static expr *expr3(int critical) { expr *e, *f; e = expr4(critical); if (!e) return NULL; while (i == TOKEN_SHL || i == TOKEN_SHR) { int j = i; i = scan(scpriv, tokval); f = expr4(critical); if (!f) return NULL; if (!(is_simple(e) || is_just_unknown(e)) || !(is_simple(f) || is_just_unknown(f))) { nasm_error(ERR_NONFATAL, "shift operator may only be applied to" " scalar values"); } else if (is_just_unknown(e) || is_just_unknown(f)) { e = unknown_expr(); } else switch (j) { case TOKEN_SHL: e = scalarvect(reloc_value(e) << reloc_value(f)); break; case TOKEN_SHR: e = scalarvect(((uint64_t)reloc_value(e)) >> reloc_value(f)); break; } } return e; }
static expr *expr2(int critical) { expr *e, *f; e = expr3(critical); if (!e) return NULL; while (i == '&') { i = scan(scpriv, tokval); f = expr3(critical); if (!f) return NULL; if (!(is_simple(e) || is_just_unknown(e)) || !(is_simple(f) || is_just_unknown(f))) { nasm_error(ERR_NONFATAL, "`&' operator may only be applied to" " scalar values"); } if (is_just_unknown(e) || is_just_unknown(f)) e = unknown_expr(); else e = scalarvect(reloc_value(e) & reloc_value(f)); } return e; }
static expr *rexp1(int critical) { expr *e, *f; e = rexp2(critical); if (!e) return NULL; while (i == TOKEN_DBL_XOR) { i = scan(scpriv, tokval); f = rexp2(critical); if (!f) return NULL; if (!(is_simple(e) || is_just_unknown(e)) || !(is_simple(f) || is_just_unknown(f))) { nasm_error(ERR_NONFATAL, "`^' operator may only be applied to" " scalar values"); } if (is_just_unknown(e) || is_just_unknown(f)) e = unknown_expr(); else e = scalarvect((int64_t)(!reloc_value(e) ^ !reloc_value(f))); } return e; }
static expr *rexp3(int critical) { expr *e, *f; int64_t v; e = expr0(critical); if (!e) return NULL; while (i == TOKEN_EQ || i == TOKEN_LT || i == TOKEN_GT || i == TOKEN_NE || i == TOKEN_LE || i == TOKEN_GE) { int j = i; i = scan(scpriv, tokval); f = expr0(critical); if (!f) return NULL; e = add_vectors(e, scalar_mult(f, -1L, false)); switch (j) { case TOKEN_EQ: case TOKEN_NE: if (is_unknown(e)) v = -1; /* means unknown */ else if (!is_really_simple(e) || reloc_value(e) != 0) v = (j == TOKEN_NE); /* unequal, so return true if NE */ else v = (j == TOKEN_EQ); /* equal, so return true if EQ */ break; default: if (is_unknown(e)) v = -1; /* means unknown */ else if (!is_really_simple(e)) { nasm_error(ERR_NONFATAL, "`%s': operands differ by a non-scalar", (j == TOKEN_LE ? "<=" : j == TOKEN_LT ? "<" : j == TOKEN_GE ? ">=" : ">")); v = 0; /* must set it to _something_ */ } else { int64_t vv = reloc_value(e); if (vv == 0) v = (j == TOKEN_LE || j == TOKEN_GE); else if (vv > 0) v = (j == TOKEN_GE || j == TOKEN_GT); else /* vv < 0 */ v = (j == TOKEN_LE || j == TOKEN_LT); } break; } if (v == -1) e = unknown_expr(); else e = scalarvect(v); } return e; }
insn *parse_line (int pass, char *buffer, insn *result, efunc errfunc, evalfunc evaluate, evalinfofunc einfo) { int operand; int critical; struct eval_hints hints; result->forw_ref = FALSE; error = errfunc; einfo ("", 0L, 0L); stdscan_reset(); stdscan_bufptr = buffer; i = stdscan(NULL, &tokval); result->eops = NULL; /* must do this, whatever happens */ result->operands = 0; /* must initialise this */ if (i==0) { /* blank line - ignore */ result->label = NULL; /* so, no label on it */ result->opcode = -1; /* and no instruction either */ return result; } if (i != TOKEN_ID && i != TOKEN_INSN && i != TOKEN_PREFIX && (i!=TOKEN_REG || (REG_SREG & ~reg_flags[tokval.t_integer]))) { error (ERR_NONFATAL, "label or instruction expected" " at start of line"); result->label = NULL; result->opcode = -1; return result; } if (i == TOKEN_ID) { /* there's a label here */ result->label = tokval.t_charptr; einfo (result->label, 0L, 0L); i = stdscan(NULL, &tokval); if (i == ':') { /* skip over the optional colon */ i = stdscan(NULL, &tokval); } else if (i == 0 && pass == 1) { error (ERR_WARNING|ERR_WARN_OL, "label alone on a line without a colon might be in error"); } } else /* no label; so, moving swiftly on */ result->label = NULL; if (i==0) { result->opcode = -1; /* this line contains just a label */ return result; } result->nprefix = 0; result->times = 1L; while (i == TOKEN_PREFIX || (i==TOKEN_REG && !(REG_SREG & ~reg_flags[tokval.t_integer]))) { /* * Handle special case: the TIMES prefix. */ if (i == TOKEN_PREFIX && tokval.t_integer == P_TIMES) { expr *value; i = stdscan(NULL, &tokval); value = evaluate (stdscan, NULL, &tokval, NULL, pass, error, NULL); i = tokval.t_type; if (!value) { /* but, error in evaluator */ result->opcode = -1; /* unrecoverable parse error: */ return result; /* ignore this instruction */ } if (!is_simple (value)) { error (ERR_NONFATAL, "non-constant argument supplied to TIMES"); result->times = 1L; } else { result->times = value->value; if (value->value < 0) error(ERR_NONFATAL, "TIMES value %d is negative", value->value); } } else { if (result->nprefix == MAXPREFIX) error (ERR_NONFATAL, "instruction has more than %d prefixes", MAXPREFIX); else result->prefixes[result->nprefix++] = tokval.t_integer; i = stdscan(NULL, &tokval); } } if (i != TOKEN_INSN) { if (result->nprefix > 0 && i == 0) { /* * Instruction prefixes are present, but no actual * instruction. This is allowed: at this point we * invent a notional instruction of RESB 0. */ result->opcode = I_RESB; result->operands = 1; result->oprs[0].type = IMMEDIATE; result->oprs[0].offset = 0L; result->oprs[0].segment = result->oprs[0].wrt = NO_SEG; return result; } else { error (ERR_NONFATAL, "parser: instruction expected"); result->opcode = -1; return result; } } result->opcode = tokval.t_integer; result->condition = tokval.t_inttwo; /* * RESB, RESW and RESD cannot be satisfied with incorrectly * evaluated operands, since the correct values _must_ be known * on the first pass. Hence, even in pass one, we set the * `critical' flag on calling evaluate(), so that it will bomb * out on undefined symbols. Nasty, but there's nothing we can * do about it. * * For the moment, EQU has the same difficulty, so we'll * include that. */ if (result->opcode == I_RESB || result->opcode == I_RESW || result->opcode == I_RESD || result->opcode == I_RESQ || result->opcode == I_REST || result->opcode == I_EQU) critical = pass; else critical = (pass==2 ? 2 : 0); if (result->opcode == I_DB || result->opcode == I_DW || result->opcode == I_DD || result->opcode == I_DQ || result->opcode == I_DT || result->opcode == I_INCBIN) { extop *eop, **tail = &result->eops, **fixptr; int oper_num = 0; /* * Begin to read the DB/DW/DD/DQ/DT operands. */ while (1) { i = stdscan(NULL, &tokval); if (i == 0) break; fixptr = tail; eop = *tail = nasm_malloc(sizeof(extop)); tail = &eop->next; eop->next = NULL; eop->type = EOT_NOTHING; oper_num++; if (i == TOKEN_NUM && tokval.t_charptr && is_comma_next()) { eop->type = EOT_DB_STRING; eop->stringval = tokval.t_charptr; eop->stringlen = tokval.t_inttwo; i = stdscan(NULL, &tokval); /* eat the comma */ continue; } if (i == TOKEN_FLOAT || i == '-') { long sign = +1L; if (i == '-') { char *save = stdscan_bufptr; i = stdscan(NULL, &tokval); sign = -1L; if (i != TOKEN_FLOAT) { stdscan_bufptr = save; i = tokval.t_type = '-'; } } if (i == TOKEN_FLOAT) { eop->type = EOT_DB_STRING; if (result->opcode == I_DD) eop->stringlen = 4; else if (result->opcode == I_DQ) eop->stringlen = 8; else if (result->opcode == I_DT) eop->stringlen = 10; else { error(ERR_NONFATAL, "floating-point constant" " encountered in `D%c' instruction", result->opcode == I_DW ? 'W' : 'B'); eop->type = EOT_NOTHING; } eop = nasm_realloc(eop, sizeof(extop)+eop->stringlen); tail = &eop->next; *fixptr = eop; eop->stringval = (char *)eop + sizeof(extop); if (!float_const (tokval.t_charptr, sign, (unsigned char *)eop->stringval, eop->stringlen, error)) eop->type = EOT_NOTHING; i = stdscan(NULL, &tokval); /* eat the comma */ continue; } } /* anything else */ { expr *value; value = evaluate (stdscan, NULL, &tokval, NULL, critical, error, NULL); i = tokval.t_type; if (!value) { /* error in evaluator */ result->opcode = -1;/* unrecoverable parse error: */ return result; /* ignore this instruction */ } if (is_unknown(value)) { eop->type = EOT_DB_NUMBER; eop->offset = 0; /* doesn't matter what we put */ eop->segment = eop->wrt = NO_SEG; /* likewise */ } else if (is_reloc(value)) { eop->type = EOT_DB_NUMBER; eop->offset = reloc_value(value); eop->segment = reloc_seg(value); eop->wrt = reloc_wrt(value); } else { error (ERR_NONFATAL, "operand %d: expression is not simple" " or relocatable", oper_num); } } /* * We're about to call stdscan(), which will eat the * comma that we're currently sitting on between * arguments. However, we'd better check first that it * _is_ a comma. */ if (i == 0) /* also could be EOL */ break; if (i != ',') { error (ERR_NONFATAL, "comma expected after operand %d", oper_num); result->opcode = -1;/* unrecoverable parse error: */ return result; /* ignore this instruction */ } } if (result->opcode == I_INCBIN) { /* * Correct syntax for INCBIN is that there should be * one string operand, followed by one or two numeric * operands. */ if (!result->eops || result->eops->type != EOT_DB_STRING) error (ERR_NONFATAL, "`incbin' expects a file name"); else if (result->eops->next && result->eops->next->type != EOT_DB_NUMBER) error (ERR_NONFATAL, "`incbin': second parameter is", " non-numeric"); else if (result->eops->next && result->eops->next->next && result->eops->next->next->type != EOT_DB_NUMBER) error (ERR_NONFATAL, "`incbin': third parameter is", " non-numeric"); else if (result->eops->next && result->eops->next->next && result->eops->next->next->next) error (ERR_NONFATAL, "`incbin': more than three parameters"); else return result; /* * If we reach here, one of the above errors happened. * Throw the instruction away. */ result->opcode = -1; return result; } return result; } /* right. Now we begin to parse the operands. There may be up to three * of these, separated by commas, and terminated by a zero token. */ for (operand = 0; operand < 3; operand++) { expr *value; /* used most of the time */ int mref; /* is this going to be a memory ref? */ int bracket; /* is it a [] mref, or a & mref? */ result->oprs[operand].addr_size = 0;/* have to zero this whatever */ result->oprs[operand].eaflags = 0; /* and this */ i = stdscan(NULL, &tokval); if (i == 0) break; /* end of operands: get out of here */ result->oprs[operand].type = 0; /* so far, no override */ while (i == TOKEN_SPECIAL) {/* size specifiers */ switch ((int)tokval.t_integer) { case S_BYTE: result->oprs[operand].type |= BITS8; break; case S_WORD: result->oprs[operand].type |= BITS16; break; case S_DWORD: case S_LONG: result->oprs[operand].type |= BITS32; break; case S_QWORD: result->oprs[operand].type |= BITS64; break; case S_TWORD: result->oprs[operand].type |= BITS80; break; case S_TO: result->oprs[operand].type |= TO; break; case S_FAR: result->oprs[operand].type |= FAR; break; case S_NEAR: result->oprs[operand].type |= NEAR; break; case S_SHORT: result->oprs[operand].type |= SHORT; break; } i = stdscan(NULL, &tokval); } if (i == '[' || i == '&') { /* memory reference */ mref = TRUE; bracket = (i == '['); i = stdscan(NULL, &tokval); if (i == TOKEN_SPECIAL) { /* check for address size override */ switch ((int)tokval.t_integer) { case S_NOSPLIT: result->oprs[operand].eaflags |= EAF_TIMESTWO; break; case S_BYTE: result->oprs[operand].eaflags |= EAF_BYTEOFFS; break; case S_WORD: result->oprs[operand].addr_size = 16; result->oprs[operand].eaflags |= EAF_WORDOFFS; break; case S_DWORD: case S_LONG: result->oprs[operand].addr_size = 32; result->oprs[operand].eaflags |= EAF_WORDOFFS; break; default: error (ERR_NONFATAL, "invalid size specification in" " effective address"); } i = stdscan(NULL, &tokval); } } else { /* immediate operand, or register */ mref = FALSE; bracket = FALSE; /* placate optimisers */ } value = evaluate (stdscan, NULL, &tokval, &result->forw_ref, critical, error, &hints); i = tokval.t_type; if (!value) { /* error in evaluator */ result->opcode = -1; /* unrecoverable parse error: */ return result; /* ignore this instruction */ } if (i == ':' && mref) { /* it was seg:offset */ /* * Process the segment override. */ if (value[1].type!=0 || value->value!=1 || REG_SREG & ~reg_flags[value->type]) error (ERR_NONFATAL, "invalid segment override"); else if (result->nprefix == MAXPREFIX) error (ERR_NONFATAL, "instruction has more than %d prefixes", MAXPREFIX); else result->prefixes[result->nprefix++] = value->type; i = stdscan(NULL, &tokval); /* then skip the colon */ if (i == TOKEN_SPECIAL) { /* another check for size override */ switch ((int)tokval.t_integer) { case S_WORD: result->oprs[operand].addr_size = 16; break; case S_DWORD: case S_LONG: result->oprs[operand].addr_size = 32; break; default: error (ERR_NONFATAL, "invalid size specification in" " effective address"); } i = stdscan(NULL, &tokval); } value = evaluate (stdscan, NULL, &tokval, &result->forw_ref, critical, error, &hints); i = tokval.t_type; /* and get the offset */ if (!value) { /* but, error in evaluator */ result->opcode = -1; /* unrecoverable parse error: */ return result; /* ignore this instruction */ } } if (mref && bracket) { /* find ] at the end */ if (i != ']') { error (ERR_NONFATAL, "parser: expecting ]"); do { /* error recovery again */ i = stdscan(NULL, &tokval); } while (i != 0 && i != ','); } else /* we got the required ] */ i = stdscan(NULL, &tokval); } else { /* immediate operand */ if (i != 0 && i != ',' && i != ':') { error (ERR_NONFATAL, "comma or end of line expected"); do { /* error recovery */ i = stdscan(NULL, &tokval); } while (i != 0 && i != ','); } else if (i == ':') { result->oprs[operand].type |= COLON; } } /* now convert the exprs returned from evaluate() into operand * descriptions... */ if (mref) { /* it's a memory reference */ expr *e = value; int b, i, s; /* basereg, indexreg, scale */ long o; /* offset */ b = i = -1, o = s = 0; result->oprs[operand].hintbase = hints.base; result->oprs[operand].hinttype = hints.type; if (e->type <= EXPR_REG_END) { /* this bit's a register */ if (e->value == 1) /* in fact it can be basereg */ b = e->type; else /* no, it has to be indexreg */ i = e->type, s = e->value; e++; } if (e->type && e->type <= EXPR_REG_END) {/* it's a 2nd register */ if (e->value != 1) { /* it has to be indexreg */ if (i != -1) { /* but it can't be */ error(ERR_NONFATAL, "invalid effective address"); result->opcode = -1; return result; } else i = e->type, s = e->value; } else { /* it can be basereg */ if (b != -1) /* or can it? */ i = e->type, s = 1; else b = e->type; } e++; } if (e->type != 0) { /* is there an offset? */ if (e->type <= EXPR_REG_END) {/* in fact, is there an error? */ error (ERR_NONFATAL, "invalid effective address"); result->opcode = -1; return result; } else { if (e->type == EXPR_UNKNOWN) { o = 0; /* doesn't matter what */ result->oprs[operand].wrt = NO_SEG; /* nor this */ result->oprs[operand].segment = NO_SEG; /* or this */ while (e->type) e++; /* go to the end of the line */ } else { if (e->type == EXPR_SIMPLE) { o = e->value; e++; } if (e->type == EXPR_WRT) { result->oprs[operand].wrt = e->value; e++; } else result->oprs[operand].wrt = NO_SEG; /* * Look for a segment base type. */ if (e->type && e->type < EXPR_SEGBASE) { error (ERR_NONFATAL, "invalid effective address"); result->opcode = -1; return result; } while (e->type && e->value == 0) e++; if (e->type && e->value != 1) { error (ERR_NONFATAL, "invalid effective address"); result->opcode = -1; return result; } if (e->type) { result->oprs[operand].segment = e->type - EXPR_SEGBASE; e++; } else result->oprs[operand].segment = NO_SEG; while (e->type && e->value == 0) e++; if (e->type) { error (ERR_NONFATAL, "invalid effective address"); result->opcode = -1; return result; } } } } else { o = 0; result->oprs[operand].wrt = NO_SEG; result->oprs[operand].segment = NO_SEG; } if (e->type != 0) { /* there'd better be nothing left! */ error (ERR_NONFATAL, "invalid effective address"); result->opcode = -1; return result; } result->oprs[operand].type |= MEMORY; if (b==-1 && (i==-1 || s==0)) result->oprs[operand].type |= MEM_OFFS; result->oprs[operand].basereg = b; result->oprs[operand].indexreg = i; result->oprs[operand].scale = s; result->oprs[operand].offset = o; } else { /* it's not a memory reference */ if (is_just_unknown(value)) { /* it's immediate but unknown */ result->oprs[operand].type |= IMMEDIATE; result->oprs[operand].offset = 0; /* don't care */ result->oprs[operand].segment = NO_SEG; /* don't care again */ result->oprs[operand].wrt = NO_SEG;/* still don't care */ } else if (is_reloc(value)) { /* it's immediate */ result->oprs[operand].type |= IMMEDIATE; result->oprs[operand].offset = reloc_value(value); result->oprs[operand].segment = reloc_seg(value); result->oprs[operand].wrt = reloc_wrt(value); if (is_simple(value) && reloc_value(value)==1) result->oprs[operand].type |= UNITY; } else { /* it's a register */ if (value->type>=EXPR_SIMPLE || value->value!=1) { error (ERR_NONFATAL, "invalid operand type"); result->opcode = -1; return result; } /* clear overrides, except TO which applies to FPU regs */ result->oprs[operand].type &= TO; result->oprs[operand].type |= REGISTER; result->oprs[operand].type |= reg_flags[value->type]; result->oprs[operand].basereg = value->type; } } } result->operands = operand; /* set operand count */ while (operand<3) /* clear remaining operands */ result->oprs[operand++].type = 0; /* * Transform RESW, RESD, RESQ, REST into RESB. */ switch (result->opcode) { case I_RESW: result->opcode=I_RESB; result->oprs[0].offset*=2; break; case I_RESD: result->opcode=I_RESB; result->oprs[0].offset*=4; break; case I_RESQ: result->opcode=I_RESB; result->oprs[0].offset*=8; break; case I_REST: result->opcode=I_RESB; result->oprs[0].offset*=10; break; } return result; }
static void elf_deflabel(char *name, long segment, long offset, int is_global, char *special) { int pos = strslen; struct Symbol *sym; int special_used = FALSE; #if defined(DEBUG) && DEBUG>2 fprintf(stderr, " elf_deflabel: %s, seg=%ld, off=%ld, is_global=%d, %s\n", name, segment, offset, is_global, special); #endif if (name[0] == '.' && name[1] == '.' && name[2] != '@') { /* * This is a NASM special symbol. We never allow it into * the ELF symbol table, even if it's a valid one. If it * _isn't_ a valid one, we should barf immediately. */ if (strcmp(name, "..gotpc") && strcmp(name, "..gotoff") && strcmp(name, "..got") && strcmp(name, "..plt") && strcmp(name, "..sym")) error(ERR_NONFATAL, "unrecognised special symbol `%s'", name); return; } if (is_global == 3) { struct Symbol **s; /* * Fix up a forward-reference symbol size from the first * pass. */ for (s = &fwds; *s; s = &(*s)->nextfwd) if (!strcmp((*s)->name, name)) { struct tokenval tokval; expr *e; char *p = special; while (*p && !isspace(*p)) p++; while (*p && isspace(*p)) p++; stdscan_reset(); stdscan_bufptr = p; tokval.t_type = TOKEN_INVALID; e = evaluate(stdscan, NULL, &tokval, NULL, 1, error, NULL); if (e) { if (!is_simple(e)) error(ERR_NONFATAL, "cannot use relocatable" " expression as symbol size"); else (*s)->size = reloc_value(e); } /* * Remove it from the list of unresolved sizes. */ nasm_free((*s)->name); *s = (*s)->nextfwd; return; } return; /* it wasn't an important one */ } saa_wbytes(strs, name, (long)(1 + strlen(name))); strslen += 1 + strlen(name); sym = saa_wstruct(syms); sym->strpos = pos; sym->type = is_global ? SYM_GLOBAL : 0; sym->size = 0; if (segment == NO_SEG) sym->section = SHN_ABS; else { int i; sym->section = SHN_UNDEF; if (nsects == 0 && segment == def_seg) { int tempint; if (segment != elf_section_names(".text", 2, &tempint)) error(ERR_PANIC, "strange segment conditions in ELF driver"); sym->section = nsects; } else { for (i = 0; i < nsects; i++) if (segment == sects[i]->index) { sym->section = i + 1; break; } } } if (is_global == 2) { sym->size = offset; sym->value = 0; sym->section = SHN_COMMON; /* * We have a common variable. Check the special text to see * if it's a valid number and power of two; if so, store it * as the alignment for the common variable. */ if (special) { int err; sym->value = readnum(special, &err); if (err) error(ERR_NONFATAL, "alignment constraint `%s' is not a" " valid number", special); else if ((sym->value | (sym->value - 1)) != 2 * sym->value - 1) error(ERR_NONFATAL, "alignment constraint `%s' is not a" " power of two", special); } special_used = TRUE; } else sym->value = (sym->section == SHN_UNDEF ? 0 : offset); if (sym->type == SYM_GLOBAL) { /* * There's a problem here that needs fixing. * If sym->section == SHN_ABS, then the first line of the * else section causes a core dump, because its a reference * beyond the end of the section array. * This behaviour is exhibited by this code: * GLOBAL crash_nasm * crash_nasm equ 0 * * I'm not sure how to procede, because I haven't got the * first clue about how ELF works, so I don't know what to * do with it. Furthermore, I'm not sure what the rest of this * section of code does. Help? * * For now, I'll see if doing absolutely nothing with it will * work... */ if (sym->section == SHN_UNDEF || sym->section == SHN_COMMON) { bsym = raa_write(bsym, segment, nglobs); } else if (sym->section != SHN_ABS) { /* * This is a global symbol; so we must add it to the linked * list of global symbols in its section. We'll push it on * the beginning of the list, because it doesn't matter * much which end we put it on and it's easier like this. * * In addition, we check the special text for symbol * type and size information. */ sym->next = sects[sym->section - 1]->gsyms; sects[sym->section - 1]->gsyms = sym; if (special) { int n = strcspn(special, " "); if (!nasm_strnicmp(special, "function", n)) sym->type |= SYM_FUNCTION; else if (!nasm_strnicmp(special, "data", n) || !nasm_strnicmp(special, "object", n)) sym->type |= SYM_DATA; else error(ERR_NONFATAL, "unrecognised symbol type `%.*s'", n, special); if (special[n]) { struct tokenval tokval; expr *e; int fwd = FALSE; char *saveme = stdscan_bufptr; /* bugfix? fbk 8/10/00 */ while (special[n] && isspace(special[n])) n++; /* * We have a size expression; attempt to * evaluate it. */ stdscan_reset(); stdscan_bufptr = special + n; tokval.t_type = TOKEN_INVALID; e = evaluate(stdscan, NULL, &tokval, &fwd, 0, error, NULL); if (fwd) { sym->nextfwd = fwds; fwds = sym; sym->name = nasm_strdup(name); } else if (e) { if (!is_simple(e)) error(ERR_NONFATAL, "cannot use relocatable" " expression as symbol size"); else sym->size = reloc_value(e); } stdscan_bufptr = saveme; /* bugfix? fbk 8/10/00 */ } special_used = TRUE; } } sym->globnum = nglobs; nglobs++; } else nlocals++; if (special && !special_used) error(ERR_NONFATAL, "no special symbol features supported here"); }
insn *parse_line(char *buffer, insn *result) { int pass = 1; /* This used to be an argument. it's hardcoded now because we always want it as 1 */ bool insn_is_label = false; struct eval_hints hints; int operand; int critical; bool first; bool recover; int j; restart_parse: first = true; result->forw_ref = false; stdscan_reset(); stdscan_set(buffer); i = stdscan(NULL, &tokval); result->label = NULL; /* Assume no label */ result->eops = NULL; /* must do this, whatever happens */ result->operands = 0; /* must initialize this */ /* Ignore blank lines */ if (i == TOKEN_EOS) { result->opcode = I_none; return result; } if (i != TOKEN_ID && i != TOKEN_INSN && i != TOKEN_PREFIX && (i != TOKEN_REG || !IS_SREG(tokval.t_integer))) { nasm_error(ERR_NONFATAL, "label or instruction expected at start of line"); result->opcode = I_none; return result; } if (i == TOKEN_ID || (insn_is_label && i == TOKEN_INSN)) { /* there's a label here */ first = false; result->label = tokval.t_charptr; i = stdscan(NULL, &tokval); if (i == ':') { /* skip over the optional colon */ i = stdscan(NULL, &tokval); } else if (i == 0) { nasm_error(ERR_WARNING | ERR_WARN_OL | ERR_PASS1, "label alone on a line without a colon might be in error"); } } /* Just a label here */ if (i == TOKEN_EOS) { result->opcode = I_none; return result; } for (j = 0; j < MAXPREFIX; j++) result->prefixes[j] = P_none; result->times = 1L; while (i == TOKEN_PREFIX || (i == TOKEN_REG && IS_SREG(tokval.t_integer))) { first = false; /* * Handle special case: the TIMES prefix. */ if (i == TOKEN_PREFIX && tokval.t_integer == P_TIMES) { expr *value; i = stdscan(NULL, &tokval); value = evaluate(stdscan, NULL, &tokval, NULL, pass0, nasm_error, NULL); i = tokval.t_type; if (!value) { /* but, error in evaluator */ result->opcode = I_none; /* unrecoverable parse error: */ return result; /* ignore this instruction */ } if (!is_simple(value)) { nasm_error(ERR_NONFATAL, "non-constant argument supplied to TIMES"); result->times = 1L; } else { result->times = value->value; if (value->value < 0 && pass0 == 2) { nasm_error(ERR_NONFATAL, "TIMES value %"PRId64" is negative", value->value); result->times = 0; } } } else { int slot = prefix_slot(tokval.t_integer); if (result->prefixes[slot]) { if (result->prefixes[slot] == tokval.t_integer) nasm_error(ERR_WARNING | ERR_PASS1, "instruction has redundant prefixes"); else nasm_error(ERR_NONFATAL, "instruction has conflicting prefixes"); } result->prefixes[slot] = tokval.t_integer; i = stdscan(NULL, &tokval); } } if (i != TOKEN_INSN) { int j; enum prefixes pfx; for (j = 0; j < MAXPREFIX; j++) { if ((pfx = result->prefixes[j]) != P_none) break; } if (i == 0 && pfx != P_none) { /* * Instruction prefixes are present, but no actual * instruction. This is allowed: at this point we * invent a notional instruction of RESB 0. */ result->opcode = I_RESB; result->operands = 1; result->oprs[0].type = IMMEDIATE; result->oprs[0].offset = 0L; result->oprs[0].segment = result->oprs[0].wrt = NO_SEG; return result; } else { nasm_error(ERR_NONFATAL, "parser: instruction expected"); result->opcode = I_none; return result; } } result->opcode = tokval.t_integer; result->condition = tokval.t_inttwo; /* * INCBIN cannot be satisfied with incorrectly * evaluated operands, since the correct values _must_ be known * on the first pass. Hence, even in pass one, we set the * `critical' flag on calling evaluate(), so that it will bomb * out on undefined symbols. */ if (result->opcode == I_INCBIN) { critical = (pass0 < 2 ? 1 : 2); } else critical = (pass == 2 ? 2 : 0); if (result->opcode == I_DB || result->opcode == I_DW || result->opcode == I_DD || result->opcode == I_DQ || result->opcode == I_DT || result->opcode == I_DO || result->opcode == I_DY || result->opcode == I_INCBIN) { extop *eop, **tail = &result->eops, **fixptr; int oper_num = 0; int32_t sign; result->eops_float = false; /* * Begin to read the DB/DW/DD/DQ/DT/DO/INCBIN operands. */ while (1) { i = stdscan(NULL, &tokval); if (i == TOKEN_EOS) break; else if (first && i == ':') { insn_is_label = true; goto restart_parse; } first = false; fixptr = tail; eop = *tail = nasm_malloc(sizeof(extop)); tail = &eop->next; eop->next = NULL; eop->type = EOT_NOTHING; oper_num++; sign = +1; /* * is_comma_next() here is to distinguish this from * a string used as part of an expression... */ if (i == TOKEN_STR && is_comma_next()) { eop->type = EOT_DB_STRING; eop->stringval = tokval.t_charptr; eop->stringlen = tokval.t_inttwo; i = stdscan(NULL, &tokval); /* eat the comma */ } else if (i == TOKEN_STRFUNC) { bool parens = false; const char *funcname = tokval.t_charptr; enum strfunc func = tokval.t_integer; i = stdscan(NULL, &tokval); if (i == '(') { parens = true; i = stdscan(NULL, &tokval); } if (i != TOKEN_STR) { nasm_error(ERR_NONFATAL, "%s must be followed by a string constant", funcname); eop->type = EOT_NOTHING; } else { eop->type = EOT_DB_STRING_FREE; eop->stringlen = string_transform(tokval.t_charptr, tokval.t_inttwo, &eop->stringval, func); if (eop->stringlen == (size_t)-1) { nasm_error(ERR_NONFATAL, "invalid string for transform"); eop->type = EOT_NOTHING; } } if (parens && i && i != ')') { i = stdscan(NULL, &tokval); if (i != ')') { nasm_error(ERR_NONFATAL, "unterminated %s function", funcname); } } if (i && i != ',') i = stdscan(NULL, &tokval); } else if (i == '-' || i == '+') { char *save = stdscan_get(); int token = i; sign = (i == '-') ? -1 : 1; i = stdscan(NULL, &tokval); if (i != TOKEN_FLOAT) { stdscan_set(save); i = tokval.t_type = token; goto is_expression; } else { goto is_float; } } else if (i == TOKEN_FLOAT) { is_float: eop->type = EOT_DB_STRING; result->eops_float = true; eop->stringlen = idata_bytes(result->opcode); if (eop->stringlen > 16) { nasm_error(ERR_NONFATAL, "floating-point constant" " encountered in DY instruction"); eop->stringlen = 0; } else if (eop->stringlen < 1) { nasm_error(ERR_NONFATAL, "floating-point constant" " encountered in unknown instruction"); /* * fix suggested by Pedro Gimeno... original line was: * eop->type = EOT_NOTHING; */ eop->stringlen = 0; } eop = nasm_realloc(eop, sizeof(extop) + eop->stringlen); tail = &eop->next; *fixptr = eop; eop->stringval = (char *)eop + sizeof(extop); if (!eop->stringlen || !float_const(tokval.t_charptr, sign, (uint8_t *)eop->stringval, eop->stringlen, nasm_error)) eop->type = EOT_NOTHING; i = stdscan(NULL, &tokval); /* eat the comma */ } else { /* anything else, assume it is an expression */ expr *value; is_expression: value = evaluate(stdscan, NULL, &tokval, NULL, critical, nasm_error, NULL); i = tokval.t_type; if (!value) { /* error in evaluator */ result->opcode = I_none; /* unrecoverable parse error: */ return result; /* ignore this instruction */ } if (is_unknown(value)) { eop->type = EOT_DB_NUMBER; eop->offset = 0; /* doesn't matter what we put */ eop->segment = eop->wrt = NO_SEG; /* likewise */ } else if (is_reloc(value)) { eop->type = EOT_DB_NUMBER; eop->offset = reloc_value(value); eop->segment = reloc_seg(value); eop->wrt = reloc_wrt(value); } else { nasm_error(ERR_NONFATAL, "operand %d: expression is not simple" " or relocatable", oper_num); } } /* * We're about to call stdscan(), which will eat the * comma that we're currently sitting on between * arguments. However, we'd better check first that it * _is_ a comma. */ if (i == TOKEN_EOS) /* also could be EOL */ break; if (i != ',') { nasm_error(ERR_NONFATAL, "comma expected after operand %d", oper_num); result->opcode = I_none;/* unrecoverable parse error: */ return result; /* ignore this instruction */ } } if (result->opcode == I_INCBIN) { /* * Correct syntax for INCBIN is that there should be * one string operand, followed by one or two numeric * operands. */ if (!result->eops || result->eops->type != EOT_DB_STRING) nasm_error(ERR_NONFATAL, "`incbin' expects a file name"); else if (result->eops->next && result->eops->next->type != EOT_DB_NUMBER) nasm_error(ERR_NONFATAL, "`incbin': second parameter is" " non-numeric"); else if (result->eops->next && result->eops->next->next && result->eops->next->next->type != EOT_DB_NUMBER) nasm_error(ERR_NONFATAL, "`incbin': third parameter is" " non-numeric"); else if (result->eops->next && result->eops->next->next && result->eops->next->next->next) nasm_error(ERR_NONFATAL, "`incbin': more than three parameters"); else return result; /* * If we reach here, one of the above errors happened. * Throw the instruction away. */ result->opcode = I_none; return result; } else /* DB ... */ if (oper_num == 0) nasm_error(ERR_WARNING | ERR_PASS1, "no operand for data declaration"); else result->operands = oper_num; return result; } /* * Now we begin to parse the operands. There may be up to four * of these, separated by commas, and terminated by a zero token. */ for (operand = 0; operand < MAX_OPERANDS; operand++) { expr *value; /* used most of the time */ int mref; /* is this going to be a memory ref? */ int bracket; /* is it a [] mref, or a & mref? */ int setsize = 0; result->oprs[operand].disp_size = 0; /* have to zero this whatever */ result->oprs[operand].eaflags = 0; /* and this */ result->oprs[operand].opflags = 0; i = stdscan(NULL, &tokval); if (i == TOKEN_EOS) break; /* end of operands: get out of here */ else if (first && i == ':') { insn_is_label = true; goto restart_parse; } first = false; result->oprs[operand].type = 0; /* so far, no override */ while (i == TOKEN_SPECIAL) { /* size specifiers */ switch ((int)tokval.t_integer) { case S_BYTE: if (!setsize) /* we want to use only the first */ result->oprs[operand].type |= BITS8; setsize = 1; break; case S_WORD: if (!setsize) result->oprs[operand].type |= BITS16; setsize = 1; break; case S_DWORD: case S_LONG: if (!setsize) result->oprs[operand].type |= BITS32; setsize = 1; break; case S_QWORD: if (!setsize) result->oprs[operand].type |= BITS64; setsize = 1; break; case S_TWORD: if (!setsize) result->oprs[operand].type |= BITS80; setsize = 1; break; case S_OWORD: if (!setsize) result->oprs[operand].type |= BITS128; setsize = 1; break; case S_YWORD: if (!setsize) result->oprs[operand].type |= BITS256; setsize = 1; break; case S_TO: result->oprs[operand].type |= TO; break; case S_STRICT: result->oprs[operand].type |= STRICT; break; case S_FAR: result->oprs[operand].type |= FAR; break; case S_NEAR: result->oprs[operand].type |= NEAR; break; case S_SHORT: result->oprs[operand].type |= SHORT; break; default: nasm_error(ERR_NONFATAL, "invalid operand size specification"); } i = stdscan(NULL, &tokval); } if (i == '[' || i == '&') { /* memory reference */ mref = true; bracket = (i == '['); i = stdscan(NULL, &tokval); /* then skip the colon */ while (i == TOKEN_SPECIAL || i == TOKEN_PREFIX) { process_size_override(result, operand); i = stdscan(NULL, &tokval); } } else { /* immediate operand, or register */ mref = false; bracket = false; /* placate optimisers */ } if ((result->oprs[operand].type & FAR) && !mref && result->opcode != I_JMP && result->opcode != I_CALL) { nasm_error(ERR_NONFATAL, "invalid use of FAR operand specifier"); } value = evaluate(stdscan, NULL, &tokval, &result->oprs[operand].opflags, critical, nasm_error, &hints); i = tokval.t_type; if (result->oprs[operand].opflags & OPFLAG_FORWARD) { result->forw_ref = true; } if (!value) { /* nasm_error in evaluator */ result->opcode = I_none; /* unrecoverable parse error: */ return result; /* ignore this instruction */ } if (i == ':' && mref) { /* it was seg:offset */ /* * Process the segment override. */ if (value[1].type != 0 || value->value != 1 || !IS_SREG(value->type)) nasm_error(ERR_NONFATAL, "invalid segment override"); else if (result->prefixes[PPS_SEG]) nasm_error(ERR_NONFATAL, "instruction has conflicting segment overrides"); else { result->prefixes[PPS_SEG] = value->type; if (IS_FSGS(value->type)) result->oprs[operand].eaflags |= EAF_FSGS; } i = stdscan(NULL, &tokval); /* then skip the colon */ while (i == TOKEN_SPECIAL || i == TOKEN_PREFIX) { process_size_override(result, operand); i = stdscan(NULL, &tokval); } value = evaluate(stdscan, NULL, &tokval, &result->oprs[operand].opflags, critical, nasm_error, &hints); i = tokval.t_type; if (result->oprs[operand].opflags & OPFLAG_FORWARD) { result->forw_ref = true; } /* and get the offset */ if (!value) { /* but, error in evaluator */ result->opcode = I_none; /* unrecoverable parse error: */ return result; /* ignore this instruction */ } } recover = false; if (mref && bracket) { /* find ] at the end */ if (i != ']') { nasm_error(ERR_NONFATAL, "parser: expecting ]"); recover = true; } else { /* we got the required ] */ i = stdscan(NULL, &tokval); if (i != 0 && i != ',') { nasm_error(ERR_NONFATAL, "comma or end of line expected"); recover = true; } } } else { /* immediate operand */ if (i != 0 && i != ',' && i != ':') { nasm_error(ERR_NONFATAL, "comma, colon or end of line expected"); recover = true; } else if (i == ':') { result->oprs[operand].type |= COLON; } } if (recover) { do { /* error recovery */ i = stdscan(NULL, &tokval); } while (i != 0 && i != ','); } /* * now convert the exprs returned from evaluate() * into operand descriptions... */ if (mref) { /* it's a memory reference */ expr *e = value; int b, i, s; /* basereg, indexreg, scale */ int64_t o; /* offset */ b = i = -1, o = s = 0; result->oprs[operand].hintbase = hints.base; result->oprs[operand].hinttype = hints.type; if (e->type && e->type <= EXPR_REG_END) { /* this bit's a register */ if (e->value == 1) /* in fact it can be basereg */ b = e->type; else /* no, it has to be indexreg */ i = e->type, s = e->value; e++; } if (e->type && e->type <= EXPR_REG_END) { /* it's a 2nd register */ if (b != -1) /* If the first was the base, ... */ i = e->type, s = e->value; /* second has to be indexreg */ else if (e->value != 1) { /* If both want to be index */ nasm_error(ERR_NONFATAL, "beroset-p-592-invalid effective address"); result->opcode = I_none; return result; } else b = e->type; e++; } if (e->type != 0) { /* is there an offset? */ if (e->type <= EXPR_REG_END) { /* in fact, is there an error? */ nasm_error(ERR_NONFATAL, "beroset-p-603-invalid effective address"); result->opcode = I_none; return result; } else { if (e->type == EXPR_UNKNOWN) { result->oprs[operand].opflags |= OPFLAG_UNKNOWN; o = 0; /* doesn't matter what */ result->oprs[operand].wrt = NO_SEG; /* nor this */ result->oprs[operand].segment = NO_SEG; /* or this */ while (e->type) e++; /* go to the end of the line */ } else { if (e->type == EXPR_SIMPLE) { o = e->value; e++; } if (e->type == EXPR_WRT) { result->oprs[operand].wrt = e->value; e++; } else result->oprs[operand].wrt = NO_SEG; /* * Look for a segment base type. */ if (e->type && e->type < EXPR_SEGBASE) { nasm_error(ERR_NONFATAL, "beroset-p-630-invalid effective address"); result->opcode = I_none; return result; } while (e->type && e->value == 0) e++; if (e->type && e->value != 1) { nasm_error(ERR_NONFATAL, "beroset-p-637-invalid effective address"); result->opcode = I_none; return result; } if (e->type) { result->oprs[operand].segment = e->type - EXPR_SEGBASE; e++; } else result->oprs[operand].segment = NO_SEG; while (e->type && e->value == 0) e++; if (e->type) { nasm_error(ERR_NONFATAL, "beroset-p-650-invalid effective address"); result->opcode = I_none; return result; } } } } else { o = 0; result->oprs[operand].wrt = NO_SEG; result->oprs[operand].segment = NO_SEG; } if (e->type != 0) { /* there'd better be nothing left! */ nasm_error(ERR_NONFATAL, "beroset-p-663-invalid effective address"); result->opcode = I_none; return result; } /* It is memory, but it can match any r/m operand */ result->oprs[operand].type |= MEMORY_ANY; if (b == -1 && (i == -1 || s == 0)) { int is_rel = globalbits == 64 && !(result->oprs[operand].eaflags & EAF_ABS) && ((globalrel && !(result->oprs[operand].eaflags & EAF_FSGS)) || (result->oprs[operand].eaflags & EAF_REL)); result->oprs[operand].type |= is_rel ? IP_REL : MEM_OFFS; } result->oprs[operand].basereg = b; result->oprs[operand].indexreg = i; result->oprs[operand].scale = s; result->oprs[operand].offset = o; } else { /* it's not a memory reference */ if (is_just_unknown(value)) { /* it's immediate but unknown */ result->oprs[operand].type |= IMMEDIATE; result->oprs[operand].opflags |= OPFLAG_UNKNOWN; result->oprs[operand].offset = 0; /* don't care */ result->oprs[operand].segment = NO_SEG; /* don't care again */ result->oprs[operand].wrt = NO_SEG; /* still don't care */ if(optimizing >= 0 && !(result->oprs[operand].type & STRICT)) { /* Be optimistic */ result->oprs[operand].type |= SBYTE16 | SBYTE32 | SBYTE64 | UDWORD64 | SDWORD64; } } else if (is_reloc(value)) { /* it's immediate */ result->oprs[operand].type |= IMMEDIATE; result->oprs[operand].offset = reloc_value(value); result->oprs[operand].segment = reloc_seg(value); result->oprs[operand].wrt = reloc_wrt(value); if (is_simple(value)) { if (reloc_value(value) == 1) result->oprs[operand].type |= UNITY; if (optimizing >= 0 && !(result->oprs[operand].type & STRICT)) { int64_t v64 = reloc_value(value); int32_t v32 = (int32_t)v64; int16_t v16 = (int16_t)v32; if (v64 >= -128 && v64 <= 127) result->oprs[operand].type |= SBYTE64; if (v32 >= -128 && v32 <= 127) result->oprs[operand].type |= SBYTE32; if (v16 >= -128 && v16 <= 127) result->oprs[operand].type |= SBYTE16; if ((uint64_t)v64 <= UINT64_C(0xffffffff)) result->oprs[operand].type |= UDWORD64; if (v64 >= -INT64_C(0x80000000) && v64 <= INT64_C(0x7fffffff)) result->oprs[operand].type |= SDWORD64; } } } else { /* it's a register */ unsigned int rs; if (value->type >= EXPR_SIMPLE || value->value != 1) { nasm_error(ERR_NONFATAL, "invalid operand type"); result->opcode = I_none; return result; } /* * check that its only 1 register, not an expression... */ for (i = 1; value[i].type; i++) if (value[i].value) { nasm_error(ERR_NONFATAL, "invalid operand type"); result->opcode = I_none; return result; } /* clear overrides, except TO which applies to FPU regs */ if (result->oprs[operand].type & ~TO) { /* * we want to produce a warning iff the specified size * is different from the register size */ rs = result->oprs[operand].type & SIZE_MASK; } else rs = 0; result->oprs[operand].type &= TO; result->oprs[operand].type |= REGISTER; result->oprs[operand].type |= nasm_reg_flags[value->type]; result->oprs[operand].basereg = value->type; if (rs && (result->oprs[operand].type & SIZE_MASK) != rs) nasm_error(ERR_WARNING | ERR_PASS1, "register size specification ignored"); } } } result->operands = operand; /* set operand count */ /* clear remaining operands */ while (operand < MAX_OPERANDS) result->oprs[operand++].type = 0; /* * Transform RESW, RESD, RESQ, REST, RESO, RESY into RESB. */ switch (result->opcode) { case I_RESW: result->opcode = I_RESB; result->oprs[0].offset *= 2; break; case I_RESD: result->opcode = I_RESB; result->oprs[0].offset *= 4; break; case I_RESQ: result->opcode = I_RESB; result->oprs[0].offset *= 8; break; case I_REST: result->opcode = I_RESB; result->oprs[0].offset *= 10; break; case I_RESO: result->opcode = I_RESB; result->oprs[0].offset *= 16; break; case I_RESY: result->opcode = I_RESB; result->oprs[0].offset *= 32; break; default: break; } return result; }
static void aout_deflabel (char *name, long segment, long offset, int is_global, char *special) { int pos = strslen+4; struct Symbol *sym; int special_used = FALSE; if (name[0] == '.' && name[1] == '.' && name[2] != '@') { /* * This is a NASM special symbol. We never allow it into * the a.out symbol table, even if it's a valid one. If it * _isn't_ a valid one, we should barf immediately. */ if (strcmp(name, "..gotpc") && strcmp(name, "..gotoff") && strcmp(name, "..got") && strcmp(name, "..plt") && strcmp(name, "..sym")) error (ERR_NONFATAL, "unrecognised special symbol `%s'", name); return; } if (is_global == 3) { struct Symbol **s; /* * Fix up a forward-reference symbol size from the first * pass. */ for (s = &fwds; *s; s = &(*s)->nextfwd) if (!strcmp((*s)->name, name)) { struct tokenval tokval; expr *e; char *p = special; while (*p && !isspace(*p)) p++; while (*p && isspace(*p)) p++; stdscan_reset(); stdscan_bufptr = p; tokval.t_type = TOKEN_INVALID; e = evaluate(stdscan, NULL, &tokval, NULL, 1, error, NULL); if (e) { if (!is_simple(e)) error (ERR_NONFATAL, "cannot use relocatable" " expression as symbol size"); else (*s)->size = reloc_value(e); } /* * Remove it from the list of unresolved sizes. */ nasm_free ((*s)->name); *s = (*s)->nextfwd; return; } return; /* it wasn't an important one */ } saa_wbytes (strs, name, (long)(1+strlen(name))); strslen += 1+strlen(name); sym = saa_wstruct (syms); sym->strpos = pos; sym->type = is_global ? SYM_GLOBAL : 0; sym->segment = segment; if (segment == NO_SEG) sym->type |= SECT_ABS; else if (segment == stext.index) { sym->type |= SECT_TEXT; if (is_global) { sym->next = stext.gsyms; stext.gsyms = sym; } else if (!stext.asym) stext.asym = sym; } else if (segment == sdata.index) { sym->type |= SECT_DATA; if (is_global) { sym->next = sdata.gsyms; sdata.gsyms = sym; } else if (!sdata.asym) sdata.asym = sym; } else if (segment == sbss.index) { sym->type |= SECT_BSS; if (is_global) { sym->next = sbss.gsyms; sbss.gsyms = sym; } else if (!sbss.asym) sbss.asym = sym; } else sym->type = SYM_GLOBAL; if (is_global == 2) sym->value = offset; else sym->value = (sym->type == SYM_GLOBAL ? 0 : offset); if (is_global && sym->type != SYM_GLOBAL) { /* * Global symbol exported _from_ this module. We must check * the special text for type information. */ if (special) { int n = strcspn(special, " "); if (!nasm_strnicmp(special, "function", n)) sym->type |= SYM_FUNCTION; else if (!nasm_strnicmp(special, "data", n) || !nasm_strnicmp(special, "object", n)) sym->type |= SYM_DATA; else error(ERR_NONFATAL, "unrecognised symbol type `%.*s'", n, special); if (special[n]) { struct tokenval tokval; expr *e; int fwd = FALSE; char *saveme=stdscan_bufptr; /* bugfix? fbk 8/10/00 */ if (!bsd) { error(ERR_NONFATAL, "Linux a.out does not support" " symbol size information"); } else { while (special[n] && isspace(special[n])) n++; /* * We have a size expression; attempt to * evaluate it. */ sym->type |= SYM_WITH_SIZE; stdscan_reset(); stdscan_bufptr = special+n; tokval.t_type = TOKEN_INVALID; e = evaluate(stdscan, NULL, &tokval, &fwd, 0, error, NULL); if (fwd) { sym->nextfwd = fwds; fwds = sym; sym->name = nasm_strdup(name); } else if (e) { if (!is_simple(e)) error (ERR_NONFATAL, "cannot use relocatable" " expression as symbol size"); else sym->size = reloc_value(e); } } stdscan_bufptr=saveme; /* bugfix? fbk 8/10/00 */ } special_used = TRUE; } } /* * define the references from external-symbol segment numbers * to these symbol records. */ if (segment != NO_SEG && segment != stext.index && segment != sdata.index && segment != sbss.index) bsym = raa_write (bsym, segment, nsyms); sym->symnum = nsyms; nsyms++; if (sym->type & SYM_WITH_SIZE) nsyms++; /* and another for the size */ if (special && !special_used) error(ERR_NONFATAL, "no special symbol features supported here"); }
insn *parse_line(int pass, char *buffer, insn *result, ldfunc ldef) { bool insn_is_label = false; struct eval_hints hints; int opnum; int critical; bool first; bool recover; restart_parse: first = true; result->forw_ref = false; stdscan_reset(); stdscan_set(buffer); i = stdscan(NULL, &tokval); result->label = NULL; /* Assume no label */ result->eops = NULL; /* must do this, whatever happens */ result->operands = 0; /* must initialize this */ result->evex_rm = 0; /* Ensure EVEX rounding mode is reset */ result->evex_brerop = -1; /* Reset EVEX broadcasting/ER op position */ /* Ignore blank lines */ if (i == TOKEN_EOS) goto fail; if (i != TOKEN_ID && i != TOKEN_INSN && i != TOKEN_PREFIX && (i != TOKEN_REG || !IS_SREG(tokval.t_integer))) { nasm_error(ERR_NONFATAL, "label or instruction expected at start of line"); goto fail; } if (i == TOKEN_ID || (insn_is_label && i == TOKEN_INSN)) { /* there's a label here */ first = false; result->label = tokval.t_charptr; i = stdscan(NULL, &tokval); if (i == ':') { /* skip over the optional colon */ i = stdscan(NULL, &tokval); } else if (i == 0) { nasm_error(ERR_WARNING | ERR_WARN_OL | ERR_PASS1, "label alone on a line without a colon might be in error"); } if (i != TOKEN_INSN || tokval.t_integer != I_EQU) { /* * FIXME: location->segment could be NO_SEG, in which case * it is possible we should be passing 'abs_seg'. Look into this. * Work out whether that is *really* what we should be doing. * Generally fix things. I think this is right as it is, but * am still not certain. */ ldef(result->label, in_abs_seg ? abs_seg : location->segment, location->offset, NULL, true, false); } } /* Just a label here */ if (i == TOKEN_EOS) goto fail; nasm_build_assert(P_none != 0); memset(result->prefixes, P_none, sizeof(result->prefixes)); result->times = 1L; while (i == TOKEN_PREFIX || (i == TOKEN_REG && IS_SREG(tokval.t_integer))) { first = false; /* * Handle special case: the TIMES prefix. */ if (i == TOKEN_PREFIX && tokval.t_integer == P_TIMES) { expr *value; i = stdscan(NULL, &tokval); value = evaluate(stdscan, NULL, &tokval, NULL, pass0, nasm_error, NULL); i = tokval.t_type; if (!value) /* Error in evaluator */ goto fail; if (!is_simple(value)) { nasm_error(ERR_NONFATAL, "non-constant argument supplied to TIMES"); result->times = 1L; } else { result->times = value->value; if (value->value < 0 && pass0 == 2) { nasm_error(ERR_NONFATAL, "TIMES value %"PRId64" is negative", value->value); result->times = 0; } } } else { int slot = prefix_slot(tokval.t_integer); if (result->prefixes[slot]) { if (result->prefixes[slot] == tokval.t_integer) nasm_error(ERR_WARNING | ERR_PASS1, "instruction has redundant prefixes"); else nasm_error(ERR_NONFATAL, "instruction has conflicting prefixes"); } result->prefixes[slot] = tokval.t_integer; i = stdscan(NULL, &tokval); } } if (i != TOKEN_INSN) { int j; enum prefixes pfx; for (j = 0; j < MAXPREFIX; j++) { if ((pfx = result->prefixes[j]) != P_none) break; } if (i == 0 && pfx != P_none) { /* * Instruction prefixes are present, but no actual * instruction. This is allowed: at this point we * invent a notional instruction of RESB 0. */ result->opcode = I_RESB; result->operands = 1; result->oprs[0].type = IMMEDIATE; result->oprs[0].offset = 0L; result->oprs[0].segment = result->oprs[0].wrt = NO_SEG; return result; } else { nasm_error(ERR_NONFATAL, "parser: instruction expected"); goto fail; } } result->opcode = tokval.t_integer; result->condition = tokval.t_inttwo; /* * INCBIN cannot be satisfied with incorrectly * evaluated operands, since the correct values _must_ be known * on the first pass. Hence, even in pass one, we set the * `critical' flag on calling evaluate(), so that it will bomb * out on undefined symbols. */ if (result->opcode == I_INCBIN) { critical = (pass0 < 2 ? 1 : 2); } else critical = (pass == 2 ? 2 : 0); if (result->opcode == I_DB || result->opcode == I_DW || result->opcode == I_DD || result->opcode == I_DQ || result->opcode == I_DT || result->opcode == I_DO || result->opcode == I_DY || result->opcode == I_DZ || result->opcode == I_INCBIN) { extop *eop, **tail = &result->eops, **fixptr; int oper_num = 0; int32_t sign; result->eops_float = false; /* * Begin to read the DB/DW/DD/DQ/DT/DO/DY/DZ/INCBIN operands. */ while (1) { i = stdscan(NULL, &tokval); if (i == TOKEN_EOS) break; else if (first && i == ':') { insn_is_label = true; goto restart_parse; } first = false; fixptr = tail; eop = *tail = nasm_malloc(sizeof(extop)); tail = &eop->next; eop->next = NULL; eop->type = EOT_NOTHING; oper_num++; sign = +1; /* * is_comma_next() here is to distinguish this from * a string used as part of an expression... */ if (i == TOKEN_STR && is_comma_next()) { eop->type = EOT_DB_STRING; eop->stringval = tokval.t_charptr; eop->stringlen = tokval.t_inttwo; i = stdscan(NULL, &tokval); /* eat the comma */ } else if (i == TOKEN_STRFUNC) { bool parens = false; const char *funcname = tokval.t_charptr; enum strfunc func = tokval.t_integer; i = stdscan(NULL, &tokval); if (i == '(') { parens = true; i = stdscan(NULL, &tokval); } if (i != TOKEN_STR) { nasm_error(ERR_NONFATAL, "%s must be followed by a string constant", funcname); eop->type = EOT_NOTHING; } else { eop->type = EOT_DB_STRING_FREE; eop->stringlen = string_transform(tokval.t_charptr, tokval.t_inttwo, &eop->stringval, func); if (eop->stringlen == (size_t)-1) { nasm_error(ERR_NONFATAL, "invalid string for transform"); eop->type = EOT_NOTHING; } } if (parens && i && i != ')') { i = stdscan(NULL, &tokval); if (i != ')') { nasm_error(ERR_NONFATAL, "unterminated %s function", funcname); } } if (i && i != ',') i = stdscan(NULL, &tokval); } else if (i == '-' || i == '+') { char *save = stdscan_get(); int token = i; sign = (i == '-') ? -1 : 1; i = stdscan(NULL, &tokval); if (i != TOKEN_FLOAT) { stdscan_set(save); i = tokval.t_type = token; goto is_expression; } else { goto is_float; } } else if (i == TOKEN_FLOAT) { is_float: eop->type = EOT_DB_STRING; result->eops_float = true; eop->stringlen = idata_bytes(result->opcode); if (eop->stringlen > 16) { nasm_error(ERR_NONFATAL, "floating-point constant" " encountered in DY or DZ instruction"); eop->stringlen = 0; } else if (eop->stringlen < 1) { nasm_error(ERR_NONFATAL, "floating-point constant" " encountered in unknown instruction"); /* * fix suggested by Pedro Gimeno... original line was: * eop->type = EOT_NOTHING; */ eop->stringlen = 0; } eop = nasm_realloc(eop, sizeof(extop) + eop->stringlen); tail = &eop->next; *fixptr = eop; eop->stringval = (char *)eop + sizeof(extop); if (!eop->stringlen || !float_const(tokval.t_charptr, sign, (uint8_t *)eop->stringval, eop->stringlen, nasm_error)) eop->type = EOT_NOTHING; i = stdscan(NULL, &tokval); /* eat the comma */ } else { /* anything else, assume it is an expression */ expr *value; is_expression: value = evaluate(stdscan, NULL, &tokval, NULL, critical, nasm_error, NULL); i = tokval.t_type; if (!value) /* Error in evaluator */ goto fail; if (is_unknown(value)) { eop->type = EOT_DB_NUMBER; eop->offset = 0; /* doesn't matter what we put */ eop->segment = eop->wrt = NO_SEG; /* likewise */ } else if (is_reloc(value)) { eop->type = EOT_DB_NUMBER; eop->offset = reloc_value(value); eop->segment = reloc_seg(value); eop->wrt = reloc_wrt(value); } else { nasm_error(ERR_NONFATAL, "operand %d: expression is not simple" " or relocatable", oper_num); } } /* * We're about to call stdscan(), which will eat the * comma that we're currently sitting on between * arguments. However, we'd better check first that it * _is_ a comma. */ if (i == TOKEN_EOS) /* also could be EOL */ break; if (i != ',') { nasm_error(ERR_NONFATAL, "comma expected after operand %d", oper_num); goto fail; } } if (result->opcode == I_INCBIN) { /* * Correct syntax for INCBIN is that there should be * one string operand, followed by one or two numeric * operands. */ if (!result->eops || result->eops->type != EOT_DB_STRING) nasm_error(ERR_NONFATAL, "`incbin' expects a file name"); else if (result->eops->next && result->eops->next->type != EOT_DB_NUMBER) nasm_error(ERR_NONFATAL, "`incbin': second parameter is" " non-numeric"); else if (result->eops->next && result->eops->next->next && result->eops->next->next->type != EOT_DB_NUMBER) nasm_error(ERR_NONFATAL, "`incbin': third parameter is" " non-numeric"); else if (result->eops->next && result->eops->next->next && result->eops->next->next->next) nasm_error(ERR_NONFATAL, "`incbin': more than three parameters"); else return result; /* * If we reach here, one of the above errors happened. * Throw the instruction away. */ goto fail; } else /* DB ... */ if (oper_num == 0) nasm_error(ERR_WARNING | ERR_PASS1, "no operand for data declaration"); else result->operands = oper_num; return result; } /* * Now we begin to parse the operands. There may be up to four * of these, separated by commas, and terminated by a zero token. */ for (opnum = 0; opnum < MAX_OPERANDS; opnum++) { operand *op = &result->oprs[opnum]; expr *value; /* used most of the time */ bool mref; /* is this going to be a memory ref? */ bool bracket; /* is it a [] mref, or a & mref? */ bool mib; /* compound (mib) mref? */ int setsize = 0; decoflags_t brace_flags = 0; /* flags for decorators in braces */ op->disp_size = 0; /* have to zero this whatever */ op->eaflags = 0; /* and this */ op->opflags = 0; op->decoflags = 0; i = stdscan(NULL, &tokval); if (i == TOKEN_EOS) break; /* end of operands: get out of here */ else if (first && i == ':') { insn_is_label = true; goto restart_parse; } first = false; op->type = 0; /* so far, no override */ while (i == TOKEN_SPECIAL) { /* size specifiers */ switch ((int)tokval.t_integer) { case S_BYTE: if (!setsize) /* we want to use only the first */ op->type |= BITS8; setsize = 1; break; case S_WORD: if (!setsize) op->type |= BITS16; setsize = 1; break; case S_DWORD: case S_LONG: if (!setsize) op->type |= BITS32; setsize = 1; break; case S_QWORD: if (!setsize) op->type |= BITS64; setsize = 1; break; case S_TWORD: if (!setsize) op->type |= BITS80; setsize = 1; break; case S_OWORD: if (!setsize) op->type |= BITS128; setsize = 1; break; case S_YWORD: if (!setsize) op->type |= BITS256; setsize = 1; break; case S_ZWORD: if (!setsize) op->type |= BITS512; setsize = 1; break; case S_TO: op->type |= TO; break; case S_STRICT: op->type |= STRICT; break; case S_FAR: op->type |= FAR; break; case S_NEAR: op->type |= NEAR; break; case S_SHORT: op->type |= SHORT; break; default: nasm_error(ERR_NONFATAL, "invalid operand size specification"); } i = stdscan(NULL, &tokval); } if (i == '[' || i == '&') { /* memory reference */ mref = true; bracket = (i == '['); i = stdscan(NULL, &tokval); /* then skip the colon */ while (i == TOKEN_SPECIAL || i == TOKEN_PREFIX) { process_size_override(result, op); i = stdscan(NULL, &tokval); } /* when a comma follows an opening bracket - [ , eax*4] */ if (i == ',') { /* treat as if there is a zero displacement virtually */ tokval.t_type = TOKEN_NUM; tokval.t_integer = 0; stdscan_set(stdscan_get() - 1); /* rewind the comma */ } } else { /* immediate operand, or register */ mref = false; bracket = false; /* placate optimisers */ } if ((op->type & FAR) && !mref && result->opcode != I_JMP && result->opcode != I_CALL) { nasm_error(ERR_NONFATAL, "invalid use of FAR operand specifier"); } value = evaluate(stdscan, NULL, &tokval, &op->opflags, critical, nasm_error, &hints); i = tokval.t_type; if (op->opflags & OPFLAG_FORWARD) { result->forw_ref = true; } if (!value) /* Error in evaluator */ goto fail; if (i == ':' && mref) { /* it was seg:offset */ /* * Process the segment override. */ if (value[1].type != 0 || value->value != 1 || !IS_SREG(value->type)) nasm_error(ERR_NONFATAL, "invalid segment override"); else if (result->prefixes[PPS_SEG]) nasm_error(ERR_NONFATAL, "instruction has conflicting segment overrides"); else { result->prefixes[PPS_SEG] = value->type; if (IS_FSGS(value->type)) op->eaflags |= EAF_FSGS; } i = stdscan(NULL, &tokval); /* then skip the colon */ while (i == TOKEN_SPECIAL || i == TOKEN_PREFIX) { process_size_override(result, op); i = stdscan(NULL, &tokval); } value = evaluate(stdscan, NULL, &tokval, &op->opflags, critical, nasm_error, &hints); i = tokval.t_type; if (op->opflags & OPFLAG_FORWARD) { result->forw_ref = true; } /* and get the offset */ if (!value) /* Error in evaluator */ goto fail; } mib = false; if (mref && bracket && i == ',') { /* [seg:base+offset,index*scale] syntax (mib) */ operand o1, o2; /* Partial operands */ if (parse_mref(&o1, value)) goto fail; i = stdscan(NULL, &tokval); /* Eat comma */ value = evaluate(stdscan, NULL, &tokval, &op->opflags, critical, nasm_error, &hints); i = tokval.t_type; if (parse_mref(&o2, value)) goto fail; if (o2.basereg != -1 && o2.indexreg == -1) { o2.indexreg = o2.basereg; o2.scale = 1; o2.basereg = -1; } if (o1.indexreg != -1 || o2.basereg != -1 || o2.offset != 0 || o2.segment != NO_SEG || o2.wrt != NO_SEG) { nasm_error(ERR_NONFATAL, "invalid mib expression"); goto fail; } op->basereg = o1.basereg; op->indexreg = o2.indexreg; op->scale = o2.scale; op->offset = o1.offset; op->segment = o1.segment; op->wrt = o1.wrt; if (op->basereg != -1) { op->hintbase = op->basereg; op->hinttype = EAH_MAKEBASE; } else if (op->indexreg != -1) { op->hintbase = op->indexreg; op->hinttype = EAH_NOTBASE; } else { op->hintbase = -1; op->hinttype = EAH_NOHINT; } mib = true; } recover = false; if (mref && bracket) { /* find ] at the end */ if (i != ']') { nasm_error(ERR_NONFATAL, "parser: expecting ]"); recover = true; } else { /* we got the required ] */ i = stdscan(NULL, &tokval); if ((i == TOKEN_DECORATOR) || (i == TOKEN_OPMASK)) { /* * according to AVX512 spec, broacast or opmask decorator * is expected for memory reference operands */ if (tokval.t_flag & TFLAG_BRDCAST) { brace_flags |= GEN_BRDCAST(0) | VAL_BRNUM(tokval.t_integer - BRC_1TO8); i = stdscan(NULL, &tokval); } else if (i == TOKEN_OPMASK) { brace_flags |= VAL_OPMASK(nasm_regvals[tokval.t_integer]); i = stdscan(NULL, &tokval); } else { nasm_error(ERR_NONFATAL, "broadcast or opmask " "decorator expected inside braces"); recover = true; } } if (i != 0 && i != ',') { nasm_error(ERR_NONFATAL, "comma or end of line expected"); recover = true; } } } else { /* immediate operand */ if (i != 0 && i != ',' && i != ':' && i != TOKEN_DECORATOR && i != TOKEN_OPMASK) { nasm_error(ERR_NONFATAL, "comma, colon, decorator or end of " "line expected after operand"); recover = true; } else if (i == ':') { op->type |= COLON; } else if (i == TOKEN_DECORATOR || i == TOKEN_OPMASK) { /* parse opmask (and zeroing) after an operand */ recover = parse_braces(&brace_flags); } } if (recover) { do { /* error recovery */ i = stdscan(NULL, &tokval); } while (i != 0 && i != ','); } /* * now convert the exprs returned from evaluate() * into operand descriptions... */ op->decoflags |= brace_flags; if (mref) { /* it's a memory reference */ /* A mib reference was fully parsed already */ if (!mib) { if (parse_mref(op, value)) goto fail; op->hintbase = hints.base; op->hinttype = hints.type; } mref_set_optype(op); } else { /* it's not a memory reference */ if (is_just_unknown(value)) { /* it's immediate but unknown */ op->type |= IMMEDIATE; op->opflags |= OPFLAG_UNKNOWN; op->offset = 0; /* don't care */ op->segment = NO_SEG; /* don't care again */ op->wrt = NO_SEG; /* still don't care */ if(optimizing >= 0 && !(op->type & STRICT)) { /* Be optimistic */ op->type |= UNITY | SBYTEWORD | SBYTEDWORD | UDWORD | SDWORD; } } else if (is_reloc(value)) { /* it's immediate */ op->type |= IMMEDIATE; op->offset = reloc_value(value); op->segment = reloc_seg(value); op->wrt = reloc_wrt(value); if (is_simple(value)) { uint64_t n = reloc_value(value); if (n == 1) op->type |= UNITY; if (optimizing >= 0 && !(op->type & STRICT)) { if ((uint32_t) (n + 128) <= 255) op->type |= SBYTEDWORD; if ((uint16_t) (n + 128) <= 255) op->type |= SBYTEWORD; if (n <= 0xFFFFFFFF) op->type |= UDWORD; if (n + 0x80000000 <= 0xFFFFFFFF) op->type |= SDWORD; } } } else if(value->type == EXPR_RDSAE) { /* * it's not an operand but a rounding or SAE decorator. * put the decorator information in the (opflag_t) type field * of previous operand. */ opnum--; op--; switch (value->value) { case BRC_RN: case BRC_RU: case BRC_RD: case BRC_RZ: case BRC_SAE: op->decoflags |= (value->value == BRC_SAE ? SAE : ER); result->evex_rm = value->value; break; default: nasm_error(ERR_NONFATAL, "invalid decorator"); break; } } else { /* it's a register */ opflags_t rs; if (value->type >= EXPR_SIMPLE || value->value != 1) { nasm_error(ERR_NONFATAL, "invalid operand type"); goto fail; } /* * check that its only 1 register, not an expression... */ for (i = 1; value[i].type; i++) if (value[i].value) { nasm_error(ERR_NONFATAL, "invalid operand type"); goto fail; } /* clear overrides, except TO which applies to FPU regs */ if (op->type & ~TO) { /* * we want to produce a warning iff the specified size * is different from the register size */ rs = op->type & SIZE_MASK; } else rs = 0; op->type &= TO; op->type |= REGISTER; op->type |= nasm_reg_flags[value->type]; op->decoflags |= brace_flags; op->basereg = value->type; if (rs && (op->type & SIZE_MASK) != rs) nasm_error(ERR_WARNING | ERR_PASS1, "register size specification ignored"); } } /* remember the position of operand having broadcasting/ER mode */ if (op->decoflags & (BRDCAST_MASK | ER | SAE)) result->evex_brerop = opnum; } result->operands = opnum; /* set operand count */ /* clear remaining operands */ while (opnum < MAX_OPERANDS) result->oprs[opnum++].type = 0; /* * Transform RESW, RESD, RESQ, REST, RESO, RESY, RESZ into RESB. */ switch (result->opcode) { case I_RESW: result->opcode = I_RESB; result->oprs[0].offset *= 2; break; case I_RESD: result->opcode = I_RESB; result->oprs[0].offset *= 4; break; case I_RESQ: result->opcode = I_RESB; result->oprs[0].offset *= 8; break; case I_REST: result->opcode = I_RESB; result->oprs[0].offset *= 10; break; case I_RESO: result->opcode = I_RESB; result->oprs[0].offset *= 16; break; case I_RESY: result->opcode = I_RESB; result->oprs[0].offset *= 32; break; case I_RESZ: result->opcode = I_RESB; result->oprs[0].offset *= 64; break; default: break; } return result; fail: result->opcode = I_none; return result; }
expr *evaluate(scanner sc, void *scprivate, struct tokenval *tv, int *fwref, int critical, struct eval_hints *hints) { expr *e; expr *f = NULL; hint = hints; if (hint) hint->type = EAH_NOHINT; if (critical & CRITICAL) { critical &= ~CRITICAL; bexpr = rexp0; } else bexpr = expr0; scan = sc; scpriv = scprivate; tokval = tv; opflags = fwref; if (tokval->t_type == TOKEN_INVALID) i = scan(scpriv, tokval); else i = tokval->t_type; while (ntempexprs) /* initialize temporary storage */ nasm_free(tempexprs[--ntempexprs]); e = bexpr(critical); if (!e) return NULL; if (i == TOKEN_WRT) { i = scan(scpriv, tokval); /* eat the WRT */ f = expr6(critical); if (!f) return NULL; } e = scalar_mult(e, 1L, false); /* strip far-absolute segment part */ if (f) { expr *g; if (is_just_unknown(f)) g = unknown_expr(); else { int64_t value; begintemp(); if (!is_reloc(f)) { nasm_error(ERR_NONFATAL, "invalid right-hand operand to WRT"); return NULL; } value = reloc_seg(f); if (value == NO_SEG) value = reloc_value(f) | SEG_ABS; else if (!(value & SEG_ABS) && !(value % 2) && critical) { nasm_error(ERR_NONFATAL, "invalid right-hand operand to WRT"); return NULL; } addtotemp(EXPR_WRT, value); g = finishtemp(); } e = add_vectors(e, g); } return e; }
static expr *expr6(int critical) { int32_t type; expr *e; int32_t label_seg; int64_t label_ofs; int64_t tmpval; bool rn_warn; char *scope; switch (i) { case '-': i = scan(scpriv, tokval); e = expr6(critical); if (!e) return NULL; return scalar_mult(e, -1L, false); case '+': i = scan(scpriv, tokval); return expr6(critical); case '~': i = scan(scpriv, tokval); e = expr6(critical); if (!e) return NULL; if (is_just_unknown(e)) return unknown_expr(); else if (!is_simple(e)) { nasm_error(ERR_NONFATAL, "`~' operator may only be applied to" " scalar values"); return NULL; } return scalarvect(~reloc_value(e)); case '!': i = scan(scpriv, tokval); e = expr6(critical); if (!e) return NULL; if (is_just_unknown(e)) return unknown_expr(); else if (!is_simple(e)) { nasm_error(ERR_NONFATAL, "`!' operator may only be applied to" " scalar values"); return NULL; } return scalarvect(!reloc_value(e)); case TOKEN_IFUNC: { enum ifunc func = tokval->t_integer; i = scan(scpriv, tokval); e = expr6(critical); if (!e) return NULL; if (is_just_unknown(e)) return unknown_expr(); else if (!is_simple(e)) { nasm_error(ERR_NONFATAL, "function may only be applied to" " scalar values"); return NULL; } return scalarvect(eval_ifunc(reloc_value(e), func)); } case TOKEN_SEG: i = scan(scpriv, tokval); e = expr6(critical); if (!e) return NULL; e = segment_part(e); if (!e) return NULL; if (is_unknown(e) && critical) { nasm_error(ERR_NONFATAL, "unable to determine segment base"); return NULL; } return e; case TOKEN_FLOATIZE: return eval_floatize(tokval->t_integer); case TOKEN_STRFUNC: return eval_strfunc(tokval->t_integer); case '(': i = scan(scpriv, tokval); e = bexpr(critical); if (!e) return NULL; if (i != ')') { nasm_error(ERR_NONFATAL, "expecting `)'"); return NULL; } i = scan(scpriv, tokval); return e; case TOKEN_NUM: case TOKEN_STR: case TOKEN_REG: case TOKEN_ID: case TOKEN_INSN: /* Opcodes that occur here are really labels */ case TOKEN_HERE: case TOKEN_BASE: case TOKEN_DECORATOR: begintemp(); switch (i) { case TOKEN_NUM: addtotemp(EXPR_SIMPLE, tokval->t_integer); break; case TOKEN_STR: tmpval = readstrnum(tokval->t_charptr, tokval->t_inttwo, &rn_warn); if (rn_warn) nasm_error(ERR_WARNING|ERR_PASS1, "character constant too long"); addtotemp(EXPR_SIMPLE, tmpval); break; case TOKEN_REG: addtotemp(tokval->t_integer, 1L); if (hint && hint->type == EAH_NOHINT) hint->base = tokval->t_integer, hint->type = EAH_MAKEBASE; break; case TOKEN_ID: case TOKEN_INSN: case TOKEN_HERE: case TOKEN_BASE: /* * If !location.known, this indicates that no * symbol, Here or Base references are valid because we * are in preprocess-only mode. */ if (!location.known) { nasm_error(ERR_NONFATAL, "%s not supported in preprocess-only mode", (i == TOKEN_HERE ? "`$'" : i == TOKEN_BASE ? "`$$'" : "symbol references")); addtotemp(EXPR_UNKNOWN, 1L); break; } type = EXPR_SIMPLE; /* might get overridden by UNKNOWN */ if (i == TOKEN_BASE) { label_seg = in_abs_seg ? abs_seg : location.segment; label_ofs = 0; } else if (i == TOKEN_HERE) { label_seg = in_abs_seg ? abs_seg : location.segment; label_ofs = in_abs_seg ? abs_offset : location.offset; } else { if (!lookup_label(tokval->t_charptr, &label_seg, &label_ofs)) { scope = local_scope(tokval->t_charptr); if (critical == 2) { nasm_error(ERR_NONFATAL, "symbol `%s%s' undefined", scope,tokval->t_charptr); return NULL; } else if (critical == 1) { nasm_error(ERR_NONFATAL, "symbol `%s%s' not defined before use", scope,tokval->t_charptr); return NULL; } else { if (opflags) *opflags |= OPFLAG_FORWARD; type = EXPR_UNKNOWN; label_seg = NO_SEG; label_ofs = 1; } } if (opflags && is_extern(tokval->t_charptr)) *opflags |= OPFLAG_EXTERN; } addtotemp(type, label_ofs); if (label_seg != NO_SEG) addtotemp(EXPR_SEGBASE + label_seg, 1L); break; case TOKEN_DECORATOR: addtotemp(EXPR_RDSAE, tokval->t_integer); break; } i = scan(scpriv, tokval); return finishtemp(); default: nasm_error(ERR_NONFATAL, "expression syntax error"); return NULL; } }
static expr *expr5(int critical) { expr *e, *f; e = expr6(critical); if (!e) return NULL; while (i == '*' || i == '/' || i == '%' || i == TOKEN_SDIV || i == TOKEN_SMOD) { int j = i; i = scan(scpriv, tokval); f = expr6(critical); if (!f) return NULL; if (j != '*' && (!(is_simple(e) || is_just_unknown(e)) || !(is_simple(f) || is_just_unknown(f)))) { nasm_error(ERR_NONFATAL, "division operator may only be applied to" " scalar values"); return NULL; } if (j != '*' && !is_unknown(f) && reloc_value(f) == 0) { nasm_error(ERR_NONFATAL, "division by zero"); return NULL; } switch (j) { case '*': if (is_simple(e)) e = scalar_mult(f, reloc_value(e), true); else if (is_simple(f)) e = scalar_mult(e, reloc_value(f), true); else if (is_just_unknown(e) && is_just_unknown(f)) e = unknown_expr(); else { nasm_error(ERR_NONFATAL, "unable to multiply two " "non-scalar objects"); return NULL; } break; case '/': if (is_just_unknown(e) || is_just_unknown(f)) e = unknown_expr(); else e = scalarvect(((uint64_t)reloc_value(e)) / ((uint64_t)reloc_value(f))); break; case '%': if (is_just_unknown(e) || is_just_unknown(f)) e = unknown_expr(); else e = scalarvect(((uint64_t)reloc_value(e)) % ((uint64_t)reloc_value(f))); break; case TOKEN_SDIV: if (is_just_unknown(e) || is_just_unknown(f)) e = unknown_expr(); else e = scalarvect(((int64_t)reloc_value(e)) / ((int64_t)reloc_value(f))); break; case TOKEN_SMOD: if (is_just_unknown(e) || is_just_unknown(f)) e = unknown_expr(); else e = scalarvect(((int64_t)reloc_value(e)) % ((int64_t)reloc_value(f))); break; } } return e; }