예제 #1
0
// Dessine la couronne intérieure
std::vector<Point_3> DegradeAnObject::drawInsideImpactOnFacet(std::vector<Point_3> points, std::vector<Halfedge_handle> hhs, Facet f, int index) {
	std::vector<Point_3> pts;
	for(int i = 0 ; i < points.size() ; i++) {
		int j;
		if(i == points.size()-1) {
			j = 0;
		}
		else {
			j = i+1;
		}
		Vector_3 h(hhs[i]->opposite()->vertex()->point(), hhs[i]->vertex()->point());
		Vector_3 g(hhs[j]->opposite()->vertex()->point(), hhs[j]->vertex()->point());
		Vector_3 norm = getNormalOfFacet(f);
		Vector_3 rh = normalizeVector(rotationVector(h, norm, M_PI/2));
		Vector_3 rg = normalizeVector(rotationVector(g, norm, M_PI/2));
		Vector_3 comb = 0.01*normalizeVector(rh+rg);
		Point_3 newPoint = hhs[i]->vertex()->point() + comb;
		Halfedge_handle hh = polys[index].split_vertex(hhs[j]->opposite(), hhs[i]);
		hh->vertex()->point() = newPoint;
		polys[index].split_facet(hh->opposite()->next()->next(), hh->opposite());
		polys[index].split_facet(hh->next()->next(), hh);
		pts.push_back(newPoint);
	}
	return pts;
}
예제 #2
0
UtilityMath::S_Vector2<T> UtilityMath::S_Vector2<T>::GetRotate(T angle) const
{
    S_Vector2 rotationVector(*this);
    rotationVector.Rotate(angle);

    return rotationVector;
}
예제 #3
0
파일: Render.cpp 프로젝트: 2asoft/0ad
void SimRender::ConstructGimbal(const CVector3D& center, float radius, SOverlayLine& out, size_t numSteps)
{
	ENSURE(numSteps > 0 && numSteps % 4 == 0); // must be a positive multiple of 4

	out.m_Coords.clear();

	size_t fullCircleSteps = numSteps;
	const float angleIncrement = 2.f*M_PI/fullCircleSteps;

	const CVector3D X_UNIT(1, 0, 0);
	const CVector3D Y_UNIT(0, 1, 0);
	const CVector3D Z_UNIT(0, 0, 1);
	CVector3D rotationVector(0, 0, radius); // directional vector based in the center that we will be rotating to get the gimbal points

	// first draw a quarter of XZ gimbal; then complete the XY gimbal; then continue the XZ gimbal and finally add the YZ gimbal
	// (that way we can keep a single continuous line)

	// -- XZ GIMBAL (PART 1/2) -----------------------------------------------

	CQuaternion xzRotation;
	xzRotation.FromAxisAngle(Y_UNIT, angleIncrement);

	for (size_t i = 0; i < fullCircleSteps/4; ++i) // complete only a quarter of the way
	{
		out.PushCoords(center + rotationVector);
		rotationVector = xzRotation.Rotate(rotationVector);
	}

	// -- XY GIMBAL ----------------------------------------------------------

	// now complete the XY gimbal while the XZ gimbal is interrupted
	CQuaternion xyRotation;
	xyRotation.FromAxisAngle(Z_UNIT, angleIncrement);

	for (size_t i = 0; i < fullCircleSteps; ++i) // note the <; the last point of the XY gimbal isn't added, because the XZ gimbal will add it
	{
		out.PushCoords(center + rotationVector);
		rotationVector = xyRotation.Rotate(rotationVector);
	}

	// -- XZ GIMBAL (PART 2/2) -----------------------------------------------

	// resume the XZ gimbal to completion
	for (size_t i = fullCircleSteps/4; i < fullCircleSteps; ++i) // exclude the last point of the circle so the YZ gimbal can add it
	{
		out.PushCoords(center + rotationVector);
		rotationVector = xzRotation.Rotate(rotationVector);
	}

	// -- YZ GIMBAL ----------------------------------------------------------

	CQuaternion yzRotation;
	yzRotation.FromAxisAngle(X_UNIT, angleIncrement);

	for (size_t i = 0; i <= fullCircleSteps; ++i)
	{
		out.PushCoords(center + rotationVector);
		rotationVector = yzRotation.Rotate(rotationVector);
	}
}
예제 #4
0
	XMMATRIX Transform::GetTransformMatrix()
	{
		XMVECTOR scaleVector(m_Scale.AsXMVECTOR());
		XMVECTOR rotationVector(m_Rotation.AsXMVECTOR());
		XMVECTOR positionVector(m_Position.AsXMVECTOR());
		return XMMatrixScalingFromVector(scaleVector) * XMMatrixRotationQuaternion(rotationVector) * XMMatrixTranslationFromVector(positionVector);
	}
예제 #5
0
	void Transform::Translate(Vector a_Translation, Space a_RelativeTo)
	{
		switch (a_RelativeTo)
		{
		case Space::World:
			m_Position += a_Translation;
			break;
		case Space::Local:
			XMVECTOR translationVector(a_Translation.AsXMVECTOR());
			XMVECTOR rotationVector(m_Rotation.AsXMVECTOR());
			m_Position += Vector(XMVector3Rotate(translationVector, rotationVector));
			break;
		}
	}
예제 #6
0
// Génère des points autour du point d'impact prévu
std::vector<Point_3> DegradeAnObject::generatePointsOnFacet(Point_3 p, double ray, Facet fs, int nbPts) {
	std::vector<Point_3> pts;
	Vector_3 normal = normalizeVector(getNormalOfFacet(fs));
	Kernel::Plane_3 pl(fs.halfedge()->vertex()->point(), normal);
	Vector_3 orth = (pl.base1()) * ray;
	Vector_3 smallOrth;
	Point_3 chkPt;
	chkPt = p + orth;
	pts.push_back(chkPt);
	Facet test;
	double teta = M_PI/(nbPts/2.0);
	for(int i = 1 ; i < nbPts ; i++) {
		orth = rotationVector(orth, normal, teta);
		chkPt = p + orth;
		pts.push_back(chkPt);
	}
	return pts;
}
예제 #7
0
void ofxFBXCamera::updateLookAt(){
	float  length = (target - getGlobalPosition()).length();

	ofVec3f rotationVector(1.0,0,0);
	ofVec3f center = getGlobalOrientation() * rotationVector;
	center *= length;
	center += getPosition();


	rotationVector.set(0,1.0,0);
    ofVec3f up = getGlobalOrientation() * rotationVector;

    ofVec3f forward = center - getGlobalPosition();
    forward.normalize();
    ofVec3f right = up.cross(forward);
    right.normalize();
    up = forward.cross(right);
    up.normalize();

	lookAt(center,up);
}
예제 #8
0
/**
 * Program entry-point.
 *
 */
int main(int argc, char **argv) {
    // parse arguments
    while (true) {
        int index = -1;

        getopt_long(argc, argv, "", options, &index);
        if (index == -1) {
            if (argc != optind + 2) {
                usage();
                return 1;
            }

            input_file = argv[optind++];
            if (access(input_file, R_OK)) {
                fprintf(stderr, "Error: input file not readable: %s\n", input_file);
                return 2;
            }

            output_file = argv[optind++];
            if (access(output_file, W_OK) && errno == EACCES) {
                fprintf(stderr, "Error: output file not writable: %s\n", output_file);
                return 2;
            }
            break;
        }

        switch (index) {
        case OPTION_WIDTH:
            sample_width = atoi(optarg);
            break;
        case OPTION_HEIGHT:
            sample_height = atoi(optarg);
            break;
        case OPTION_COUNT:
            sample_count = atoi(optarg);
            break;

        case OPTION_ROTATE_STDDEV_X:
            rotate_stddev_x = atof(optarg) / 180.0 * M_PI;
            break;
        case OPTION_ROTATE_STDDEV_Y:
            rotate_stddev_y = atof(optarg) / 180.0 * M_PI;
            break;
        case OPTION_ROTATE_STDDEV_Z:
            rotate_stddev_z = atof(optarg) / 180.0 * M_PI;
            break;

        case OPTION_LUMINOSITY_STDDEV:
            luminosity_stddev = atof(optarg);
            break;

        case OPTION_BACKGROUNDS:
            backgrounds_file = optarg;
            if (access(backgrounds_file, R_OK)) {
                fprintf(stderr, "Error: backgrounds file not readable: %s\n", backgrounds_file);
                return 2;
            }
            break;

        default:
            usage();
            return 1;
        }
    }

    // read input files
    std::vector<std::string> samples;

    if (!parseFiles(input_file, samples)) {
        fprintf(stderr, "Error: cannot parse file listing: %s\n", input_file);
        return 2;
    }

    // read background files
    std::vector<std::string> backgrounds;

    if (backgrounds_file != NULL && !parseFiles(backgrounds_file, backgrounds)) {
        fprintf(stderr, "Error: cannot parse file listing: %s\n", backgrounds_file);
        return 2;
    }

    // create output file
    FILE *fp = fopen(output_file, "wb");

    if (fp == NULL) {
        fprintf(stderr, "Error: cannot open output file for writing: %s\n", output_file);
        return 2;
    }
    icvWriteVecHeader(fp, sample_count, sample_width, sample_height);

    // generate distortions
    std::default_random_engine generator(time(NULL));
    std::normal_distribution<double> xdist(0.0, rotate_stddev_x / 3.0);
    std::normal_distribution<double> ydist(0.0, rotate_stddev_y / 3.0);
    std::normal_distribution<double> zdist(0.0, rotate_stddev_z / 3.0);
    std::normal_distribution<double> ldist(0.0, luminosity_stddev / 3.0);
    cv::Mat el = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(5, 5));
    int variations = MAX(1, (int)floor((double)sample_count / (double)samples.size()));
    int idx = 0;
    int i = 0;

    while (i < sample_count) {
        // suffle the input lists
        if (idx % samples.size() == 0) {
            std::shuffle(samples.begin(), samples.end(), generator);
            std::shuffle(backgrounds.begin(), backgrounds.end(), generator);
        }

        // read sample image
        auto const &sample_file(samples[idx % samples.size()]);
        cv::Mat sample = cv::imread(sample_file);
        double sampleRatio = (double)sample.cols / (double)sample.rows;
        double outputRatio = (double)sample_width / (double)sample_height;

        // normalize sample
        cv::Mat greySample = sample;
        double min, max;

        if (sample.channels() != 1) {
            cv::cvtColor(sample, greySample, cv::COLOR_RGB2GRAY);
        }
        cv::minMaxIdx(greySample, &min, &max);
        greySample -= min;
        greySample /= (max - min) / 255.0;

        // generate mask
        cv::Mat mask(cv::Mat::ones(greySample.rows, greySample.cols, greySample.type()));

        // enlarge canvas to fit output ratio
        cv::Mat resizedSample, resizedMask;

        if (backgrounds.size() > 0 && sampleRatio < outputRatio) {
            int width = (int)((double)greySample.rows * outputRatio);
            cv::Rect area(
                (width - greySample.cols) / 2,
                0,
                greySample.cols,
                greySample.rows
            );

            resizedSample = cv::Mat::zeros(greySample.rows, width, greySample.type());
            resizedMask = cv::Mat::zeros(greySample.rows, width, greySample.type());
            greySample.copyTo(resizedSample(area));
            mask.copyTo(resizedMask(area));
        } else if (backgrounds.size() > 0 && sampleRatio > outputRatio) {
            int height = (int)((double)greySample.cols / outputRatio);
            cv::Rect area(
                0,
                (height - greySample.rows) / 2,
                greySample.cols,
                greySample.rows
            );

            resizedSample = cv::Mat::zeros(height, greySample.cols, greySample.type());
            resizedMask = cv::Mat::zeros(height, greySample.cols, greySample.type());
            greySample.copyTo(resizedSample(area));
            mask.copyTo(resizedMask(area));
        } else {
            resizedSample = greySample;
            resizedMask = mask;
        }

        // apply distortions
        cv::Mat target(resizedSample.rows, resizedSample.cols, resizedSample.type());
        cv::Mat targetMask(resizedSample.rows, resizedSample.cols, resizedSample.type());
        double halfWidth = resizedSample.cols / 2.0;
        double halfHeight = resizedSample.rows / 2.0;
        cv::Mat rotationVector(3, 1, CV_64FC1);
        cv::Mat rotation4(cv::Mat::eye(4, 4, CV_64FC1));
        cv::Mat translate4(cv::Mat::eye(4, 4, CV_64FC1));
        cv::Mat translate3(cv::Mat::eye(3, 3, CV_64FC1));
        cv::Mat scale3(cv::Mat::eye(3, 3, CV_64FC1));
        int dx = (resizedSample.cols - greySample.cols) / 2;
        int dy = (resizedSample.rows - greySample.rows) / 2;
        cv::Point2f points1[4] = {
            cv::Point2f(dx,              dy),
            cv::Point2f(dx,              greySample.rows),
            cv::Point2f(greySample.cols, greySample.rows),
            cv::Point2f(greySample.cols, dy)
        };
        cv::Point2f points2[4];

        translate4.at<double>(0, 3) = -halfWidth;
        translate4.at<double>(1, 3) = -halfHeight;
        for (int k = 0; k < variations; k++) {
            double rx = k > 0 && rotate_stddev_x > 0.0 ? xdist(generator) : 0.0;
            double ry = k > 0 && rotate_stddev_y > 0.0 ? ydist(generator) : 0.0;
            double rz = k > 0 && rotate_stddev_z > 0.0 ? zdist(generator) : 0.0;
            double rl = k > 0 && luminosity_stddev > 0.0 ? ldist(generator) : 0.0;

            // compute rotation in 3d
            rotationVector.at<double>(0) = rx;
            rotationVector.at<double>(1) = ry;
            rotationVector.at<double>(2) = rz;
            cv::Rodrigues(rotationVector, cv::Mat(rotation4, cv::Rect(0, 0, 3, 3)));

            // compute transformation in 3d
            cv::Mat transform4(rotation4 * translate4);
            double minx = DBL_MAX, miny = DBL_MAX;
            double maxx = DBL_MIN, maxy = DBL_MIN;

            for (int j = 0; j < 4; j++) {
                cv::Mat point(4, 1, CV_64FC1);

                point.at<double>(0) = points1[j].x;
                point.at<double>(1) = points1[j].y;
                point.at<double>(2) = 0.0;
                point.at<double>(3) = 1.0;
                point = transform4 * point;
                points2[j].x = point.at<double>(0);
                points2[j].y = point.at<double>(1);

                if (points2[j].x < minx) {
                    minx = points2[j].x;
                }
                if (points2[j].x > maxx) {
                    maxx = points2[j].x;
                }
                if (points2[j].y < miny) {
                    miny = points2[j].y;
                }
                if (points2[j].y > maxy) {
                    maxy = points2[j].y;
                }
            }

            // compute transformation in 2d
            cv::Mat projection3(cv::getPerspectiveTransform(points1, points2));
            double scalex = (resizedSample.cols - dx) / (maxx - minx);
            double scaley = (resizedSample.rows - dy) / (maxy - miny);

            translate3.at<double>(0, 2) = halfWidth;
            translate3.at<double>(1, 2) = halfHeight;

            scale3.at<double>(0, 0) = scalex; //MIN(scalex, scaley);
            scale3.at<double>(1, 1) = scaley; //MIN(scalex, scaley);

            // transform sample and mask in 2d
            cv::Mat transform3(translate3 * scale3 * projection3);

            cv::warpPerspective(resizedSample, target, transform3, target.size());
            cv::warpPerspective(resizedMask, targetMask, transform3, targetMask.size());

            // apply luminosity change
            if (rl != 0.0) {
                rl += 1.0;
                target *= rl;
            }

            // read background image
            cv::Mat greyBackground;

            if (backgrounds.size() > 0) {
                auto const &background_file(backgrounds[i % backgrounds.size()]);
                cv::Mat background = cv::imread(background_file);

                // normalize background image
                if (background.channels() != 1) {
                    cv::cvtColor(background, greyBackground, cv::COLOR_RGB2GRAY);
                } else {
                    greyBackground = background;
                }
                cv::minMaxIdx(greyBackground, &min, &max);
                greyBackground -= min;
                greyBackground /= (max - min) / 255.0;

                // reshape background to fit output ratio
                double backgroundRatio = (double)greyBackground.cols / (double)greyBackground.rows;
                cv::Mat tmp;

                if (backgroundRatio < outputRatio) {
                    int height = (int)((double)greyBackground.cols / outputRatio);
                    std::uniform_int_distribution<int> hdist(0, greyBackground.rows - height);

                    tmp = greyBackground(
                        cv::Rect(
                            0,
                            hdist(generator),
                            greyBackground.cols,
                            height
                        )
                    );
                } else if (backgroundRatio > outputRatio) {
                    int width = (int)((double)greyBackground.rows * outputRatio);
                    std::uniform_int_distribution<int> wdist(0, greyBackground.cols - width);

                    tmp = greyBackground(
                        cv::Rect(
                            wdist(generator),
                            0,
                            width,
                            greyBackground.rows
                        )
                    );
                } else {
                    tmp = greyBackground;
                }
                cv::resize(tmp, greyBackground, resizedSample.size(), 0, 0, cv::INTER_CUBIC);
            } else {
                // random noise background
                greyBackground = cv::Mat(target.rows, target.cols, CV_8UC1);
                cv::randn(greyBackground, 255.0 / 2, 255.0 / 2 / 3);
                cv::GaussianBlur(greyBackground, greyBackground, cv::Size(5, 5), 10);
            }

            // blend background
            cv::Mat sampleMask, backgroundMask, tmp;

            cv::threshold(targetMask, sampleMask, 0.1, 255.0, cv::THRESH_BINARY);
            cv::erode(sampleMask, tmp, el);
            cv::blur(tmp, sampleMask, cv::Size(5, 5));

            cv::threshold(targetMask, backgroundMask, 0.1, 255.0, cv::THRESH_BINARY_INV);
            cv::dilate(backgroundMask, tmp, el);
            cv::blur(tmp, backgroundMask, cv::Size(5, 5));

            cv::multiply(target, sampleMask, target, 1.0 / 255.0);
            cv::multiply(greyBackground, backgroundMask, greyBackground, 1.0 / 255.0);

            target += greyBackground;

            // cv::namedWindow("preview", cv::WINDOW_NORMAL);
            // cv::imshow("preview", target);
            // while ((cv::waitKey(0) & 0xff) != '\n');

            // cv::namedWindow("preview", cv::WINDOW_NORMAL);
            // cv::imshow("preview", greyBackground);
            // while ((cv::waitKey(0) & 0xff) != '\n');

            // sample resize
            cv::Mat finalSample;

            cv::resize(target, finalSample, cv::Size(sample_width, sample_height), 0, 0, cv::INTER_CUBIC);

            // cv::namedWindow("preview", cv::WINDOW_NORMAL);
            // cv::imshow("preview", finalSample);
            // while ((cv::waitKey(0) & 0xff) != '\n');

            // sample save
            CvMat targetfinal_ = finalSample;

            icvWriteVecSample(fp, &targetfinal_);

            i++;
            if (i % 100 == 0) {
                fprintf(stdout, "processed %d images, %d samples\n", idx, i);
                fflush(stdout);
            }
        }
        idx++;
    }

    // close output file
    fclose(fp);
    return 0;
}