int rtree_add_key(MI_INFO *info, MI_KEYDEF *keyinfo, uchar *key, uint key_length, uchar *page_buf, my_off_t *new_page) { uint page_size = mi_getint(page_buf); uint nod_flag = mi_test_if_nod(page_buf); DBUG_ENTER("rtree_add_key"); if (page_size + key_length + info->s->base.rec_reflength <= keyinfo->block_length) { /* split won't be necessary */ if (nod_flag) { /* save key */ DBUG_ASSERT(_mi_kpos(nod_flag, key) < info->state->key_file_length); memcpy(rt_PAGE_END(page_buf), key - nod_flag, key_length + nod_flag); page_size += key_length + nod_flag; } else { /* save key */ DBUG_ASSERT(_mi_dpos(info, nod_flag, key + key_length + info->s->base.rec_reflength) < info->state->data_file_length + info->s->base.pack_reclength); memcpy(rt_PAGE_END(page_buf), key, key_length + info->s->base.rec_reflength); page_size += key_length + info->s->base.rec_reflength; } mi_putint(page_buf, page_size, nod_flag); DBUG_RETURN(0); } DBUG_RETURN((rtree_split_page(info, keyinfo, page_buf, key, key_length, new_page) ? -1 : 1)); }
static uchar *rtree_pick_key(MI_INFO *info, MI_KEYDEF *keyinfo, uchar *key, uint key_length, uchar *page_buf, uint nod_flag) { double increase; double UNINIT_VAR(best_incr); double area; double UNINIT_VAR(best_area); uchar *best_key= NULL; uchar *k = rt_PAGE_FIRST_KEY(page_buf, nod_flag); uchar *last = rt_PAGE_END(page_buf); for (; k < last; k = rt_PAGE_NEXT_KEY(k, key_length, nod_flag)) { /* The following is safe as -1.0 is an exact number */ if ((increase = rtree_area_increase(keyinfo->seg, k, key, key_length, &area)) == -1.0) return NULL; /* The following should be safe, even if we compare doubles */ if (!best_key || increase < best_incr || ((increase == best_incr) && (area < best_area))) { best_key = k; best_area = area; best_incr = increase; } } return best_key; }
static uchar *rtree_pick_key(MI_INFO *info, MI_KEYDEF *keyinfo, uchar *key, uint key_length, uchar *page_buf, uint nod_flag) { double increase; double best_incr = DBL_MAX; double perimeter; double best_perimeter; uchar *best_key; uchar *k = rt_PAGE_FIRST_KEY(page_buf, nod_flag); uchar *last = rt_PAGE_END(page_buf); LINT_INIT(best_perimeter); LINT_INIT(best_key); for (; k < last; k = rt_PAGE_NEXT_KEY(k, key_length, nod_flag)) { if ((increase = rtree_perimeter_increase(keyinfo->seg, k, key, key_length, &perimeter)) == -1) return NULL; if ((increase < best_incr)|| (increase == best_incr && perimeter < best_perimeter)) { best_key = k; best_perimeter= perimeter; best_incr = increase; } } return best_key; }
int rtree_delete(MI_INFO *info, uint keynr, uchar *key, uint key_length) { uint page_size; stPageList ReinsertList; my_off_t old_root; MI_KEYDEF *keyinfo = info->s->keyinfo + keynr; DBUG_ENTER("rtree_delete"); if ((old_root = info->s->state.key_root[keynr]) == HA_OFFSET_ERROR) { my_errno= HA_ERR_END_OF_FILE; DBUG_RETURN(-1); /* purecov: inspected */ } DBUG_PRINT("rtree", ("starting deletion at root page: %lu", (ulong) old_root)); ReinsertList.pages = NULL; ReinsertList.n_pages = 0; ReinsertList.m_pages = 0; switch (rtree_delete_req(info, keyinfo, key, key_length, old_root, &page_size, &ReinsertList, 0)) { case 2: /* empty */ { info->s->state.key_root[keynr] = HA_OFFSET_ERROR; DBUG_RETURN(0); } case 0: /* deleted */ { uint nod_flag; ulong i; for (i = 0; i < ReinsertList.n_pages; ++i) { uchar *page_buf; uchar *k; uchar *last; if (!(page_buf = (uchar*)my_alloca((uint)keyinfo->block_length))) { my_errno = HA_ERR_OUT_OF_MEM; goto err1; } if (!_mi_fetch_keypage(info, keyinfo, ReinsertList.pages[i].offs, DFLT_INIT_HITS, page_buf, 0)) goto err1; nod_flag = mi_test_if_nod(page_buf); DBUG_PRINT("rtree", ("reinserting keys from " "page: %lu level: %d nod_flag: %u", (ulong) ReinsertList.pages[i].offs, ReinsertList.pages[i].level, nod_flag)); k = rt_PAGE_FIRST_KEY(page_buf, nod_flag); last = rt_PAGE_END(page_buf); for (; k < last; k = rt_PAGE_NEXT_KEY(k, key_length, nod_flag)) { int res; if ((res= rtree_insert_level(info, keynr, k, key_length, ReinsertList.pages[i].level)) == -1) { my_afree((uchar*)page_buf); goto err1; } if (res) { ulong j; DBUG_PRINT("rtree", ("root has been split, adjust levels")); for (j= i; j < ReinsertList.n_pages; j++) { ReinsertList.pages[j].level++; DBUG_PRINT("rtree", ("keys from page: %lu now level: %d", (ulong) ReinsertList.pages[i].offs, ReinsertList.pages[i].level)); } } } my_afree((uchar*)page_buf); if (_mi_dispose(info, keyinfo, ReinsertList.pages[i].offs, DFLT_INIT_HITS)) goto err1; } if (ReinsertList.pages) my_free((uchar*) ReinsertList.pages, MYF(0)); /* check for redundant root (not leaf, 1 child) and eliminate */ if ((old_root = info->s->state.key_root[keynr]) == HA_OFFSET_ERROR) goto err1; if (!_mi_fetch_keypage(info, keyinfo, old_root, DFLT_INIT_HITS, info->buff, 0)) goto err1; nod_flag = mi_test_if_nod(info->buff); page_size = mi_getint(info->buff); if (nod_flag && (page_size == 2 + key_length + nod_flag)) { my_off_t new_root = _mi_kpos(nod_flag, rt_PAGE_FIRST_KEY(info->buff, nod_flag)); if (_mi_dispose(info, keyinfo, old_root, DFLT_INIT_HITS)) goto err1; info->s->state.key_root[keynr] = new_root; } info->update= HA_STATE_DELETED; DBUG_RETURN(0); err1: DBUG_RETURN(-1); /* purecov: inspected */ } case 1: /* not found */ { my_errno = HA_ERR_KEY_NOT_FOUND; DBUG_RETURN(-1); /* purecov: inspected */ } default: case -1: /* error */ { DBUG_RETURN(-1); /* purecov: inspected */ } } }
static int rtree_delete_req(MI_INFO *info, MI_KEYDEF *keyinfo, uchar *key, uint key_length, my_off_t page, uint *page_size, stPageList *ReinsertList, int level) { uchar *k; uchar *last; ulong i; uint nod_flag; uchar *page_buf; int res; DBUG_ENTER("rtree_delete_req"); if (!(page_buf = (uchar*)my_alloca((uint)keyinfo->block_length))) { my_errno = HA_ERR_OUT_OF_MEM; DBUG_RETURN(-1); /* purecov: inspected */ } if (!_mi_fetch_keypage(info, keyinfo, page, DFLT_INIT_HITS, page_buf, 0)) goto err1; nod_flag = mi_test_if_nod(page_buf); DBUG_PRINT("rtree", ("page: %lu level: %d nod_flag: %u", (ulong) page, level, nod_flag)); k = rt_PAGE_FIRST_KEY(page_buf, nod_flag); last = rt_PAGE_END(page_buf); for (i = 0; k < last; k = rt_PAGE_NEXT_KEY(k, key_length, nod_flag), ++i) { if (nod_flag) { /* not leaf */ if (!rtree_key_cmp(keyinfo->seg, key, k, key_length, MBR_WITHIN)) { switch ((res = rtree_delete_req(info, keyinfo, key, key_length, _mi_kpos(nod_flag, k), page_size, ReinsertList, level + 1))) { case 0: /* deleted */ { /* test page filling */ if (*page_size + key_length >= rt_PAGE_MIN_SIZE(keyinfo->block_length)) { /* OK */ /* Calculate a new key value (MBR) for the shrinked block. */ if (rtree_set_key_mbr(info, keyinfo, k, key_length, _mi_kpos(nod_flag, k))) goto err1; if (_mi_write_keypage(info, keyinfo, page, DFLT_INIT_HITS, page_buf)) goto err1; } else { /* Too small: delete key & add it descendant to reinsert list. Store position and level of the block so that it can be accessed later for inserting the remaining keys. */ DBUG_PRINT("rtree", ("too small. move block to reinsert list")); if (rtree_fill_reinsert_list(ReinsertList, _mi_kpos(nod_flag, k), level + 1)) goto err1; /* Delete the key that references the block. This makes the block disappear from the index. Hence we need to insert its remaining keys later. Note: if the block is a branch block, we do not only remove this block, but the whole subtree. So we need to re-insert its keys on the same level later to reintegrate the subtrees. */ rtree_delete_key(info, page_buf, k, key_length, nod_flag); if (_mi_write_keypage(info, keyinfo, page, DFLT_INIT_HITS, page_buf)) goto err1; *page_size = mi_getint(page_buf); } goto ok; } case 1: /* not found - continue searching */ { break; } case 2: /* vacuous case: last key in the leaf */ { rtree_delete_key(info, page_buf, k, key_length, nod_flag); if (_mi_write_keypage(info, keyinfo, page, DFLT_INIT_HITS, page_buf)) goto err1; *page_size = mi_getint(page_buf); res = 0; goto ok; } default: /* error */ case -1: { goto err1; } } } } else { /* leaf */ if (!rtree_key_cmp(keyinfo->seg, key, k, key_length, MBR_EQUAL | MBR_DATA)) { rtree_delete_key(info, page_buf, k, key_length, nod_flag); *page_size = mi_getint(page_buf); if (*page_size == 2) { /* last key in the leaf */ res = 2; if (_mi_dispose(info, keyinfo, page, DFLT_INIT_HITS)) goto err1; } else { res = 0; if (_mi_write_keypage(info, keyinfo, page, DFLT_INIT_HITS, page_buf)) goto err1; } goto ok; } } } res = 1; ok: my_afree((uchar*)page_buf); DBUG_RETURN(res); err1: my_afree((uchar*)page_buf); DBUG_RETURN(-1); /* purecov: inspected */ }
static int rtree_find_req(MI_INFO *info, MI_KEYDEF *keyinfo, uint search_flag, uint nod_cmp_flag, my_off_t page, int level) { uchar *k; uchar *last; uint nod_flag; int res; uchar *page_buf; int k_len; uint *saved_key = (uint*) (info->rtree_recursion_state) + level; if (!(page_buf = (uchar*)my_alloca((uint)keyinfo->block_length))) { my_errno = HA_ERR_OUT_OF_MEM; return -1; } if (!_mi_fetch_keypage(info, keyinfo, page, DFLT_INIT_HITS, page_buf, 0)) goto err1; nod_flag = mi_test_if_nod(page_buf); k_len = keyinfo->keylength - info->s->base.rec_reflength; if(info->rtree_recursion_depth >= level) { k = page_buf + *saved_key; } else { k = rt_PAGE_FIRST_KEY(page_buf, nod_flag); } last = rt_PAGE_END(page_buf); for (; k < last; k = rt_PAGE_NEXT_KEY(k, k_len, nod_flag)) { if (nod_flag) { /* this is an internal node in the tree */ if (!(res = rtree_key_cmp(keyinfo->seg, info->first_mbr_key, k, info->last_rkey_length, nod_cmp_flag))) { switch ((res = rtree_find_req(info, keyinfo, search_flag, nod_cmp_flag, _mi_kpos(nod_flag, k), level + 1))) { case 0: /* found - exit from recursion */ *saved_key = (uint) (k - page_buf); goto ok; case 1: /* not found - continue searching */ info->rtree_recursion_depth = level; break; default: /* error */ case -1: goto err1; } } } else { /* this is a leaf */ if (!rtree_key_cmp(keyinfo->seg, info->first_mbr_key, k, info->last_rkey_length, search_flag)) { uchar *after_key = rt_PAGE_NEXT_KEY(k, k_len, nod_flag); info->lastpos = _mi_dpos(info, 0, after_key); info->lastkey_length = k_len + info->s->base.rec_reflength; memcpy(info->lastkey, k, info->lastkey_length); info->rtree_recursion_depth = level; *saved_key = (uint) (last - page_buf); if (after_key < last) { info->int_keypos = info->buff; info->int_maxpos = info->buff + (last - after_key); memcpy(info->buff, after_key, last - after_key); info->buff_used = 0; } else { info->buff_used = 1; } res = 0; goto ok; } } } info->lastpos = HA_OFFSET_ERROR; my_errno = HA_ERR_KEY_NOT_FOUND; res = 1; ok: my_afree((uchar*)page_buf); return res; err1: my_afree((uchar*)page_buf); info->lastpos = HA_OFFSET_ERROR; return -1; }
ha_rows rtree_estimate(MI_INFO *info, uint keynr, uchar *key, uint key_length, uint flag) { MI_KEYDEF *keyinfo = info->s->keyinfo + keynr; my_off_t root; uint i = 0; uchar *k; uchar *last; uint nod_flag; uchar *page_buf; uint k_len; double area = 0; ha_rows res = 0; if (flag & MBR_DISJOINT) return info->state->records; if ((root = info->s->state.key_root[keynr]) == HA_OFFSET_ERROR) return HA_POS_ERROR; if (!(page_buf = (uchar*)my_alloca((uint)keyinfo->block_length))) return HA_POS_ERROR; if (!_mi_fetch_keypage(info, keyinfo, root, DFLT_INIT_HITS, page_buf, 0)) goto err1; nod_flag = mi_test_if_nod(page_buf); k_len = keyinfo->keylength - info->s->base.rec_reflength; k = rt_PAGE_FIRST_KEY(page_buf, nod_flag); last = rt_PAGE_END(page_buf); for (; k < last; k = rt_PAGE_NEXT_KEY(k, k_len, nod_flag), ++i) { if (nod_flag) { double k_area = rtree_rect_volume(keyinfo->seg, k, key_length); /* The following should be safe, even if we compare doubles */ if (k_area == 0) { if (flag & (MBR_CONTAIN | MBR_INTERSECT)) { area += 1; } else if (flag & (MBR_WITHIN | MBR_EQUAL)) { if (!rtree_key_cmp(keyinfo->seg, key, k, key_length, MBR_WITHIN)) area += 1; } else goto err1; } else { if (flag & (MBR_CONTAIN | MBR_INTERSECT)) { area += rtree_overlapping_area(keyinfo->seg, key, k, key_length) / k_area; } else if (flag & (MBR_WITHIN | MBR_EQUAL)) { if (!rtree_key_cmp(keyinfo->seg, key, k, key_length, MBR_WITHIN)) area += rtree_rect_volume(keyinfo->seg, key, key_length) / k_area; } else goto err1; } } else { if (!rtree_key_cmp(keyinfo->seg, key, k, key_length, flag)) ++res; } } if (nod_flag) { if (i) res = (ha_rows) (area / i * info->state->records); else res = HA_POS_ERROR; } my_afree((uchar*)page_buf); return res; err1: my_afree((uchar*)page_buf); return HA_POS_ERROR; }
static int rtree_get_req(MI_INFO *info, MI_KEYDEF *keyinfo, uint key_length, my_off_t page, int level) { uchar *k; uchar *last; uint nod_flag; int res; uchar *page_buf; uint k_len; uint *saved_key = (uint*) (info->rtree_recursion_state) + level; if (!(page_buf = (uchar*)my_alloca((uint)keyinfo->block_length))) return -1; if (!_mi_fetch_keypage(info, keyinfo, page, DFLT_INIT_HITS, page_buf, 0)) goto err1; nod_flag = mi_test_if_nod(page_buf); k_len = keyinfo->keylength - info->s->base.rec_reflength; if(info->rtree_recursion_depth >= level) { k = page_buf + *saved_key; if (!nod_flag) { /* Only leaf pages contain data references. */ /* Need to check next key with data reference. */ k = rt_PAGE_NEXT_KEY(k, k_len, nod_flag); } } else { k = rt_PAGE_FIRST_KEY(page_buf, nod_flag); } last = rt_PAGE_END(page_buf); for (; k < last; k = rt_PAGE_NEXT_KEY(k, k_len, nod_flag)) { if (nod_flag) { /* this is an internal node in the tree */ switch ((res = rtree_get_req(info, keyinfo, key_length, _mi_kpos(nod_flag, k), level + 1))) { case 0: /* found - exit from recursion */ *saved_key = k - page_buf; goto ok; case 1: /* not found - continue searching */ info->rtree_recursion_depth = level; break; default: case -1: /* error */ goto err1; } } else { /* this is a leaf */ uchar *after_key = rt_PAGE_NEXT_KEY(k, k_len, nod_flag); info->lastpos = _mi_dpos(info, 0, after_key); info->lastkey_length = k_len + info->s->base.rec_reflength; memcpy(info->lastkey, k, info->lastkey_length); info->rtree_recursion_depth = level; *saved_key = k - page_buf; if (after_key < last) { info->int_keypos = (uchar*)saved_key; memcpy(info->buff, page_buf, keyinfo->block_length); info->int_maxpos = rt_PAGE_END(info->buff); info->buff_used = 0; } else { info->buff_used = 1; } res = 0; goto ok; } } info->lastpos = HA_OFFSET_ERROR; my_errno = HA_ERR_KEY_NOT_FOUND; res = 1; ok: my_afree((uchar*)page_buf); return res; err1: my_afree((uchar*)page_buf); info->lastpos = HA_OFFSET_ERROR; return -1; }
/* Calculates key page total MBR = MBR(key1) + MBR(key2) + ... */ int rtree_page_mbr(MI_INFO *info, HA_KEYSEG *keyseg, uchar *page_buf, uchar *c, uint key_length) { uint inc = 0; uint k_len = key_length; uint nod_flag = mi_test_if_nod(page_buf); uchar *k; uchar *last = rt_PAGE_END(page_buf); for (; (int)key_length > 0; keyseg += 2) { key_length -= keyseg->length * 2; /* Handle NULL part */ if (keyseg->null_bit) { return 1; } k = rt_PAGE_FIRST_KEY(page_buf, nod_flag); switch ((enum ha_base_keytype) keyseg->type) { case HA_KEYTYPE_INT8: RT_PAGE_MBR_KORR(int8, mi_sint1korr, mi_int1store, 1); break; case HA_KEYTYPE_BINARY: RT_PAGE_MBR_KORR(uint8, mi_uint1korr, mi_int1store, 1); break; case HA_KEYTYPE_SHORT_INT: RT_PAGE_MBR_KORR(int16, mi_sint2korr, mi_int2store, 2); break; case HA_KEYTYPE_USHORT_INT: RT_PAGE_MBR_KORR(uint16, mi_uint2korr, mi_int2store, 2); break; case HA_KEYTYPE_INT24: RT_PAGE_MBR_KORR(int32, mi_sint3korr, mi_int3store, 3); break; case HA_KEYTYPE_UINT24: RT_PAGE_MBR_KORR(uint32, mi_uint3korr, mi_int3store, 3); break; case HA_KEYTYPE_LONG_INT: RT_PAGE_MBR_KORR(int32, mi_sint4korr, mi_int4store, 4); break; case HA_KEYTYPE_ULONG_INT: RT_PAGE_MBR_KORR(uint32, mi_uint4korr, mi_int4store, 4); break; #ifdef HAVE_LONG_LONG case HA_KEYTYPE_LONGLONG: RT_PAGE_MBR_KORR(longlong, mi_sint8korr, mi_int8store, 8); break; case HA_KEYTYPE_ULONGLONG: RT_PAGE_MBR_KORR(ulonglong, mi_uint8korr, mi_int8store, 8); break; #endif case HA_KEYTYPE_FLOAT: RT_PAGE_MBR_GET(float, mi_float4get, mi_float4store, 4); break; case HA_KEYTYPE_DOUBLE: RT_PAGE_MBR_GET(double, mi_float8get, mi_float8store, 8); break; case HA_KEYTYPE_END: return 0; default: return 1; } } return 0; }
/* Calculates key page total MBR= MBR(key1) + MBR(key2) + ... Stores into *to. */ int maria_rtree_page_mbr(const HA_KEYSEG *keyseg, MARIA_PAGE *page, uchar *to, uint key_length) { MARIA_HA *info= page->info; MARIA_SHARE *share= info->s; uint inc= 0; uint k_len= key_length; uint nod_flag= page->node; const uchar *k; const uchar *last= rt_PAGE_END(page); for (; (int)key_length > 0; keyseg += 2) { key_length -= keyseg->length * 2; /* Handle NULL part */ if (keyseg->null_bit) { return 1; } k= rt_PAGE_FIRST_KEY(share, page->buff, nod_flag); switch ((enum ha_base_keytype) keyseg->type) { case HA_KEYTYPE_INT8: RT_PAGE_MBR_KORR(share, int8, mi_sint1korr, mi_int1store, 1, to); break; case HA_KEYTYPE_BINARY: RT_PAGE_MBR_KORR(share, uint8, mi_uint1korr, mi_int1store, 1, to); break; case HA_KEYTYPE_SHORT_INT: RT_PAGE_MBR_KORR(share, int16, mi_sint2korr, mi_int2store, 2, to); break; case HA_KEYTYPE_USHORT_INT: RT_PAGE_MBR_KORR(share, uint16, mi_uint2korr, mi_int2store, 2, to); break; case HA_KEYTYPE_INT24: RT_PAGE_MBR_KORR(share, int32, mi_sint3korr, mi_int3store, 3, to); break; case HA_KEYTYPE_UINT24: RT_PAGE_MBR_KORR(share, uint32, mi_uint3korr, mi_int3store, 3, to); break; case HA_KEYTYPE_LONG_INT: RT_PAGE_MBR_KORR(share, int32, mi_sint4korr, mi_int4store, 4, to); break; case HA_KEYTYPE_ULONG_INT: RT_PAGE_MBR_KORR(share, uint32, mi_uint4korr, mi_int4store, 4, to); break; #ifdef HAVE_LONG_LONG case HA_KEYTYPE_LONGLONG: RT_PAGE_MBR_KORR(share, longlong, mi_sint8korr, mi_int8store, 8, to); break; case HA_KEYTYPE_ULONGLONG: RT_PAGE_MBR_KORR(share, ulonglong, mi_uint8korr, mi_int8store, 8, to); break; #endif case HA_KEYTYPE_FLOAT: RT_PAGE_MBR_GET(share, float, mi_float4get, mi_float4store, 4, to); break; case HA_KEYTYPE_DOUBLE: RT_PAGE_MBR_GET(share, double, mi_float8get, mi_float8store, 8, to); break; case HA_KEYTYPE_END: return 0; default: return 1; } } return 0; }