예제 #1
0
int main()
{
	target_init();
	HAL_SET_PIN_DIRECTIONS();
	wdt_disable();
	led_on( LED_ALL );
	hal_delay( 500 );
	led_off( LED_ALL );
	dbo_open(0, 38400);


	TiRtc * rtc;
	rtc = rtc_construct( (void *)&g_rtc, sizeof(g_rtc) );
	rtc = rtc_open( rtc, NULL, NULL, 0x00 );
	rtc_start( rtc );

	while(1)
	{}
	
	// if not use listener 
	while (!rtc_expired(rtc))
	{
		//do something;
	}

	// rtc_expired now

}
예제 #2
0
/* int32_t open(const uint8_t* filename)
 *	calls open jump table
 *
 *
 */
int32_t open(const uint8_t* filename)
{
	// uint32_t flags;
	// cli_and_save(flags);
	
	/* Get the current process */
	pcb_t* cur_PCB = curr_process;

	file_t* farray = cur_PCB->file_fds;

	/* Find next open slot in the file array */
	uint32_t fd = 0;
	while(farray[fd].flags == 1)
		fd++;

	/* Check if there's space for the file and open a valid dentry*/
	dentry_t dentry;
	if(fd > 7 || -1 == read_dentry_by_name(filename, &dentry))
		return -1;

	file_t* cur_file = &(farray[fd]);

	// Fill the file array entry
	switch(dentry.file_type)
	{
		case 0: // RTC
			if(-1 == rtc_open(cur_file, filename))
				return -1;
			break;

		case 1: // Directory
			if(-1 == dir_open(cur_file, filename))
				return -1;
			break;

		case 2:	// File
			if(-1 == file_open(cur_file, filename))
				return -1;
			break;

		default: // Invalid type
			return -1;
	}

	 
	return fd;
}
예제 #3
0
/* Check if MAGIC is valid and print the Multiboot information structure
   pointed by ADDR. */
void
entry (unsigned long magic, unsigned long addr)
{
	uint32_t fileptr;// start of file system
	multiboot_info_t *mbi;

	/* Initialize the screen. */
	terminal_open();

	/* Am I booted by a Multiboot-compliant boot loader? */
	if (magic != MULTIBOOT_BOOTLOADER_MAGIC)
	{
		printf ("Invalid magic number: 0x%#x\n", (unsigned) magic);
		return;
	}

	/* Set MBI to the address of the Multiboot information structure. */
	mbi = (multiboot_info_t *) addr;

	/* Print out the flags. */
	printf ("flags = 0x%#x\n", (unsigned) mbi->flags);

	/* Are mem_* valid? */
	if (CHECK_FLAG (mbi->flags, 0))
		printf ("mem_lower = %uKB, mem_upper = %uKB\n",
				(unsigned) mbi->mem_lower, (unsigned) mbi->mem_upper);

	/* Is boot_device valid? */
	if (CHECK_FLAG (mbi->flags, 1))
		printf ("boot_device = 0x%#x\n", (unsigned) mbi->boot_device);

	/* Is the command line passed? */
	if (CHECK_FLAG (mbi->flags, 2))
		printf ("cmdline = %s\n", (char *) mbi->cmdline);

	if (CHECK_FLAG (mbi->flags, 3)) {
		int mod_count = 0;
		int i;
		module_t* mod = (module_t*)mbi->mods_addr;
		fileptr = mod->mod_start;
		while(mod_count < mbi->mods_count) {
			printf("Module %d loaded at address: 0x%#x\n", mod_count, (unsigned int)mod->mod_start);
			printf("Module %d ends at address: 0x%#x\n", mod_count, (unsigned int)mod->mod_end);
			printf("First few bytes of module:\n");
			for(i = 0; i<16; i++) {
				printf("0x%x ", *((char*)(mod->mod_start+i)));
			}
			printf("\n");
			mod_count++;
		}
	}
	/* Bits 4 and 5 are mutually exclusive! */
	if (CHECK_FLAG (mbi->flags, 4) && CHECK_FLAG (mbi->flags, 5))
	{
		printf ("Both bits 4 and 5 are set.\n");
		return;
	}

	/* Is the section header table of ELF valid? */
	if (CHECK_FLAG (mbi->flags, 5))
	{
		elf_section_header_table_t *elf_sec = &(mbi->elf_sec);

		printf ("elf_sec: num = %u, size = 0x%#x,"
				" addr = 0x%#x, shndx = 0x%#x\n",
				(unsigned) elf_sec->num, (unsigned) elf_sec->size,
				(unsigned) elf_sec->addr, (unsigned) elf_sec->shndx);
	}

	/* Are mmap_* valid? */
	if (CHECK_FLAG (mbi->flags, 6))
	{
		memory_map_t *mmap;

		printf ("mmap_addr = 0x%#x, mmap_length = 0x%x\n",
				(unsigned) mbi->mmap_addr, (unsigned) mbi->mmap_length);
		for (mmap = (memory_map_t *) mbi->mmap_addr;
				(unsigned long) mmap < mbi->mmap_addr + mbi->mmap_length;
				mmap = (memory_map_t *) ((unsigned long) mmap
					+ mmap->size + sizeof (mmap->size)))
			printf (" size = 0x%x,     base_addr = 0x%#x%#x\n"
					"     type = 0x%x,  length    = 0x%#x%#x\n",
					(unsigned) mmap->size,
					(unsigned) mmap->base_addr_high,
					(unsigned) mmap->base_addr_low,
					(unsigned) mmap->type,
					(unsigned) mmap->length_high,
					(unsigned) mmap->length_low);
	}

	/* Construct an LDT entry in the GDT */
	{
		seg_desc_t the_ldt_desc;
		the_ldt_desc.granularity    = 0;
		the_ldt_desc.opsize         = 1;
		the_ldt_desc.reserved       = 0;
		the_ldt_desc.avail          = 0;
		the_ldt_desc.present        = 1;
		the_ldt_desc.dpl            = 0x0;
		the_ldt_desc.sys            = 0;
		the_ldt_desc.type           = 0x2;

		SET_LDT_PARAMS(the_ldt_desc, &ldt, ldt_size);
		ldt_desc_ptr = the_ldt_desc;
		lldt(KERNEL_LDT);
	}

	/* Construct a TSS entry in the GDT */
	{
		seg_desc_t the_tss_desc;
		the_tss_desc.granularity    = 0;
		the_tss_desc.opsize         = 0;
		the_tss_desc.reserved       = 0;
		the_tss_desc.avail          = 0;
		the_tss_desc.seg_lim_19_16  = TSS_SIZE & 0x000F0000;
		the_tss_desc.present        = 1;
		the_tss_desc.dpl            = 0x0;
		the_tss_desc.sys            = 0;
		the_tss_desc.type           = 0x9;
		the_tss_desc.seg_lim_15_00  = TSS_SIZE & 0x0000FFFF;

		SET_TSS_PARAMS(the_tss_desc, &tss, tss_size);

		tss_desc_ptr = the_tss_desc;

		tss.ldt_segment_selector = KERNEL_LDT;
		tss.ss0 = KERNEL_DS;
		tss.esp0 = 0x800000;
		ltr(KERNEL_TSS);
	}
	/* Mask all IRQs again*/
	int j;
	for(j=0;j<16;j++)
	{
		disable_irq(j);
	}
	/* Init the PIC */
	i8259_init();
	
	/* Init IDT vector 0-20*/
	{
		int i;
		for(i=0;i<20;i++)
		{	
			if(i!=15)
			{
				//Define an idt_desc_t structure
				idt_desc_t idt_desc;
				//populate w/ correct values
				idt_desc.seg_selector=0x0010;
				idt_desc.present=1;
				idt_desc.size=1;
				idt_desc.dpl=0x0;
				idt_desc.reserved1=1;
				idt_desc.reserved2=1;
				idt_desc.reserved3=1;
				SET_IDT_ENTRY(idt_desc, ehandlers[i]);
				//Set new entry in table
				idt[i]=idt_desc;
			}
		}
	}
	/* Init IRQ Interrupts*/
	//Timer Chip
	{
		//Define an idt_desc_t structure
		idt_desc_t idt_desc;
		//populate w/ correct values
		idt_desc.seg_selector=0x0010;
		idt_desc.present=1;
		idt_desc.size=1;
		idt_desc.dpl=0x0;
		idt_desc.reserved1=1;
		idt_desc.reserved2=1;
		SET_IDT_ENTRY(idt_desc, irqhandlers[0]);
		//Set new entry in table
		idt[32]=idt_desc;
		//Disable IRQ masking
		//enable_irq(0);
	}
	//Keyboard
	{
		//Define an idt_desc_t structure
		idt_desc_t idt_desc;
		//populate w/ correct values
		idt_desc.seg_selector=0x0010;
		idt_desc.present=1;
		idt_desc.size=1;
		idt_desc.dpl=0x0;
		idt_desc.reserved1=1;
		idt_desc.reserved2=1;
		SET_IDT_ENTRY(idt_desc, irqhandlers[1]);
		//Set new entry in table
		idt[33]=idt_desc;
		//Disable IRQ masking
		//enable_irq(1);
	}
	//Real Time Clock
	{
		//Define an idt_desc_t structure
		idt_desc_t idt_desc;
		//populate w/ correct values
		idt_desc.seg_selector=0x0010;
		idt_desc.present=1;
		idt_desc.size=1;
		idt_desc.dpl=0x0;
		idt_desc.reserved1=1;
		idt_desc.reserved2=1;
		SET_IDT_ENTRY(idt_desc, irqhandlers[2]);
		//Set new entry in table
		idt[40]=idt_desc;
	//Disable IRQ masking
		//enable_irq(8);
	}
	/* Init System Call 0x80 */
	//Define an idt_desc_t structure
	idt_desc_t idt_desc;
	//populate w/ correct values
	idt_desc.seg_selector=0x0010;
	idt_desc.present=1;
	idt_desc.size=1;
	idt_desc.dpl=0x0;
	idt_desc.reserved1=1;
	idt_desc.reserved2=1;
	SET_IDT_ENTRY(idt_desc, systemcall);
	//Set new entry in table
	idt[128]=idt_desc;
			
	//Load new IDT
	lidt(idt_desc_ptr);

	/* Initialize devices, memory, filesystem, enable device interrupts on the
	 * PIC, any other initialization stuff... */
	paging_init();
	
	//Enable IRQ interrupts. 
	enable_irq(8);
	enable_irq(2);
	enable_irq(1);
	
	/* Enable interrupts */
	/* Do not enable the following until after you have set up your
	 * IDT correctly otherwise QEMU will triple fault and simple close
	 * without showing you any output */
	printf("Enabling Interrupts\n");
	sti();
	/* This will be replaced by a system call after CP3 */
	rtc_open();
	filesys_init(fileptr); // start of filesystem
	
	while(1)
	{
		
		printf("Reading-> ");
		uint8_t buf[1024];
		int cnt = terminal_read(buf, 1024);
		buf[cnt] = '\0';
		puts ((int8_t*)"Typed:    ");
		puts ((int8_t*)buf);
		putc('\n');
		
	}
	/* Execute the first program (`shell') ... */
	/* Spin (nicely, so we don't chew up cycles) */
	asm volatile(".1: hlt; jmp .1;");
}
예제 #4
0
/***********************************************************************
 *
 * Function: c_entry
 *
 * Purpose: Application entry point from the startup code
 *
 * Processing:
 *     See function.
 *
 * Parameters: None
 *
 * Outputs: None
 *
 * Returns: Always returns 1, or <0 on an error
 *
 * Notes: None
 *
 **********************************************************************/
int c_entry(void)
{
  SWIM_WINDOW_T win1;
  COLOR_T *fblog;
  INT_32 lcddev;

  /* Disable interrupts in ARM core */
  disable_irq_fiq();

  /* Setup miscellaneous board functions */
  phy3250_board_init();

  /* Set virtual address of MMU table */
  cp15_set_vmmu_addr((void *)
                     (IRAM_BASE + (256 * 1024) - (16 * 1024)));

  /* Initialize interrupt system */
  int_initialize(0xFFFFFFFF);

  /* Install standard IRQ dispatcher at ARM IRQ vector */
  int_install_arm_vec_handler(IRQ_VEC, (PFV) lpc32xx_irq_handler);

  /* Install RTC interrupt handler as a IRQ interrupts */
  int_install_irq_handler(IRQ_RTC, (PFV) rtc_user_interrupt);

  /* Open RTC */
  rtcdev = rtc_open(RTC, 0);
  if (rtcdev == 0)
  {
    /* Error */
    return -1;
  }

  /* Set a 1s match rate */
  secs = lsecs = 0;
  mstp.match_num      = 0;
  mstp.use_match_int  = TRUE;
  mstp.enable_onsw    = FALSE;
  mstp.match_tick_val = secs + 1;
  rtc_ioctl(rtcdev, RTC_ENABLE, 0);
  rtc_ioctl(rtcdev, RTC_SET_COUNT, 0);
  rtc_ioctl(rtcdev, RTC_CLEAR_INTS, RTC_MATCH0_INT_STS);
  rtc_ioctl(rtcdev, RTC_SETUP_MATCH, (INT_32) &mstp);

  /* Setup LCD muxing for STN Color 16BPP */
  clkpwr_setup_lcd(CLKPWR_LCDMUX_TFT16, 1);

  /* Enable clock to LCD block (HCLK_EN)*/
  clkpwr_clk_en_dis(CLKPWR_LCD_CLK, 1);

  /* Setup LCD paramaters in the LCD controller */
  lcddev = lcd_open(CLCDC, (INT_32) & LCD_DISPLAY);

  /* Upper Panel Frame Base Address register */
  lcd_ioctl(lcddev, LCD_SET_UP_FB, PHY_LCD_FRAME_BUF);

  /* Enable LCD controller and power signals */
  lcd_ioctl(lcddev, LCD_PWENABLE, 1);

  /* Enable LCD backlight */
  phy3250_lcd_backlight_enable(TRUE);

  /* Enable LCD power */
  phy3250_lcd_power_enable(TRUE);

  /* Set frame buffer address */
  fblog = (COLOR_T *) cp15_map_physical_to_virtual(PHY_LCD_FRAME_BUF);

  /* Create a SWIM window */
  swim_window_open(&win1, LCD_DISPLAY.pixels_per_line,
                   LCD_DISPLAY.lines_per_panel, fblog, 0, 0,
                   (LCD_DISPLAY.pixels_per_line - 1), (LCD_DISPLAY.lines_per_panel - 1),
                   1, WHITE, BLACK, BLACK);
  swim_put_ltext(&win1, "RTC example: This example will print the message "
                 "TICK whenever an RTC interrupt occurs (1 second intervals). It will "
                 "quit after 10 seconds\n");

  /* Enable RTC (starts counting) */
  rtc_ioctl(rtcdev, RTC_ENABLE, 1);

  /* Enable RTC interrupt in the interrupt controller */
  int_enable(IRQ_RTC);

  /* Enable IRQ interrupts in the ARM core */
  enable_irq();

  /* Loop for 10 seconds and let interrupts toggle the LEDs */
  while (secs < 10)
  {
    if (lsecs < secs)
    {
      swim_put_ltext(&win1, "TICK\n");
      lsecs = secs;
    }
  }
  /* Disable RTC interrupt in the interrupt controller */
  int_disable(IRQ_RTC);

  /* Disable interrupts in ARM core */
  disable_irq_fiq();

  /* Prior to closing the RTC, the ONSW key value is set. This will
     allow the RTC to keep it's value across resets as long as RTC
   power is maintained */
  rtc_ioctl(rtcdev, RTC_SETCLR_KEY, 1);

  /* Close RTC and LCD */
  rtc_close(rtcdev);
  lcd_close(lcddev);

  return 1;
}
예제 #5
0
파일: file_op.c 프로젝트: HLi91/ECE391OS
/*
 * sys_rtc_open
 * Description:  open system RTC
 * INPUTS:	
         const uint8_t* filename -- file name
		 pcb_t* mypcb -- Process control block
 * OUTPUTS:	None
 * RETURN: None
 * SIDE EFFECTS: None
 */
extern int32_t sys_rtc_open(const uint8_t* filename, pcb_t* mypcb)
{
	return rtc_open(filename);

}