예제 #1
0
파일: rt_key.c 프로젝트: A-eolus/mysql
int rtree_add_key(MI_INFO *info, MI_KEYDEF *keyinfo, uchar *key, 
		  uint key_length, uchar *page_buf, my_off_t *new_page)
{
  uint page_size = mi_getint(page_buf);
  uint nod_flag = mi_test_if_nod(page_buf);
  DBUG_ENTER("rtree_add_key");

  if (page_size + key_length + info->s->base.rec_reflength <=
      keyinfo->block_length)
  {
    /* split won't be necessary */
    if (nod_flag)
    {
      /* save key */
      DBUG_ASSERT(_mi_kpos(nod_flag, key) < info->state->key_file_length);
      memcpy(rt_PAGE_END(page_buf), key - nod_flag, key_length + nod_flag); 
      page_size += key_length + nod_flag;
    }
    else
    {
      /* save key */
      DBUG_ASSERT(_mi_dpos(info, nod_flag, key + key_length +
                           info->s->base.rec_reflength) <
                  info->state->data_file_length + info->s->base.pack_reclength);
      memcpy(rt_PAGE_END(page_buf), key, key_length + 
                                         info->s->base.rec_reflength);
      page_size += key_length + info->s->base.rec_reflength;
    }
    mi_putint(page_buf, page_size, nod_flag);
    DBUG_RETURN(0);
  }

  DBUG_RETURN((rtree_split_page(info, keyinfo, page_buf, key, key_length,
                                new_page) ? -1 : 1));
}
static uchar *rtree_pick_key(MI_INFO *info, MI_KEYDEF *keyinfo, uchar *key, 
			     uint key_length, uchar *page_buf, uint nod_flag)
{
  double increase;
  double UNINIT_VAR(best_incr);
  double area;
  double UNINIT_VAR(best_area);
  uchar *best_key= NULL;
  uchar *k = rt_PAGE_FIRST_KEY(page_buf, nod_flag);
  uchar *last = rt_PAGE_END(page_buf);

  for (; k < last; k = rt_PAGE_NEXT_KEY(k, key_length, nod_flag))
  {
    /* The following is safe as -1.0 is an exact number */
    if ((increase = rtree_area_increase(keyinfo->seg, k, key, key_length, 
                                        &area)) == -1.0)
      return NULL;
    /* The following should be safe, even if we compare doubles */
    if (!best_key || increase < best_incr ||
        ((increase == best_incr) && (area < best_area)))
    {
      best_key = k;
      best_area = area;
      best_incr = increase;
    }
  }
  return best_key;
}
static uchar *rtree_pick_key(MI_INFO *info, MI_KEYDEF *keyinfo, uchar *key, 
			     uint key_length, uchar *page_buf, uint nod_flag)
{
  double increase;
  double best_incr = DBL_MAX;
  double perimeter;
  double best_perimeter;
  uchar *best_key;
  uchar *k = rt_PAGE_FIRST_KEY(page_buf, nod_flag);
  uchar *last = rt_PAGE_END(page_buf);

  LINT_INIT(best_perimeter);
  LINT_INIT(best_key);

  for (; k < last; k = rt_PAGE_NEXT_KEY(k, key_length, nod_flag))
  {
    if ((increase = rtree_perimeter_increase(keyinfo->seg, k, key, key_length,
					     &perimeter)) == -1)
      return NULL;
    if ((increase < best_incr)||
	(increase == best_incr && perimeter < best_perimeter))
    {
      best_key = k;
      best_perimeter= perimeter;
      best_incr = increase;
    }
  }
  return best_key;
}
int rtree_delete(MI_INFO *info, uint keynr, uchar *key, uint key_length)
{
  uint page_size;
  stPageList ReinsertList;
  my_off_t old_root;
  MI_KEYDEF *keyinfo = info->s->keyinfo + keynr;
  DBUG_ENTER("rtree_delete");

  if ((old_root = info->s->state.key_root[keynr]) == HA_OFFSET_ERROR)
  {
    my_errno= HA_ERR_END_OF_FILE;
    DBUG_RETURN(-1); /* purecov: inspected */
  }
  DBUG_PRINT("rtree", ("starting deletion at root page: %lu",
                       (ulong) old_root));

  ReinsertList.pages = NULL;
  ReinsertList.n_pages = 0;
  ReinsertList.m_pages = 0;
  
  switch (rtree_delete_req(info, keyinfo, key, key_length, old_root, 
                                 &page_size, &ReinsertList, 0))
  {
    case 2: /* empty */
    {
      info->s->state.key_root[keynr] = HA_OFFSET_ERROR;
      DBUG_RETURN(0);
    }
    case 0: /* deleted */
    {
      uint nod_flag;
      ulong i;
      for (i = 0; i < ReinsertList.n_pages; ++i)
      {
        uchar *page_buf;
        uchar *k;
        uchar *last;

        if (!(page_buf = (uchar*)my_alloca((uint)keyinfo->block_length)))
        {
          my_errno = HA_ERR_OUT_OF_MEM;
          goto err1;
        }
        if (!_mi_fetch_keypage(info, keyinfo, ReinsertList.pages[i].offs, 
                               DFLT_INIT_HITS, page_buf, 0))
          goto err1;
        nod_flag = mi_test_if_nod(page_buf);
        DBUG_PRINT("rtree", ("reinserting keys from "
                             "page: %lu  level: %d  nod_flag: %u",
                             (ulong) ReinsertList.pages[i].offs,
                             ReinsertList.pages[i].level, nod_flag));

        k = rt_PAGE_FIRST_KEY(page_buf, nod_flag);
        last = rt_PAGE_END(page_buf);
        for (; k < last; k = rt_PAGE_NEXT_KEY(k, key_length, nod_flag))
        {
          int res;
          if ((res= rtree_insert_level(info, keynr, k, key_length,
                                       ReinsertList.pages[i].level)) == -1)
          {
            my_afree((uchar*)page_buf);
            goto err1;
          }
          if (res)
          {
            ulong j;
            DBUG_PRINT("rtree", ("root has been split, adjust levels"));
            for (j= i; j < ReinsertList.n_pages; j++)
            {
              ReinsertList.pages[j].level++;
              DBUG_PRINT("rtree", ("keys from page: %lu  now level: %d",
                                   (ulong) ReinsertList.pages[i].offs,
                                   ReinsertList.pages[i].level));
            }
          }
        }
        my_afree((uchar*)page_buf);
        if (_mi_dispose(info, keyinfo, ReinsertList.pages[i].offs,
            DFLT_INIT_HITS))
          goto err1;
      }
      if (ReinsertList.pages)
        my_free((uchar*) ReinsertList.pages, MYF(0));

      /* check for redundant root (not leaf, 1 child) and eliminate */
      if ((old_root = info->s->state.key_root[keynr]) == HA_OFFSET_ERROR)
        goto err1;
      if (!_mi_fetch_keypage(info, keyinfo, old_root, DFLT_INIT_HITS,
                             info->buff, 0))
        goto err1;
      nod_flag = mi_test_if_nod(info->buff);
      page_size = mi_getint(info->buff);
      if (nod_flag && (page_size == 2 + key_length + nod_flag))
      {
        my_off_t new_root = _mi_kpos(nod_flag,
                                     rt_PAGE_FIRST_KEY(info->buff, nod_flag));
        if (_mi_dispose(info, keyinfo, old_root, DFLT_INIT_HITS))
          goto err1;
        info->s->state.key_root[keynr] = new_root;
      }
      info->update= HA_STATE_DELETED;
      DBUG_RETURN(0);

err1:
      DBUG_RETURN(-1); /* purecov: inspected */
    }
    case 1: /* not found */
    {
      my_errno = HA_ERR_KEY_NOT_FOUND;
      DBUG_RETURN(-1); /* purecov: inspected */
    }
    default:
    case -1: /* error */
    {
      DBUG_RETURN(-1); /* purecov: inspected */
    }
  }
}
static int rtree_delete_req(MI_INFO *info, MI_KEYDEF *keyinfo, uchar *key, 
                           uint key_length, my_off_t page, uint *page_size, 
                           stPageList *ReinsertList, int level)
{
  uchar *k;
  uchar *last;
  ulong i;
  uint nod_flag;
  uchar *page_buf;
  int res;
  DBUG_ENTER("rtree_delete_req");

  if (!(page_buf = (uchar*)my_alloca((uint)keyinfo->block_length)))
  {
    my_errno = HA_ERR_OUT_OF_MEM;
    DBUG_RETURN(-1); /* purecov: inspected */
  }
  if (!_mi_fetch_keypage(info, keyinfo, page, DFLT_INIT_HITS, page_buf, 0))
    goto err1;
  nod_flag = mi_test_if_nod(page_buf);
  DBUG_PRINT("rtree", ("page: %lu  level: %d  nod_flag: %u",
                       (ulong) page, level, nod_flag));

  k = rt_PAGE_FIRST_KEY(page_buf, nod_flag);
  last = rt_PAGE_END(page_buf);

  for (i = 0; k < last; k = rt_PAGE_NEXT_KEY(k, key_length, nod_flag), ++i)
  {
    if (nod_flag)
    { 
      /* not leaf */
      if (!rtree_key_cmp(keyinfo->seg, key, k, key_length, MBR_WITHIN))
      {
        switch ((res = rtree_delete_req(info, keyinfo, key, key_length, 
                  _mi_kpos(nod_flag, k), page_size, ReinsertList, level + 1)))
        {
          case 0: /* deleted */
          { 
            /* test page filling */
            if (*page_size + key_length >= rt_PAGE_MIN_SIZE(keyinfo->block_length)) 
            { 
              /* OK */
              /* Calculate a new key value (MBR) for the shrinked block. */
              if (rtree_set_key_mbr(info, keyinfo, k, key_length, 
                                  _mi_kpos(nod_flag, k)))
                goto err1;
              if (_mi_write_keypage(info, keyinfo, page,
                                    DFLT_INIT_HITS, page_buf))
                goto err1;
            }
            else
            { 
              /*
                Too small: delete key & add it descendant to reinsert list.
                Store position and level of the block so that it can be
                accessed later for inserting the remaining keys.
              */
              DBUG_PRINT("rtree", ("too small. move block to reinsert list"));
              if (rtree_fill_reinsert_list(ReinsertList, _mi_kpos(nod_flag, k),
                                           level + 1))
                goto err1;
              /*
                Delete the key that references the block. This makes the
                block disappear from the index. Hence we need to insert
                its remaining keys later. Note: if the block is a branch
                block, we do not only remove this block, but the whole
                subtree. So we need to re-insert its keys on the same
                level later to reintegrate the subtrees.
              */
              rtree_delete_key(info, page_buf, k, key_length, nod_flag);
              if (_mi_write_keypage(info, keyinfo, page,
                                    DFLT_INIT_HITS, page_buf))
                goto err1;
              *page_size = mi_getint(page_buf);
            }
            
            goto ok;
          }
          case 1: /* not found - continue searching */
          {
            break;
          }
          case 2: /* vacuous case: last key in the leaf */
          {
            rtree_delete_key(info, page_buf, k, key_length, nod_flag);
            if (_mi_write_keypage(info, keyinfo, page,
                                  DFLT_INIT_HITS, page_buf))
              goto err1;
            *page_size = mi_getint(page_buf);
            res = 0;
            goto ok;
          }
          default: /* error */
          case -1:
          {
            goto err1;
          }
        }
      }
    }
    else  
    {
      /* leaf */
      if (!rtree_key_cmp(keyinfo->seg, key, k, key_length, MBR_EQUAL | MBR_DATA))
      {
        rtree_delete_key(info, page_buf, k, key_length, nod_flag);
        *page_size = mi_getint(page_buf);
        if (*page_size == 2) 
        {
          /* last key in the leaf */
          res = 2;
          if (_mi_dispose(info, keyinfo, page, DFLT_INIT_HITS))
            goto err1;
        }
        else
        {
          res = 0;
          if (_mi_write_keypage(info, keyinfo, page, DFLT_INIT_HITS, page_buf))
            goto err1;
        }
        goto ok;
      }
    }
  }
  res = 1;

ok:
  my_afree((uchar*)page_buf);
  DBUG_RETURN(res);

err1:
  my_afree((uchar*)page_buf);
  DBUG_RETURN(-1); /* purecov: inspected */
}
static int rtree_find_req(MI_INFO *info, MI_KEYDEF *keyinfo, uint search_flag,
			  uint nod_cmp_flag, my_off_t page, int level)
{
  uchar *k;
  uchar *last;
  uint nod_flag;
  int res;
  uchar *page_buf;
  int k_len;
  uint *saved_key = (uint*) (info->rtree_recursion_state) + level;
  
  if (!(page_buf = (uchar*)my_alloca((uint)keyinfo->block_length)))
  {
    my_errno = HA_ERR_OUT_OF_MEM;
    return -1;
  }
  if (!_mi_fetch_keypage(info, keyinfo, page, DFLT_INIT_HITS, page_buf, 0))
    goto err1;
  nod_flag = mi_test_if_nod(page_buf);

  k_len = keyinfo->keylength - info->s->base.rec_reflength;
  
  if(info->rtree_recursion_depth >= level)
  {
    k = page_buf + *saved_key;
  }
  else
  {
    k = rt_PAGE_FIRST_KEY(page_buf, nod_flag);
  }
  last = rt_PAGE_END(page_buf);

  for (; k < last; k = rt_PAGE_NEXT_KEY(k, k_len, nod_flag))
  {
    if (nod_flag) 
    { 
      /* this is an internal node in the tree */
      if (!(res = rtree_key_cmp(keyinfo->seg, info->first_mbr_key, k, 
                            info->last_rkey_length, nod_cmp_flag)))
      {
        switch ((res = rtree_find_req(info, keyinfo, search_flag, nod_cmp_flag,
                                      _mi_kpos(nod_flag, k), level + 1)))
        {
          case 0: /* found - exit from recursion */
            *saved_key = (uint) (k - page_buf);
            goto ok;
          case 1: /* not found - continue searching */
            info->rtree_recursion_depth = level;
            break;
          default: /* error */
          case -1:
            goto err1;
        }
      }
    }
    else 
    { 
      /* this is a leaf */
      if (!rtree_key_cmp(keyinfo->seg, info->first_mbr_key, k, 
                         info->last_rkey_length, search_flag))
      {
        uchar *after_key = rt_PAGE_NEXT_KEY(k, k_len, nod_flag);
        info->lastpos = _mi_dpos(info, 0, after_key);
        info->lastkey_length = k_len + info->s->base.rec_reflength;
        memcpy(info->lastkey, k, info->lastkey_length);
        info->rtree_recursion_depth = level;
        *saved_key = (uint) (last - page_buf);

        if (after_key < last)
        {
          info->int_keypos = info->buff;
          info->int_maxpos = info->buff + (last - after_key);
          memcpy(info->buff, after_key, last - after_key);
          info->buff_used = 0;
        }
        else
        {
	  info->buff_used = 1;
        }

        res = 0;
        goto ok;
      }
    }
  }
  info->lastpos = HA_OFFSET_ERROR;
  my_errno = HA_ERR_KEY_NOT_FOUND;
  res = 1;

ok:
  my_afree((uchar*)page_buf);
  return res;

err1:
  my_afree((uchar*)page_buf);
  info->lastpos = HA_OFFSET_ERROR;
  return -1;
}
ha_rows rtree_estimate(MI_INFO *info, uint keynr, uchar *key, 
                       uint key_length, uint flag)
{
  MI_KEYDEF *keyinfo = info->s->keyinfo + keynr;
  my_off_t root;
  uint i = 0;
  uchar *k;
  uchar *last;
  uint nod_flag;
  uchar *page_buf;
  uint k_len;
  double area = 0;
  ha_rows res = 0;

  if (flag & MBR_DISJOINT)
    return info->state->records;

  if ((root = info->s->state.key_root[keynr]) == HA_OFFSET_ERROR)
    return HA_POS_ERROR;
  if (!(page_buf = (uchar*)my_alloca((uint)keyinfo->block_length)))
    return HA_POS_ERROR;
  if (!_mi_fetch_keypage(info, keyinfo, root, DFLT_INIT_HITS, page_buf, 0))
    goto err1;
  nod_flag = mi_test_if_nod(page_buf);

  k_len = keyinfo->keylength - info->s->base.rec_reflength;

  k = rt_PAGE_FIRST_KEY(page_buf, nod_flag);
  last = rt_PAGE_END(page_buf);

  for (; k < last; k = rt_PAGE_NEXT_KEY(k, k_len, nod_flag), ++i)
  {
    if (nod_flag)
    {
      double k_area = rtree_rect_volume(keyinfo->seg, k, key_length);

      /* The following should be safe, even if we compare doubles */
      if (k_area == 0)
      {
        if (flag & (MBR_CONTAIN | MBR_INTERSECT))
        {
          area += 1;
        }
        else if (flag & (MBR_WITHIN | MBR_EQUAL))
        {
          if (!rtree_key_cmp(keyinfo->seg, key, k, key_length, MBR_WITHIN))
            area += 1;
        }
        else
          goto err1;
      }
      else
      {
        if (flag & (MBR_CONTAIN | MBR_INTERSECT))
        {
          area += rtree_overlapping_area(keyinfo->seg, key, k, key_length) / 
                  k_area;
        }
        else if (flag & (MBR_WITHIN | MBR_EQUAL))
        {
          if (!rtree_key_cmp(keyinfo->seg, key, k, key_length, MBR_WITHIN))
            area += rtree_rect_volume(keyinfo->seg, key, key_length) /
                    k_area;
        }
        else
          goto err1;
      }
    }
    else
    {
      if (!rtree_key_cmp(keyinfo->seg, key, k, key_length, flag))
        ++res;
    }
  }
  if (nod_flag)
  {
    if (i)
      res = (ha_rows) (area / i * info->state->records);
    else 
      res = HA_POS_ERROR;
  }

  my_afree((uchar*)page_buf);
  return res;

err1:
  my_afree((uchar*)page_buf);
  return HA_POS_ERROR;
}
예제 #8
0
static int rtree_get_req(MI_INFO *info, MI_KEYDEF *keyinfo, uint key_length, 
                         my_off_t page, int level)
{
  uchar *k;
  uchar *last;
  uint nod_flag;
  int res;
  uchar *page_buf;
  uint k_len;
  uint *saved_key = (uint*) (info->rtree_recursion_state) + level;
  
  if (!(page_buf = (uchar*)my_alloca((uint)keyinfo->block_length)))
    return -1;
  if (!_mi_fetch_keypage(info, keyinfo, page, DFLT_INIT_HITS, page_buf, 0))
    goto err1;
  nod_flag = mi_test_if_nod(page_buf);

  k_len = keyinfo->keylength - info->s->base.rec_reflength;

  if(info->rtree_recursion_depth >= level)
  {
    k = page_buf + *saved_key;
    if (!nod_flag)
    {
      /* Only leaf pages contain data references. */
      /* Need to check next key with data reference. */
      k = rt_PAGE_NEXT_KEY(k, k_len, nod_flag);
    }
  }
  else
  {
    k = rt_PAGE_FIRST_KEY(page_buf, nod_flag);
  }
  last = rt_PAGE_END(page_buf);

  for (; k < last; k = rt_PAGE_NEXT_KEY(k, k_len, nod_flag))
  {
    if (nod_flag) 
    { 
      /* this is an internal node in the tree */
      switch ((res = rtree_get_req(info, keyinfo, key_length, 
                                  _mi_kpos(nod_flag, k), level + 1)))
      {
        case 0: /* found - exit from recursion */
          *saved_key = k - page_buf;
          goto ok;
        case 1: /* not found - continue searching */
          info->rtree_recursion_depth = level;
          break;
        default:
        case -1: /* error */
          goto err1;
      }
    }
    else 
    { 
      /* this is a leaf */
      uchar *after_key = rt_PAGE_NEXT_KEY(k, k_len, nod_flag);
      info->lastpos = _mi_dpos(info, 0, after_key);
      info->lastkey_length = k_len + info->s->base.rec_reflength;
      memcpy(info->lastkey, k, info->lastkey_length);

      info->rtree_recursion_depth = level;
      *saved_key = k - page_buf;

      if (after_key < last)
      {
        info->int_keypos = (uchar*)saved_key;
        memcpy(info->buff, page_buf, keyinfo->block_length);
        info->int_maxpos = rt_PAGE_END(info->buff);
        info->buff_used = 0;
      }
      else
      {
	info->buff_used = 1;
      }

      res = 0;
      goto ok;
    }
  }
  info->lastpos = HA_OFFSET_ERROR;
  my_errno = HA_ERR_KEY_NOT_FOUND;
  res = 1;

ok:
  my_afree((uchar*)page_buf);
  return res;

err1:
  my_afree((uchar*)page_buf);
  info->lastpos = HA_OFFSET_ERROR;
  return -1;
}
예제 #9
0
/*
Calculates key page total MBR = MBR(key1) + MBR(key2) + ...
*/
int rtree_page_mbr(MI_INFO *info, HA_KEYSEG *keyseg, uchar *page_buf,
                  uchar *c, uint key_length)
{
  uint inc = 0;
  uint k_len = key_length;
  uint nod_flag = mi_test_if_nod(page_buf);
  uchar *k;
  uchar *last = rt_PAGE_END(page_buf);

  for (; (int)key_length > 0; keyseg += 2)
  {
    key_length -= keyseg->length * 2;
    
    /* Handle NULL part */
    if (keyseg->null_bit)
    {
      return 1;
    }

    k = rt_PAGE_FIRST_KEY(page_buf, nod_flag);

    switch ((enum ha_base_keytype) keyseg->type) {
    case HA_KEYTYPE_INT8:
      RT_PAGE_MBR_KORR(int8, mi_sint1korr, mi_int1store, 1);
      break;
    case HA_KEYTYPE_BINARY:
      RT_PAGE_MBR_KORR(uint8, mi_uint1korr, mi_int1store, 1);
      break;
    case HA_KEYTYPE_SHORT_INT:
      RT_PAGE_MBR_KORR(int16, mi_sint2korr, mi_int2store, 2);
      break;
    case HA_KEYTYPE_USHORT_INT:
      RT_PAGE_MBR_KORR(uint16, mi_uint2korr, mi_int2store, 2);
      break;
    case HA_KEYTYPE_INT24:
      RT_PAGE_MBR_KORR(int32, mi_sint3korr, mi_int3store, 3);
      break;
    case HA_KEYTYPE_UINT24:
      RT_PAGE_MBR_KORR(uint32, mi_uint3korr, mi_int3store, 3);
      break;
    case HA_KEYTYPE_LONG_INT:
      RT_PAGE_MBR_KORR(int32, mi_sint4korr, mi_int4store, 4);
      break;
    case HA_KEYTYPE_ULONG_INT:
      RT_PAGE_MBR_KORR(uint32, mi_uint4korr, mi_int4store, 4);
      break;
#ifdef HAVE_LONG_LONG
    case HA_KEYTYPE_LONGLONG:
      RT_PAGE_MBR_KORR(longlong, mi_sint8korr, mi_int8store, 8);
      break;
    case HA_KEYTYPE_ULONGLONG:
      RT_PAGE_MBR_KORR(ulonglong, mi_uint8korr, mi_int8store, 8);
      break;
#endif
    case HA_KEYTYPE_FLOAT:
      RT_PAGE_MBR_GET(float, mi_float4get, mi_float4store, 4);
      break;
    case HA_KEYTYPE_DOUBLE:
      RT_PAGE_MBR_GET(double, mi_float8get, mi_float8store, 8);
      break;
    case HA_KEYTYPE_END:
      return 0;
    default:
      return 1;
    }
  }
  return 0;
}
예제 #10
0
/*
  Calculates key page total MBR= MBR(key1) + MBR(key2) + ...
  Stores into *to.
*/
int maria_rtree_page_mbr(const HA_KEYSEG *keyseg,
                         MARIA_PAGE *page,
                         uchar *to, uint key_length)
{
  MARIA_HA *info= page->info;
  MARIA_SHARE *share= info->s;
  uint inc= 0;
  uint k_len= key_length;
  uint nod_flag= page->node;
  const uchar *k;
  const uchar *last= rt_PAGE_END(page);

  for (; (int)key_length > 0; keyseg += 2)
  {
    key_length -= keyseg->length * 2;

    /* Handle NULL part */
    if (keyseg->null_bit)
    {
      return 1;
    }

    k= rt_PAGE_FIRST_KEY(share, page->buff, nod_flag);

    switch ((enum ha_base_keytype) keyseg->type) {
    case HA_KEYTYPE_INT8:
      RT_PAGE_MBR_KORR(share, int8, mi_sint1korr, mi_int1store, 1, to);
      break;
    case HA_KEYTYPE_BINARY:
      RT_PAGE_MBR_KORR(share, uint8, mi_uint1korr, mi_int1store, 1, to);
      break;
    case HA_KEYTYPE_SHORT_INT:
      RT_PAGE_MBR_KORR(share, int16, mi_sint2korr, mi_int2store, 2, to);
      break;
    case HA_KEYTYPE_USHORT_INT:
      RT_PAGE_MBR_KORR(share, uint16, mi_uint2korr, mi_int2store, 2, to);
      break;
    case HA_KEYTYPE_INT24:
      RT_PAGE_MBR_KORR(share, int32, mi_sint3korr, mi_int3store, 3, to);
      break;
    case HA_KEYTYPE_UINT24:
      RT_PAGE_MBR_KORR(share, uint32, mi_uint3korr, mi_int3store, 3, to);
      break;
    case HA_KEYTYPE_LONG_INT:
      RT_PAGE_MBR_KORR(share, int32, mi_sint4korr, mi_int4store, 4, to);
      break;
    case HA_KEYTYPE_ULONG_INT:
      RT_PAGE_MBR_KORR(share, uint32, mi_uint4korr, mi_int4store, 4, to);
      break;
#ifdef HAVE_LONG_LONG
    case HA_KEYTYPE_LONGLONG:
      RT_PAGE_MBR_KORR(share, longlong, mi_sint8korr, mi_int8store, 8, to);
      break;
    case HA_KEYTYPE_ULONGLONG:
      RT_PAGE_MBR_KORR(share, ulonglong, mi_uint8korr, mi_int8store, 8, to);
      break;
#endif
    case HA_KEYTYPE_FLOAT:
      RT_PAGE_MBR_GET(share, float, mi_float4get, mi_float4store, 4, to);
      break;
    case HA_KEYTYPE_DOUBLE:
      RT_PAGE_MBR_GET(share, double, mi_float8get, mi_float8store, 8, to);
      break;
    case HA_KEYTYPE_END:
      return 0;
    default:
      return 1;
    }
  }
  return 0;
}