bool TensorMechanicsPlasticTensileMulti::doReturnMap(const RankTwoTensor & trial_stress, const Real & intnl_old, const RankFourTensor & E_ijkl, Real /*ep_plastic_tolerance*/, RankTwoTensor & returned_stress, Real & returned_intnl, std::vector<Real> & dpm, RankTwoTensor & delta_dp, std::vector<Real> & yf, bool & trial_stress_inadmissible) const { mooseAssert(dpm.size() == 3, "TensorMechanicsPlasticTensileMulti size of dpm should be 3 but it is " << dpm.size()); std::vector<Real> eigvals; RankTwoTensor eigvecs; trial_stress.symmetricEigenvaluesEigenvectors(eigvals, eigvecs); eigvals[0] += _shift; eigvals[2] -= _shift; Real str = tensile_strength(intnl_old); yf.resize(3); yf[0] = eigvals[0] - str; yf[1] = eigvals[1] - str; yf[2] = eigvals[2] - str; if (yf[0] <= _f_tol && yf[1] <= _f_tol && yf[2] <= _f_tol) { // purely elastic (trial_stress, intnl_old) trial_stress_inadmissible = false; return true; } trial_stress_inadmissible = true; delta_dp.zero(); returned_stress.zero(); // In the following i often assume that E_ijkl is // for an isotropic situation. This reduces FLOPS // substantially which is important since the returnMap // is potentially the most compute-intensive function // of a simulation. // In many comments i write the general expression, and // i hope that might guide future coders if they are // generalising to a non-istropic E_ijkl // n[alpha] = E_ijkl*r[alpha]_kl expressed in principal stress space // (alpha = 0, 1, 2, corresponding to the three surfaces) // Note that in principal stress space, the flow // directions are, expressed in 'vector' form, // r[0] = (1,0,0), r[1] = (0,1,0), r[2] = (0,0,1). // Similar for _n: // so _n[0] = E_ij00*r[0], _n[1] = E_ij11*r[1], _n[2] = E_ij22*r[2] // In the following I assume that the E_ijkl is // for an isotropic situation. // In the anisotropic situation, we couldn't express // the flow directions as vectors in the same principal // stress space as the stress: they'd be full rank-2 tensors std::vector<std::vector<Real> > n(3); for (unsigned i = 0 ; i < 3 ; ++i) n[i].resize(3); n[0][0] = E_ijkl(0,0,0,0); n[0][1] = E_ijkl(1,1,0,0); n[0][2] = E_ijkl(2,2,0,0); n[1][0] = E_ijkl(0,0,1,1); n[1][1] = E_ijkl(1,1,1,1); n[1][2] = E_ijkl(2,2,1,1); n[2][0] = E_ijkl(0,0,2,2); n[2][1] = E_ijkl(1,1,2,2); n[2][2] = E_ijkl(2,2,2,2); // With non-zero Poisson's ratio and hardening // it is not computationally cheap to know whether // the trial stress will return to the tip, edge, // or plane. The following is correct for zero // Poisson's ratio and no hardening, and at least // gives a not-completely-stupid guess in the // more general case. // trial_order[0] = type of return to try first // trial_order[1] = type of return to try second // trial_order[2] = type of return to try third std::vector<int> trial_order(3); if (yf[0] > 0) // all the yield functions are positive, since eigvals are ordered eigvals[0] <= eigvals[1] <= eigvals[2] { trial_order[0] = tip; trial_order[1] = edge; trial_order[2] = plane; } else if (yf[1] > 0) // two yield functions are positive { trial_order[0] = edge; trial_order[1] = tip; trial_order[2] = plane; } else { trial_order[0] = plane; trial_order[1] = edge; trial_order[2] = tip; } unsigned trial; bool nr_converged; for (trial = 0 ; trial < 3 ; ++trial) { switch (trial_order[trial]) { case tip: nr_converged = returnTip(eigvals, n, dpm, returned_stress, intnl_old, 0); break; case edge: nr_converged = returnEdge(eigvals, n, dpm, returned_stress, intnl_old, 0); break; case plane: nr_converged = returnPlane(eigvals, n, dpm, returned_stress, intnl_old, 0); break; } str = tensile_strength(intnl_old + dpm[0] + dpm[1] + dpm[2]); if (nr_converged && KuhnTuckerOK(returned_stress, dpm, str)) break; } if (trial == 3) { Moose::err << "Trial stress = \n"; trial_stress.print(Moose::err); Moose::err << "Internal parameter = " << intnl_old << "\n"; mooseError("TensorMechanicsPlasticTensileMulti: FAILURE! You probably need to implement a line search\n"); // failure - must place yield function values at trial stress into yf str = tensile_strength(intnl_old); yf[0] = eigvals[0] - str; yf[1] = eigvals[1] - str; yf[2] = eigvals[2] - str; return false; } // success returned_intnl = intnl_old; for (unsigned i = 0 ; i < 3 ; ++i) { yf[i] = returned_stress(i, i) - str; delta_dp(i, i) = dpm[i]; returned_intnl += dpm[i]; } returned_stress = eigvecs*returned_stress*(eigvecs.transpose()); delta_dp = eigvecs*delta_dp*(eigvecs.transpose()); return true; }
bool TensorMechanicsPlasticMohrCoulombMulti::doReturnMap(const RankTwoTensor & trial_stress, Real intnl_old, const RankFourTensor & E_ijkl, Real ep_plastic_tolerance, RankTwoTensor & returned_stress, Real & returned_intnl, std::vector<Real> & dpm, RankTwoTensor & delta_dp, std::vector<Real> & yf, bool & trial_stress_inadmissible) const { mooseAssert(dpm.size() == 6, "TensorMechanicsPlasticMohrCoulombMulti size of dpm should be 6 but it is " << dpm.size()); std::vector<Real> eigvals; RankTwoTensor eigvecs; trial_stress.symmetricEigenvaluesEigenvectors(eigvals, eigvecs); eigvals[0] += _shift; eigvals[2] -= _shift; Real sinphi = std::sin(phi(intnl_old)); Real cosphi = std::cos(phi(intnl_old)); Real coh = cohesion(intnl_old); Real cohcos = coh*cosphi; yieldFunctionEigvals(eigvals[0], eigvals[1], eigvals[2], sinphi, cohcos, yf); if (yf[0] <= _f_tol && yf[1] <= _f_tol && yf[2] <= _f_tol && yf[3] <= _f_tol && yf[4] <= _f_tol && yf[5] <= _f_tol) { // purely elastic (trial_stress, intnl_old) trial_stress_inadmissible = false; return true; } trial_stress_inadmissible = true; delta_dp.zero(); returned_stress = RankTwoTensor(); // these are the normals to the 6 yield surfaces, which are const because of the assumption of no psi hardening std::vector<RealVectorValue> norm(6); const Real sinpsi = std::sin(psi(intnl_old)); const Real oneminus = 0.5*(1 - sinpsi); const Real oneplus = 0.5*(1 + sinpsi); norm[0](0) = oneplus; norm[0](1) = -oneminus; norm[0](2) = 0; norm[1](0) = -oneminus; norm[1](1) = oneplus; norm[1](2) = 0; norm[2](0) = oneplus; norm[2](1) = 0; norm[2](2) = -oneminus; norm[3](0) = -oneminus; norm[3](1) = 0; norm[3](2) = oneplus; norm[4](0) = 0; norm[4](1) = oneplus; norm[4](2) = -oneminus; norm[5](0) = 0; norm[5](1) = -oneminus; norm[5](2) = oneplus; // the flow directions are these norm multiplied by Eijkl. // I call the flow directions "n". // In the following I assume that the Eijkl is // for an isotropic situation. Then I don't have to // rotate to the principal-stress frame, and i don't // have to worry about strange off-diagonal things std::vector<RealVectorValue> n(6); for (unsigned ys = 0; ys < 6; ++ys) for (unsigned i = 0; i < 3; ++i) for (unsigned j = 0; j < 3; ++j) n[ys](i) += E_ijkl(i,i,j,j)*norm[ys](j); const Real mag_E = E_ijkl(0, 0, 0, 0); // With non-zero Poisson's ratio and hardening // it is not computationally cheap to know whether // the trial stress will return to the tip, edge, // or plane. The following at least // gives a not-completely-stupid guess // trial_order[0] = type of return to try first // trial_order[1] = type of return to try second // trial_order[2] = type of return to try third // trial_order[3] = type of return to try fourth // trial_order[4] = type of return to try fifth // In the following the "binary" stuff indicates the // deactive (0) and active (1) surfaces, eg // 110100 means that surfaces 0, 1 and 3 are active // and 2, 4 and 5 are deactive const unsigned int number_of_return_paths = 5; std::vector<int> trial_order(number_of_return_paths); if (yf[1] > _f_tol && yf[3] > _f_tol && yf[5] > _f_tol) { trial_order[0] = tip110100; trial_order[1] = edge010100; trial_order[2] = plane000100; trial_order[3] = edge000101; trial_order[4] = tip010101; } else if (yf[1] <= _f_tol && yf[3] > _f_tol && yf[5] > _f_tol) { trial_order[0] = edge000101; trial_order[1] = plane000100; trial_order[2] = tip110100; trial_order[3] = tip010101; trial_order[4] = edge010100; } else if (yf[1] <= _f_tol && yf[3] > _f_tol && yf[5] <= _f_tol) { trial_order[0] = plane000100; trial_order[1] = edge000101; trial_order[2] = edge010100; trial_order[3] = tip110100; trial_order[4] = tip010101; } else { trial_order[0] = edge010100; trial_order[1] = plane000100; trial_order[2] = edge000101; trial_order[3] = tip110100; trial_order[4] = tip010101; } unsigned trial; bool nr_converged = false; bool kt_success = false; std::vector<RealVectorValue> ntip(3); std::vector<Real> dpmtip(3); for (trial = 0; trial < number_of_return_paths; ++trial) { switch (trial_order[trial]) { case tip110100: for (unsigned int i = 0; i < 3; ++i) { ntip[0](i) = n[0](i); ntip[1](i) = n[1](i); ntip[2](i) = n[3](i); } kt_success = returnTip(eigvals, ntip, dpmtip, returned_stress, intnl_old, sinphi, cohcos, 0, nr_converged, ep_plastic_tolerance, yf); if (nr_converged && kt_success) { dpm[0] = dpmtip[0]; dpm[1] = dpmtip[1]; dpm[3] = dpmtip[2]; dpm[2] = dpm[4] = dpm[5] = 0; } break; case tip010101: for (unsigned int i = 0; i < 3; ++i) { ntip[0](i) = n[1](i); ntip[1](i) = n[3](i); ntip[2](i) = n[5](i); } kt_success = returnTip(eigvals, ntip, dpmtip, returned_stress, intnl_old, sinphi, cohcos, 0, nr_converged, ep_plastic_tolerance, yf); if (nr_converged && kt_success) { dpm[1] = dpmtip[0]; dpm[3] = dpmtip[1]; dpm[5] = dpmtip[2]; dpm[0] = dpm[2] = dpm[4] = 0; } break; case edge000101: kt_success = returnEdge000101(eigvals, n, dpm, returned_stress, intnl_old, sinphi, cohcos, 0, mag_E, nr_converged, ep_plastic_tolerance, yf); break; case edge010100: kt_success = returnEdge010100(eigvals, n, dpm, returned_stress, intnl_old, sinphi, cohcos, 0, mag_E, nr_converged, ep_plastic_tolerance, yf); break; case plane000100: kt_success = returnPlane(eigvals, n, dpm, returned_stress, intnl_old, sinphi, cohcos, 0, nr_converged, ep_plastic_tolerance, yf); break; } if (nr_converged && kt_success) break; } if (trial == number_of_return_paths) { sinphi = std::sin(phi(intnl_old)); cosphi = std::cos(phi(intnl_old)); coh = cohesion(intnl_old); cohcos = coh*cosphi; yieldFunctionEigvals(eigvals[0], eigvals[1], eigvals[2], sinphi, cohcos, yf); Moose::err << "Trial stress = \n"; trial_stress.print(Moose::err); Moose::err << "which has eigenvalues = " << eigvals[0] << " " << eigvals[1] << " " << eigvals[2] << "\n"; Moose::err << "and yield functions = " << yf[0] << " " << yf[1] << " " << yf[2] << " " << yf[3] << " " << yf[4] << " " << yf[5] << "\n"; Moose::err << "Internal parameter = " << intnl_old << "\n"; mooseError("TensorMechanicsPlasticMohrCoulombMulti: FAILURE! You probably need to implement a line search if your hardening is too severe, or you need to tune your tolerances (eg, yield_function_tolerance should be a little smaller than (young modulus)*ep_plastic_tolerance).\n"); return false; } // success returned_intnl = intnl_old; for (unsigned i = 0; i < 6; ++i) returned_intnl += dpm[i]; for (unsigned i = 0; i < 6; ++i) for (unsigned j = 0; j < 3; ++j) delta_dp(j, j) += dpm[i]*norm[i](j); returned_stress = eigvecs*returned_stress*(eigvecs.transpose()); delta_dp = eigvecs*delta_dp*(eigvecs.transpose()); return true; }