),
						     regval);
			    }
			  freg++;
			}
		      else if (TYPE_LENGTH (type) == 16
			       && (gdbarch_long_double_format (gdbarch)
				   == floatformats_ibm_long_double))
			{
			  if (write_pass)
			    {
			      regcache_cooked_write (regcache,
						     (tdep->ppc_fp0_regnum
						      + freg),
						     val);
			      if (freg <= 12)
				regcache_cooked_write (regcache,
						       (tdep->ppc_fp0_regnum
							+ freg + 1),
						       val + 8);
			    }
			  freg += 2;
			}
		    }
		}
	      /* Always consume parameter stack space.  */
	      gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
	    }
	}

      if (!write_pass)
	{
	  /* Save the true region sizes ready for the second pass.  */
	  vparam_size = vparam;
	  /* Make certain that the general parameter save area is at
	     least the minimum 8 registers (or doublewords) in size.  */
	  if (greg < 8)
	    gparam_size = 8 * tdep->wordsize;
	  else
	    gparam_size = gparam;
	}
    }

  /* Update %sp.   */
  regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);

  /* Write the backchain (it occupies WORDSIZED bytes).  */
  write_memory_signed_integer (sp, tdep->wordsize, byte_order, back_chain);

  /* Point the inferior function call's return address at the dummy's
     breakpoint.  */
  regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);

  /* Use the func_addr to find the descriptor, and use that to find
     the TOC.  If we're calling via a function pointer, the pointer
     itself identifies the descriptor.  */
  {
    struct type *ftype = check_typedef (value_type (function));
    CORE_ADDR desc_addr = value_as_address (function);

    if (TYPE_CODE (ftype) == TYPE_CODE_PTR
	|| convert_code_addr_to_desc_addr (func_addr, &desc_addr))
      {
	/* The TOC is the second double word in the descriptor.  */
	CORE_ADDR toc =
	  read_memory_unsigned_integer (desc_addr + tdep->wordsize,
					tdep->wordsize, byte_order);
	regcache_cooked_write_unsigned (regcache,
					tdep->ppc_gp0_regnum + 2, toc);
      }
  }

  return sp;
}
예제 #24
0
static CORE_ADDR
i386_darwin_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
			     struct regcache *regcache, CORE_ADDR bp_addr,
			     int nargs, struct value **args, CORE_ADDR sp,
			     int struct_return, CORE_ADDR struct_addr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte buf[4];
  int i;
  int write_pass;

  /* Determine the total space required for arguments and struct
     return address in a first pass, then push arguments in a second pass.  */

  for (write_pass = 0; write_pass < 2; write_pass++)
    {
      int args_space = 0;
      int num_m128 = 0;

      if (struct_return)
	{
	  if (write_pass)
	    {
	      /* Push value address.  */
	      store_unsigned_integer (buf, 4, byte_order, struct_addr);
	      write_memory (sp, buf, 4);
	    }
          args_space += 4;
	}

      for (i = 0; i < nargs; i++)
	{
          struct type *arg_type = value_enclosing_type (args[i]);

          if (i386_m128_p (arg_type) && num_m128 < 4)
            {
              if (write_pass)
                {
                  const gdb_byte *val = value_contents_all (args[i]);
                  regcache_raw_write
                    (regcache, I387_MM0_REGNUM(tdep) + num_m128, val);
                }
              num_m128++;
            }
          else
            {
              args_space = align_up (args_space,
				     i386_darwin_arg_type_alignment (arg_type));
              if (write_pass)
                write_memory (sp + args_space,
                              value_contents_all (args[i]),
			      TYPE_LENGTH (arg_type));

              /* The System V ABI says that:
                 
                 "An argument's size is increased, if necessary, to make it a
                 multiple of [32-bit] words.  This may require tail padding,
                 depending on the size of the argument."
                 
                 This makes sure the stack stays word-aligned.  */
              args_space += align_up (TYPE_LENGTH (arg_type), 4);
            }
        }

      /* Darwin i386 ABI:
	 1.  The caller ensures that the stack is 16-byte aligned at the point
	     of the function call.  */
      if (!write_pass)
	sp = align_down (sp - args_space, 16);
    }

  /* Store return address.  */
  sp -= 4;
  store_unsigned_integer (buf, 4, byte_order, bp_addr);
  write_memory (sp, buf, 4);

  /* Finally, update the stack pointer...  */
  store_unsigned_integer (buf, 4, byte_order, sp);
  regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);

  /* ...and fake a frame pointer.  */
  regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);

  /* MarkK wrote: This "+ 8" is all over the place:
     (i386_frame_this_id, i386_sigtramp_frame_this_id,
     i386_dummy_id).  It's there, since all frame unwinders for
     a given target have to agree (within a certain margin) on the
     definition of the stack address of a frame.  Otherwise frame id
     comparison might not work correctly.  Since DWARF2/GCC uses the
     stack address *before* the function call as a frame's CFA.  On
     the i386, when %ebp is used as a frame pointer, the offset
     between the contents %ebp and the CFA as defined by GCC.  */
  return sp + 8;
}
예제 #25
0
static enum return_value_convention
d10v_return_value (struct gdbarch *gdbarch, struct type *valtype,
		   struct regcache *regcache, void *readbuf,
		   const void *writebuf)
{
  if (TYPE_LENGTH (valtype) > 8)
    /* Anything larger than 8 bytes (4 registers) goes on the stack.  */
    return RETURN_VALUE_STRUCT_CONVENTION;
  if (TYPE_LENGTH (valtype) == 5
      || TYPE_LENGTH (valtype) == 6)
    /* Anything 5 or 6 bytes in size goes in memory.  Contents don't
       appear to matter.  Note that 7 and 8 byte objects do end up in
       registers!  */
    return RETURN_VALUE_STRUCT_CONVENTION;
  if (TYPE_LENGTH (valtype) == 1)
    {
      /* All single byte values go in a register stored right-aligned.
         Note: 2 byte integer values are handled further down.  */
      if (readbuf)
	{
	  /* Since TYPE is smaller than the register, there isn't a
             sign extension problem.  Let the extraction truncate the
             register value.  */
	  ULONGEST regval;
	  regcache_cooked_read_unsigned (regcache, R0_REGNUM,
					 &regval);
	  store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);

	}
      if (writebuf)
	{
	  ULONGEST regval;
	  if (TYPE_CODE (valtype) == TYPE_CODE_INT)
	    /* Some sort of integer value stored in R0.  Use
	       unpack_long since that should handle any required sign
	       extension.  */
	    regval = unpack_long (valtype, writebuf);
	  else
	    /* Some other type.  Don't sign-extend the value when
               storing it in the register.  */
	    regval = extract_unsigned_integer (writebuf, 1);
	  regcache_cooked_write_unsigned (regcache, R0_REGNUM, regval);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
       || TYPE_CODE (valtype) == TYPE_CODE_UNION)
      && TYPE_NFIELDS (valtype) > 1
      && TYPE_FIELD_BITPOS (valtype, 1) == 8)
    /* If a composite is 8 bit aligned (determined by looking at the
       start address of the second field), put it in memory.  */
    return RETURN_VALUE_STRUCT_CONVENTION;
  /* Assume it is in registers.  */
  if (writebuf || readbuf)
    {
      int reg;
      /* Per above, the value is never more than 8 bytes long.  */
      gdb_assert (TYPE_LENGTH (valtype) <= 8);
      /* Xfer 2 bytes at a time.  */
      for (reg = 0; (reg * 2) + 1 < TYPE_LENGTH (valtype); reg++)
	{
	  if (readbuf)
	    regcache_cooked_read (regcache, R0_REGNUM + reg,
				  (bfd_byte *) readbuf + reg * 2);
	  if (writebuf)
	    regcache_cooked_write (regcache, R0_REGNUM + reg,
				   (bfd_byte *) writebuf + reg * 2);
	}
      /* Any trailing byte ends up _left_ aligned.  */
      if ((reg * 2) < TYPE_LENGTH (valtype))
	{
	  if (readbuf)
	    regcache_cooked_read_part (regcache, R0_REGNUM + reg,
				       0, 1, (bfd_byte *) readbuf + reg * 2);
	  if (writebuf)
	    regcache_cooked_write_part (regcache, R0_REGNUM + reg,
					0, 1, (bfd_byte *) writebuf + reg * 2);
	}
    }
  return RETURN_VALUE_REGISTER_CONVENTION;
}