예제 #1
0
파일: square.c 프로젝트: svkampen/square
double rgbdiff(double rgb1[], double rgb2[]) {
	double *lab1 = rgb2lab(rgb1);
	double *lab2 = rgb2lab(rgb2);
	double e = edistance(lab1, lab2);
	free(lab1);
	free(lab2);
	return e;
}
    double FeatureAverageColor::compare( FeatureValue a, FeatureValue b )
    {
        if( (a.size() != 3) || (b.size() != 3) )
        {
            cerr << "Wrong amount of parameters: should be 3, is: a(" << a.size() << ") | b(" << b.size() << ")" << endl;
            return 0;
        }
        double aLAB[3], bLAB[3];

        rgb2lab( a.data(), aLAB );
        rgb2lab( b.data(), bLAB );

        return 1 - sqrt( pow( aLAB[0] - bLAB[0], 2 ) + pow( aLAB[1] - bLAB[1], 2 ) + pow( aLAB[2] - bLAB[2], 2 ) ) / 255.0;
    }
예제 #3
0
파일: glview.cpp 프로젝트: MzHub/flowabs
void GLView::process() {
    makeCurrent();
	if (m_image.isNull()) {
		m_dst = texture_2d();
		return;
	}

	int w = m_image.width();
	int h = m_image.height();

    glViewport(0, 0, w, h);
    glMatrixMode(GL_PROJECTION);
    glLoadIdentity();
    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();

    glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, m_fbo);
    glPushAttrib(GL_TEXTURE_BIT);

    texture_2d src(GL_RGB16F_ARB, m_image.width(), m_image.height(), GL_BGRA, GL_UNSIGNED_BYTE, m_image.bits());
    texture_2d lab = rgb2lab(src);
    texture_2d tfm = tangent_flow_map(src, sst_sigma);
    texture_2d bfe = (bf_ne > 0)? orientation_aligned_bilateral_filter(lab, tfm, bf_ne, bf_sigma_d, bf_sigma_r) : lab;
    texture_2d bfa = (bf_na > 0)? orientation_aligned_bilateral_filter(lab, tfm, bf_na, bf_sigma_d, bf_sigma_r) : lab;
    texture_2d edges = (fdog_type == 0)?
    fdog_filter(bfe, tfm, fdog_n, fdog_sigma_e, fdog_sigma_r, fdog_tau, fdog_sigma_m, fdog_phi) :
    dog_filter(bfe, fdog_n, fdog_sigma_e, fdog_sigma_r, fdog_tau, fdog_phi);
    texture_2d cq = color_quantization(bfa, cq_nbins, cq_phi_q, cq_filter);
    texture_2d cq_rgb = lab2rgb(cq);
    texture_2d ov = mix_filter(edges, cq_rgb, fdog_color);
    texture_2d result = fs_type? smooth_filter(tfm, ov, fs_type, fs_sigma) : ov;
    
    switch (preview) {
        case 0:
            m_dst = result;
            break;
		case 1:
			m_dst = src;
			break;
        case 2:
            m_dst = lic_filter(tfm, m_noise, 5.0);
            break;
        case 3:
            m_dst = lab2rgb(bfe);
            break;
        case 4:
            m_dst = lab2rgb(bfa);
            break;
        case 5:
            m_dst = edges;
            break;
        case 6:
            m_dst = cq_rgb;
            break;
    }

    glUseProgram(0);
    glPopAttrib();
    glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
}
예제 #4
0
void work()
{
	// convert from rgb to lab
	for(int i = 0; i < n; ++i)
	{
		rgb2lab(getcol(img, i/h, i%h), ori[i]);
		res[i] = delta[i] = 0;
	}

	// calculate delta
	HANDLE thd[8];
	now = 0;
	for(int i = 0; i < 8; ++i)
		thd[i] = CreateThread(0, 0, calcDelta, 0, 0, 0);
	for(int i = 0; i < 8; ++i)
		WaitForSingleObject(thd[i], INFINITE);
	// calculate result
	for(int i = 1; i < n; ++i)
		res[i] = ( delta[i] - delta[i-1] + n * res[i-1]) / n;
	double sum = 0;
	for(int i = 0; i < n; i++) 
		sum += res[i] - ori[i][0];
	sum /= n;
	for(int i = 0; i < n; i++)
		res[i] = res[i] - sum;

	// output img
	for(int i = 0; i < n; ++i)
	{
		imgRes.at<uchar>(Point(i/h, i%h)) = lab2rgb(res[i]);
	}
}
예제 #5
0
SeedFeature::SeedFeature( const ImageOverSegmentation & ios, const VectorXf & obj_param ) {
	Image rgb_im = ios.image();
	const RMatrixXs & s = ios.s();
	const int Ns = ios.Ns(), W = rgb_im.W(), H = rgb_im.H();
	
	// Initialize various values
	VectorXf area  = bin( s, 1, [&](int x, int y){ return 1.f; } );
	VectorXf norm = (area.array()+1e-10).cwiseInverse();
	pos_ = norm.asDiagonal() * bin( s, 6, [&](int i, int j){ float x=1.0*i/(W-1)-0.5,y=1.0*j/(H-1)-0.5; return makeArray<6>( x, y, x*x, y*y, fabs(x), fabs(y) ); } );
	if (N_DYNAMIC_COL) {
		Image lab_im;
		rgb2lab( lab_im, rgb_im );
		col_ = norm.asDiagonal() * bin( s, 6, [&](int x, int y){ return makeArray<6>( rgb_im(y,x, 0), rgb_im(y,x,1), rgb_im(y,x,2), lab_im(y,x,0), lab_im(y,x,1), lab_im(y,x,2) ); } );
	}
	
	const int N_GEO = sizeof(EDGE_P)/sizeof(EDGE_P[0]);
	for( int i=0; i<N_GEO; i++ )
		gdist_.push_back( GeodesicDistance(ios.edges(),ios.edgeWeights().array().pow(EDGE_P[i])+1e-3) );
	
	// Compute the static features
	static_f_ = RMatrixXf::Zero( Ns, N_STATIC_F );
	int o=0;
	// Add the position features
	static_f_.block( 0, o, Ns, N_STATIC_POS ) = pos_.leftCols( N_STATIC_POS );
	o += N_STATIC_POS;
	// Add the geodesic features
	if( N_STATIC_GEO >= N_GEO ) {
		RMatrixXu8 bnd = findBoundary( s );
		RMatrixXf mask = (bnd.array() == 0).cast<float>()*1e10;
		for( int i=0; i<N_GEO; i++ )
			static_f_.col( o++ ) = gdist_[i].compute( mask );
		for( int j=1; (j+1)*N_GEO<=N_STATIC_GEO; j++ ) {
			mask = (bnd.array() != j).cast<float>()*1e10;
			for( int i=0; i<N_GEO; i++ )
				static_f_.col( o++ ) = gdist_[i].compute( mask );
		}
	}
	if( N_STATIC_EDGE ) {
		RMatrixXf edge_map = DirectedSobel().detect( ios.image() );
		for( int j=0; j<s.rows(); j++ )
			for( int i=0; i<s.cols(); i++ ) {
				const int id = s(j,i);
				int bin = edge_map(j,i)*N_STATIC_EDGE;
				if ( bin < 0 ) bin = 0;
				if ( bin >= N_STATIC_EDGE ) bin = N_STATIC_EDGE-1;
				static_f_(id,o+bin) += norm[id];
			}
		o += N_STATIC_EDGE;
	}
	if( N_OBJ_F>1 )
		static_f_.col(o++) = (computeObjFeatures(ios)*obj_param).transpose();
	
	// Initialize the dynamic features
	dynamic_f_ = RMatrixXf::Zero( Ns, N_DYNAMIC_F );
	n_ = 0;
	min_dist_ = RMatrixXf::Ones(Ns,5)*10;
	var_      = RMatrixXf::Zero(Ns,6);
}
예제 #6
0
// replace_luminance
void
replace_luminance(uint8& r1, uint8& g1, uint8& b1, uint8 r2, uint8 g2, uint8 b2)
{
	float CIEL1, CIEa1, CIEb1, CIEL2;//, CIEa2, CIEb2;
	rgb2lab(r1, g1, b1, CIEL1, CIEa1, CIEb1);
//	rgb2lab(r2, g2, b2, CIEL2, CIEa2, CIEb2);
	CIEL2 = ((linearTable[r2] + linearTable[g2] + linearTable[b2]) / 3.0) * 100.0;
	lab2rgb(CIEL2, CIEa1, CIEb1, r1, g1, b1);
}
예제 #7
0
// BANG - calculate and output
void cs_bang(t_cs *x)
{
	if(x->attr_mode == ps_rgb2hsl) rgb2hsl(x, x->val1, x->val2, x->val3); // first for speed
	else if(x->attr_mode == ps_hsl2rgb) hsl2rgb(x, x->val1, x->val2, x->val3);
	
	else if(x->attr_mode == ps_no_transform) no_transform(x);
	else if(x->attr_mode == ps_rgb2cmy) rgb2cmy(x, x->val1, x->val2, x->val3);
	else if(x->attr_mode == ps_cmy2rgb) cmy2rgb(x, x->val1, x->val2, x->val3);
	else if(x->attr_mode == ps_rgb2hsv) rgb2hsv(x, x->val1, x->val2, x->val3);
	else if(x->attr_mode == ps_hsv2rgb) hsv2rgb(x, x->val1, x->val2, x->val3);
	else if(x->attr_mode == ps_rgb2xyz) rgb2xyz(x, x->val1, x->val2, x->val3);
	else if(x->attr_mode == ps_xyz2rgb) xyz2rgb(x, x->val1, x->val2, x->val3);
	else if(x->attr_mode == ps_rgb2uvw) rgb2uvw(x, x->val1, x->val2, x->val3);
	else if(x->attr_mode == ps_uvw2rgb) uvw2rgb(x, x->val1, x->val2, x->val3);
	else if(x->attr_mode == ps_rgb2retinalcone) rgb2cone(x, x->val1, x->val2, x->val3);
	else if(x->attr_mode == ps_retinalcone2rgb) cone2rgb(x, x->val1, x->val2, x->val3);
	else if(x->attr_mode == ps_rgb2lab) rgb2lab(x, x->val1, x->val2, x->val3);
	else if(x->attr_mode == ps_lab2rgb) lab2rgb(x, x->val1, x->val2, x->val3);
	else if(x->attr_mode == ps_rgb2yiq) rgb2yiq(x, x->val1, x->val2, x->val3);
	else if(x->attr_mode == ps_yiq2rgb) yiq2rgb(x, x->val1, x->val2, x->val3);
	else if(x->attr_mode == ps_rgb2hls) rgb2hls(x, x->val1, x->val2, x->val3);
	else if(x->attr_mode == ps_hls2rgb) hls2rgb(x, x->val1, x->val2, x->val3);
	else if(x->attr_mode == ps_rgb2rgbcie) rgb2rgbcie(x, x->val1, x->val2, x->val3);
	else if(x->attr_mode == ps_rgbcie2rgb) rgbcie2rgb(x, x->val1, x->val2, x->val3);
	else if(x->attr_mode == ps_rgb2rgbsmpte) rgb2rgbsmpte(x, x->val1, x->val2, x->val3);
	else if(x->attr_mode == ps_rgbsmpte2rgb) rgbsmpte2rgb(x, x->val1, x->val2, x->val3);

	if(x->attr_outputtype == ps_packed){
		Atom temp_list[3];
		atom_setlong(temp_list+0, x->calc1);
		atom_setlong(temp_list+1, x->calc2);
		atom_setlong(temp_list+2, x->calc3);
		outlet_list(x->out1, 0L, 3, temp_list);	// output the result
	}	
	else{
		outlet_int(x->out3, x->calc3);	// output the result	
		outlet_int(x->out2, x->calc2);	// output the result	
		outlet_int(x->out1, x->calc1);	// output the result
	}	
}
예제 #8
0
파일: edgefeature.cpp 프로젝트: CUAir/edges
	void compute( Ref<RMatrixXf> r, const ImageOverSegmentation & ios ) const {
		Image f_im;
		if( lab_ )
			rgb2lab( f_im, ios.image() );
		else
			f_im = ios.image();
		
		const int N = ios.Ns();
		std::vector<Vector3f> mean_color( N, Vector3f::Zero() );
		std::vector<float> cnt( N, 1e-8 );
		const RMatrixXs & s = ios.s();
		for( int j=0; j<s.rows(); j++ )
			for( int i=0; i<s.cols(); i++ ) 
				if( s(j,i) >= 0 ){
					mean_color[ s(j,i) ] += f_im.at<3>( j, i );
					cnt[ s(j,i) ] += 1;
				}
		for( int i=0; i<N; i++ )
			mean_color[i] /= cnt[i];
		
		for( int i=0; i<(int)ios.edges().size(); i++ )
			r.row(i) = (mean_color[ ios.edges()[i].a ]-mean_color[ ios.edges()[i].b ]).array().abs();
	}
예제 #9
0
Image ColorConvert::apply(Image im, string from, string to) {
    // check for the trivial case
    assert(from != to, "color conversion from %s to %s is pointless\n", from.c_str(), to.c_str());

    // unsupported destination color spaces
    if (to == "yuyv" ||
        to == "uyvy") {
        panic("Unsupported destination color space: %s\n", to.c_str());
    }

    // direct conversions that don't have to go via rgb
    if (from == "yuyv" && to == "yuv") {
        return yuyv2yuv(im);
    } else if (from == "uyvy" && to == "yuv") {
        return uyvy2yuv(im);
    } else if (from == "xyz" && to == "lab") {
        return xyz2lab(im);
    } else if (from == "lab" && to == "xyz") {
        return lab2xyz(im);
    } else if (from == "argb" && to == "xyz") {
        return argb2xyz(im);
    } else if (from == "xyz" && to == "argb") {
        return xyz2argb(im);
    } else if (from != "rgb" && to != "rgb") {
        // conversions that go through rgb
        Image halfway = apply(im, from, "rgb");
        return apply(halfway, "rgb", to);
    } else if (from == "rgb") { // from rgb
        if (to == "hsv" || to == "hsl" || to == "hsb") {
            return rgb2hsv(im);
        } else if (to == "yuv") {
            return rgb2yuv(im);
        } else if (to == "xyz") {
            return rgb2xyz(im);
        } else if (to == "y" || to == "gray" ||
                   to == "grayscale" || to == "luminance") {
            return rgb2y(im);
        } else if (to == "lab") {
            return rgb2lab(im);
        } else if (to == "argb") {
            return rgb2argb(im);
        } else {
            panic("Unknown color space %s\n", to.c_str());
        }
    } else { //(to == "rgb")
        if (from == "hsv" || from == "hsl" || from == "hsb") {
            return hsv2rgb(im);
        } else if (from == "yuv") {
            return yuv2rgb(im);
        } else if (from == "xyz") {
            return xyz2rgb(im);
        } else if (from == "y" || from == "gray" ||
                   from == "grayscale" || from == "luminance") {
            return y2rgb(im);
        } else if (from == "lab") {
            return lab2rgb(im);
        } else if (from == "uyvy") {
            return uyvy2rgb(im);
        } else if (from == "yuyv") {
            return yuyv2rgb(im);
        } else if (from == "argb") {
            return argb2rgb(im);
        } else {
            panic("Unknown color space %s\n", from.c_str());
        }
    }

    // keep the compiler happy
    return Image();

}
예제 #10
0
RMatrixXf SeedFeature::computeObjFeatures( const ImageOverSegmentation & ios ) {
	Image rgb_im = ios.image();
	const RMatrixXs & s = ios.s();
	const Edges & g = ios.edges();
	const int Ns = ios.Ns();
	
	RMatrixXf r = RMatrixXf::Zero( Ns, N_OBJ_F );
	if( N_OBJ_F<=1 ) return r;
	VectorXf area  = bin( s, 1, [&](int x, int y){ return 1.f; } );
	VectorXf norm = (area.array()+1e-10).cwiseInverse();
	
	r.col(0).setOnes();
	int o = 1;
	if (N_OBJ_COL>=6) {
		Image lab_im;
		rgb2lab( lab_im, rgb_im );
		r.middleCols(o,6) = norm.asDiagonal() * bin( s, 6, [&](int x, int y){ return makeArray<6>( lab_im(y,x,0), lab_im(y,x,1), lab_im(y,x,2), lab_im(y,x,0)*lab_im(y,x,0), lab_im(y,x,1)*lab_im(y,x,1), lab_im(y,x,2)*lab_im(y,x,2) ); } );
		RMatrixXf col = r.middleCols(o,3);
		if( N_OBJ_COL >= 9)
			r.middleCols(o+6,3) = col.array().square();
		o += N_OBJ_COL;
		
		// Add color difference features
		if( N_OBJ_COL_DIFF ) {
			RMatrixXf bcol = RMatrixXf::Ones( col.rows(), col.cols()+1 );
			bcol.leftCols(3) = col;
			for( int it=0; it*3+2<N_OBJ_COL_DIFF; it++ ) {
				// Apply a box filter on the graph
				RMatrixXf tmp = bcol;
				for( const auto & e: g ) {
					tmp.row(e.a) += bcol.row(e.b);
					tmp.row(e.b) += bcol.row(e.a);
				}
				bcol = tmp.col(3).cwiseInverse().asDiagonal()*tmp;
				r.middleCols(o,3) = (bcol.leftCols(3)-col).array().abs();
				o += 3;
			}
		}
	}
	if( N_OBJ_POS >= 2 ) {
		RMatrixXf xy = norm.asDiagonal() * bin( s, 2, [&](int x, int y){ return makeArray<2>( 1.0*x/(s.cols()-1)-0.5, 1.0*y/(s.rows()-1)-0.5 ); } );
		r.middleCols(o,2) = xy;
		o+=2;
		if( N_OBJ_POS >=4 ) {
			r.middleCols(o,2) = xy.array().square();
			o+=2;
		}
	}
	if( N_OBJ_EDGE ) {
		RMatrixXf edge_map = DirectedSobel().detect( rgb_im );
		for( int j=0; j<s.rows(); j++ )
			for( int i=0; i<s.cols(); i++ ) {
				const int id = s(j,i);
				int bin = edge_map(j,i)*N_OBJ_EDGE;
				if ( bin < 0 ) bin = 0;
				if ( bin >= N_OBJ_EDGE ) bin = N_OBJ_EDGE-1;
				r(id,o+bin) += norm[id];
			}
		o += N_OBJ_EDGE;
	}
	const int N_BASIC = o-1;
	// Add in context features
	for( int i=0; i<N_OBJ_CONTEXT; i++ ) {
		const int o0 = o - N_BASIC;
		// Box filter the edges
		RMatrixXf f = RMatrixXf::Ones( Ns, N_BASIC+1 ), bf = RMatrixXf::Zero( Ns, N_BASIC+1 );
		f.rightCols( N_BASIC ) = r.middleCols(o0,N_BASIC);
		for( Edge e: g ) {
			bf.row(e.a) += f.row(e.b);
			bf.row(e.b) += f.row(e.a);
		}
		r.middleCols(o,N_BASIC) = bf.col(0).array().max(1e-10f).inverse().matrix().asDiagonal() * bf.rightCols(N_BASIC);
		o += N_BASIC;
	}
	return r;
}