int methyltest_main(int argc, char** argv)
{
    parse_methyltest_options(argc, argv);
    omp_set_num_threads(opt::num_threads);

    Fast5Map name_map(opt::reads_file);
    ModelMap models = read_models_fofn(opt::models_fofn, mtest_alphabet);
    
    // Open the BAM and iterate over reads

    // load bam file
    htsFile* bam_fh = sam_open(opt::bam_file.c_str(), "r");
    assert(bam_fh != NULL);

    // load bam index file
    std::string index_filename = opt::bam_file + ".bai";
    hts_idx_t* bam_idx = bam_index_load(index_filename.c_str());
    assert(bam_idx != NULL);

    // read the bam header
    bam_hdr_t* hdr = sam_hdr_read(bam_fh);
    
    // load reference fai file
    faidx_t *fai = fai_load(opt::genome_file.c_str());

    hts_itr_t* itr;

    // If processing a region of the genome, only emit events aligned to this window
    int clip_start = -1;
    int clip_end = -1;

    if(opt::region.empty()) {
        // TODO: is this valid?
        itr = sam_itr_queryi(bam_idx, HTS_IDX_START, 0, 0);
    } else {

        fprintf(stderr, "Region: %s\n", opt::region.c_str());
        itr = sam_itr_querys(bam_idx, hdr, opt::region.c_str());
        hts_parse_reg(opt::region.c_str(), &clip_start, &clip_end);
    }

#ifndef H5_HAVE_THREADSAFE
    if(opt::num_threads > 1) {
        fprintf(stderr, "You enabled multi-threading but you do not have a threadsafe HDF5\n");
        fprintf(stderr, "Please recompile nanopolish's built-in libhdf5 or run with -t 1\n");
        exit(1);
    }
#endif

    // Initialize writers
    OutputHandles handles;
    handles.site_writer = fopen(std::string(opt::bam_file + ".methyltest.sites.bed").c_str(), "w");
    handles.read_writer = fopen(std::string(opt::bam_file + ".methyltest.reads.tsv").c_str(), "w");
    handles.strand_writer = fopen(std::string(opt::bam_file + ".methyltest.strand.tsv").c_str(), "w");

    // Write a header to the reads.tsv file
    fprintf(handles.read_writer, "name\tsum_ll_ratio\tn_cpg\tcomplement_model\ttags\n");
    
    // strand header
    fprintf(handles.strand_writer, "name\tsum_ll_ratio\tn_cpg\tmodel\n");


    // Initialize iteration
    std::vector<bam1_t*> records(opt::batch_size, NULL);
    for(size_t i = 0; i < records.size(); ++i) {
        records[i] = bam_init1();
    }

    int result;
    size_t num_reads_processed = 0;
    size_t num_records_buffered = 0;
    Progress progress("[methyltest]");

    do {
        assert(num_records_buffered < records.size());
        
        // read a record into the next slot in the buffer
        result = sam_itr_next(bam_fh, itr, records[num_records_buffered]);
        num_records_buffered += result >= 0;

        // realign if we've hit the max buffer size or reached the end of file
        if(num_records_buffered == records.size() || result < 0) {
            
            #pragma omp parallel for
            for(size_t i = 0; i < num_records_buffered; ++i) {
                bam1_t* record = records[i];
                size_t read_idx = num_reads_processed + i;
                if( (record->core.flag & BAM_FUNMAP) == 0) {
                    calculate_methylation_for_read(models, name_map, fai, hdr, record, read_idx, handles);
                }
            }

            num_reads_processed += num_records_buffered;
            num_records_buffered = 0;

        }
    } while(result >= 0);
    
    assert(num_records_buffered == 0);
    progress.end();

    // cleanup records
    for(size_t i = 0; i < records.size(); ++i) {
        bam_destroy1(records[i]);
    }

    // cleanup
    fclose(handles.site_writer);
    fclose(handles.read_writer);
    fclose(handles.strand_writer);

    sam_itr_destroy(itr);
    bam_hdr_destroy(hdr);
    fai_destroy(fai);
    sam_close(bam_fh);
    hts_idx_destroy(bam_idx);
    
    return EXIT_SUCCESS;
}
예제 #2
0
int calcCoverage(char *fName, Slice *slice, htsFile *in, hts_idx_t *idx, int flags) {
  int  ref;
  int  begRange;
  int  endRange;
  char region[1024];
  char region_name[512];


  if (Slice_getChrStart(slice) != 1) {
    fprintf(stderr, "Currently only allow a slice start position of 1\n");
    return 1;
  }
  if (flags & M_UCSC_NAMING) {
    sprintf(region,"chr%s", Slice_getSeqRegionName(slice));
  } else {
    sprintf(region,"%s", Slice_getSeqRegionName(slice));
  }
  bam_hdr_t *header = bam_hdr_init();
  header = bam_hdr_read(in->fp.bgzf);
  ref = bam_name2id(header, region);
  if (ref < 0) {
    fprintf(stderr, "Invalid region %s\n", region);
    exit(1);
  }
  sprintf(region,"%s:%ld-%ld", region_name,
                             Slice_getSeqRegionStart(slice),
                             Slice_getSeqRegionEnd(slice));
  if (hts_parse_reg(region, &begRange, &endRange) == NULL) {
    fprintf(stderr, "Could not parse %s\n", region);
    exit(2);
  }
  bam_hdr_destroy(header);


  hts_itr_t *iter = sam_itr_queryi(idx, ref, begRange, endRange);
  bam1_t *b = bam_init1();

  Coverage *coverage = calloc(Slice_getLength(slice),sizeof(Coverage));

  long counter = 0;
  long overlapping = 0;
  long bad = 0;
  int startIndex = 0;
  while (bam_itr_next(in, iter, b) >= 0) {
    if (b->core.flag & (BAM_FUNMAP | BAM_FSECONDARY | BAM_FQCFAIL | BAM_FDUP)) {
      bad++;
      continue;
    }

    int end;
    //end = bam_calend(&b->core, bam1_cigar(b));
    end = bam_endpos(b);

    // There is a special case for reads which have zero length and start at begRange (so end at begRange ie. before the first base we're interested in).
    // That is the reason for the || end == begRange test
    if (end == begRange) {
      continue;
    }
    counter++;

    if (!(counter%1000000)) {
      if (verbosity > 1) { printf("."); }
      fflush(stdout);
    }

// Remember: b->core.pos is zero based!
    int cigInd;
    int refPos;
    int readPos;
    uint32_t *cigar = bam_get_cigar(b);
    for (cigInd = readPos = 0, refPos = b->core.pos; cigInd < b->core.n_cigar; ++cigInd) {
      int k;
      int lenCigBlock = cigar[cigInd]>>4;
      int op          = cigar[cigInd]&0xf;

      if (op == BAM_CMATCH || op == BAM_CEQUAL || op == BAM_CDIFF) {
        for (k = 0; k < lenCigBlock; ++k) {
          //if (ref[refPos+k] == 0) break; // out of boundary
          coverage[refPos+k].coverage++;
        }
        if (k < lenCigBlock) break;
        refPos += lenCigBlock; readPos += lenCigBlock;
      } else if (op == BAM_CDEL) {
        for (k = 0; k < lenCigBlock; ++k) {
        //  if (ref[refPos+k] == 0) break;
          coverage[refPos+k].coverage++;
        }
        if (k < lenCigBlock) break;
        refPos += lenCigBlock;
      } else if (op == BAM_CSOFT_CLIP) {
        readPos += lenCigBlock;
      } else if (op == BAM_CHARD_CLIP) {
      } else if (op == BAM_CINS) {
         readPos += lenCigBlock;
      } else if (op == BAM_CREF_SKIP) {
         refPos += lenCigBlock;
      }
    }

#ifdef DONE
    int j;
    int done = 0;
    int hadOverlap = 0;
    
    for (j=startIndex; j < Vector_getNumElement(genes) && !done; j++) {
      Gene *gene = Vector_getElementAt(genes,j); 
      if (!gene) {
        continue;
      }
// Remember: b->core.pos is zero based!
      if (b->core.pos < Gene_getEnd(gene) && end >= Gene_getStart(gene)) {
        int k;

        int doneGene = 0;
        for (k=0; k<Gene_getTranscriptCount(gene) && !doneGene; k++) {
          Transcript *trans = Gene_getTranscriptAt(gene,k);

          if (b->core.pos < Transcript_getEnd(trans) && end >= Transcript_getStart(trans)) {
            int m;
     
            for (m=0; m<Transcript_getExonCount(trans) && !doneGene; m++) {
              Exon *exon = Transcript_getExonAt(trans,m);

              if (b->core.pos < Exon_getEnd(exon) && end >= Exon_getStart(exon)) {

                // Only count as overlapping once (could be that a read overlaps more than one gene)
                if (!hadOverlap) {
                  overlapping++;
                  hadOverlap = 1;
                }

                gs = IDHash_getValue(geneCountsHash, Gene_getDbID(gene));
                gs->score++;
                
                doneGene = 1;
              }
            }
          }
        }
      } else if (Gene_getStart(gene) > end) {
        done = 1;
      } else if (Gene_getEnd(gene) < b->core.pos+1) {
        gs = IDHash_getValue(geneCountsHash, Gene_getDbID(gene));
        printf("Gene %s (%s) score %ld\n",Gene_getStableId(gene), 
                                          Gene_getDisplayXref(gene) ? DBEntry_getDisplayId(Gene_getDisplayXref(gene)) : "", 
                                          gs->score);

        if (verbosity > 1) { 
          printf("Removing gene %s (index %d) with extent %d to %d\n", 
                 Gene_getStableId(gene), 
                 gs->index,
                 Gene_getStart(gene),
                 Gene_getEnd(gene));
        }
        Vector_setElementAt(genes,j,NULL);

        // Magic (very important for speed) - move startIndex to first non null gene
        int n;
        startIndex = 0;
        for (n=0;n<Vector_getNumElement(genes);n++) {
          void *v = Vector_getElementAt(genes,n);

          if (v != NULL) {
            break;
          }
          startIndex++;
        }
        if (verbosity > 1) { 
          printf("startIndex now %d\n",startIndex);
        }
      }
    }
#endif
  }
  if (verbosity > 1) { printf("\n"); }

#ifdef DONE
// Print out read counts for what ever's left in the genes array
  int n;
  for (n=0;n<Vector_getNumElement(genes);n++) {
    Gene *gene = Vector_getElementAt(genes,n);

    if (gene != NULL) {
      gs = IDHash_getValue(geneCountsHash, Gene_getDbID(gene));
      printf("Gene %s (%s) score %ld\n",Gene_getStableId(gene), 
                                        Gene_getDisplayXref(gene) ? DBEntry_getDisplayId(Gene_getDisplayXref(gene)) : "", 
                                        gs->score);
    }

  }
#endif

  printf("Read %ld reads. Number of bad reads (unmapped, qc fail, secondary, dup) %ld\n", counter, bad);

  long i;
  for (i=0; i< Slice_getLength(slice); i++) {
    printf("%ld %ld\n", i+1, coverage[i].coverage);
  }

  sam_itr_destroy(iter);
  bam_destroy1(b);


  return 1;
}
int scorereads_main(int argc, char** argv)
{
    parse_scorereads_options(argc, argv);
    omp_set_num_threads(opt::num_threads);

    Fast5Map name_map(opt::reads_file);
    ModelMap models;
    if (!opt::models_fofn.empty())
        models = read_models_fofn(opt::models_fofn);
    
    // Open the BAM and iterate over reads

    // load bam file
    htsFile* bam_fh = sam_open(opt::bam_file.c_str(), "r");
    assert(bam_fh != NULL);

    // load bam index file
    std::string index_filename = opt::bam_file + ".bai";
    hts_idx_t* bam_idx = bam_index_load(index_filename.c_str());
    assert(bam_idx != NULL);

    // read the bam header
    bam_hdr_t* hdr = sam_hdr_read(bam_fh);
    
    // load reference fai file
    faidx_t *fai = fai_load(opt::genome_file.c_str());

    hts_itr_t* itr;

    // If processing a region of the genome, only emit events aligned to this window
    int clip_start = -1;
    int clip_end = -1;

    if(opt::region.empty()) {
        // TODO: is this valid?
        itr = sam_itr_queryi(bam_idx, HTS_IDX_START, 0, 0);
    } else {

        fprintf(stderr, "Region: %s\n", opt::region.c_str());
        itr = sam_itr_querys(bam_idx, hdr, opt::region.c_str());
        hts_parse_reg(opt::region.c_str(), &clip_start, &clip_end);
    }

#ifndef H5_HAVE_THREADSAFE
    if(opt::num_threads > 1) {
        fprintf(stderr, "You enabled multi-threading but you do not have a threadsafe HDF5\n");
        fprintf(stderr, "Please recompile nanopolish's built-in libhdf5 or run with -t 1\n");
        exit(1);
    }
#endif

    // Initialize iteration
    std::vector<bam1_t*> records(opt::batch_size, NULL);
    for(size_t i = 0; i < records.size(); ++i) {
        records[i] = bam_init1();
    }

    int result;
    size_t num_reads_realigned = 0;
    size_t num_records_buffered = 0;

    do {
        assert(num_records_buffered < records.size());
        
        // read a record into the next slot in the buffer
        result = sam_itr_next(bam_fh, itr, records[num_records_buffered]);
        num_records_buffered += result >= 0;

        // realign if we've hit the max buffer size or reached the end of file
        if(num_records_buffered == records.size() || result < 0) {
            #pragma omp parallel for schedule(dynamic)
            for(size_t i = 0; i < num_records_buffered; ++i) {
                bam1_t* record = records[i];
                size_t read_idx = num_reads_realigned + i;
                if( (record->core.flag & BAM_FUNMAP) == 0) {

                    //load read
                    std::string read_name = bam_get_qname(record);
                    std::string fast5_path = name_map.get_path(read_name);
                    SquiggleRead sr(read_name, fast5_path);

                    // TODO: early exit when have processed all of the reads in readnames
                    if (!opt::readnames.empty() && 
                         std::find(opt::readnames.begin(), opt::readnames.end(), read_name) == opt::readnames.end() )
                            continue;

                    for(size_t strand_idx = 0; strand_idx < NUM_STRANDS; ++strand_idx) {
                        std::vector<EventAlignment> ao = alignment_from_read(sr, strand_idx, read_idx,
                                                                             models, fai, hdr,
                                                                             record, clip_start, clip_end);
                        if (ao.size() == 0)
                            continue;

                        // Update pore model based on alignment
                        if ( opt::calibrate ) 
                            recalibrate_model(sr, strand_idx, ao, false);

                        double score = model_score(sr, strand_idx, fai, ao, 500);
                        if (score > 0) 
                            continue;
                        #pragma omp critical(print)
                        std::cout << read_name << " " << ( strand_idx ? "complement" : "template" ) 
                                  << " " << sr.pore_model[strand_idx].name << " " << score << std::endl;
                    } 
                }
            }

            num_reads_realigned += num_records_buffered;
            num_records_buffered = 0;
        }

    } while(result >= 0);
    
    // cleanup records
    for(size_t i = 0; i < records.size(); ++i) {
        bam_destroy1(records[i]);
    }

    // cleanup
    sam_itr_destroy(itr);
    bam_hdr_destroy(hdr);
    fai_destroy(fai);
    sam_close(bam_fh);
    hts_idx_destroy(bam_idx);
    return 0;
}
void train_one_round(const Fast5Map& name_map, size_t round)
{
    const PoreModelMap& current_models = PoreModelSet::get_models(opt::trained_model_type);

    // Initialize the training summary stats for each kmer for each model
    ModelTrainingMap model_training_data;
    for(auto current_model_iter = current_models.begin(); current_model_iter != current_models.end(); current_model_iter++) {
        // one summary entry per kmer in the model
        std::vector<StateSummary> summaries(current_model_iter->second.get_num_states());
        model_training_data[current_model_iter->first] = summaries;
    }

    // Open the BAM and iterate over reads

    // load bam file
    htsFile* bam_fh = sam_open(opt::bam_file.c_str(), "r");
    assert(bam_fh != NULL);

    // load bam index file
    std::string index_filename = opt::bam_file + ".bai";
    hts_idx_t* bam_idx = bam_index_load(index_filename.c_str());
    assert(bam_idx != NULL);

    // read the bam header
    bam_hdr_t* hdr = sam_hdr_read(bam_fh);

    // load reference fai file
    faidx_t *fai = fai_load(opt::genome_file.c_str());

    hts_itr_t* itr;

    // If processing a region of the genome, only emit events aligned to this window
    int clip_start = -1;
    int clip_end = -1;

    if(opt::region.empty()) {
        // TODO: is this valid?
        itr = sam_itr_queryi(bam_idx, HTS_IDX_START, 0, 0);
    } else {
        fprintf(stderr, "Region: %s\n", opt::region.c_str());
        itr = sam_itr_querys(bam_idx, hdr, opt::region.c_str());
        hts_parse_reg(opt::region.c_str(), &clip_start, &clip_end);
    }

#ifndef H5_HAVE_THREADSAFE
    if(opt::num_threads > 1) {
        fprintf(stderr, "You enabled multi-threading but you do not have a threadsafe HDF5\n");
        fprintf(stderr, "Please recompile nanopolish's built-in libhdf5 or run with -t 1\n");
        exit(1);
    }
#endif

    // Initialize iteration
    std::vector<bam1_t*> records(opt::batch_size, NULL);
    for(size_t i = 0; i < records.size(); ++i) {
        records[i] = bam_init1();
    }

    int result;
    size_t num_reads_realigned = 0;
    size_t num_records_buffered = 0;
    Progress progress("[methyltrain]");

    do {
        assert(num_records_buffered < records.size());
        
        // read a record into the next slot in the buffer
        result = sam_itr_next(bam_fh, itr, records[num_records_buffered]);
        num_records_buffered += result >= 0;

        // realign if we've hit the max buffer size or reached the end of file
        if(num_records_buffered == records.size() || result < 0) {
            #pragma omp parallel for            
            for(size_t i = 0; i < num_records_buffered; ++i) {
                bam1_t* record = records[i];
                size_t read_idx = num_reads_realigned + i;
                if( (record->core.flag & BAM_FUNMAP) == 0) {
                    add_aligned_events(name_map, fai, hdr, record, read_idx, clip_start, clip_end, round, model_training_data);
                }
            }

            num_reads_realigned += num_records_buffered;
            num_records_buffered = 0;
        }

        if(opt::progress) {
            fprintf(stderr, "Realigned %zu reads in %.1lfs\r", num_reads_realigned, progress.get_elapsed_seconds());
        }
    } while(result >= 0);
    
    assert(num_records_buffered == 0);
    progress.end();
    
    // open the summary file
    std::stringstream summary_fn;
    summary_fn << "methyltrain" << opt::out_suffix << ".summary";
    FILE* summary_fp = fopen(summary_fn.str().c_str(), "w");
    fprintf(summary_fp, "model_short_name\tkmer\tnum_matches\tnum_skips\t"
                         "num_stays\tnum_events_for_training\twas_trained\t"
                         "trained_level_mean\ttrained_level_stdv\n");

    // open the tsv file with the raw training data
    std::stringstream training_fn;
    training_fn << "methyltrain" << opt::out_suffix << ".round" << round << ".events.tsv";
    std::ofstream training_ofs(training_fn.str());

    // write out a header for the training data
    StateTrainingData::write_header(training_ofs);

    // iterate over models: template, complement_pop1, complement_pop2
    for(auto model_training_iter = model_training_data.begin(); 
             model_training_iter != model_training_data.end(); model_training_iter++) {
        
        // Initialize the trained model from the input model
        auto current_model_iter = current_models.find(model_training_iter->first);
        assert(current_model_iter != current_models.end());

        std::string model_name = model_training_iter->first;
        std::string model_short_name = current_model_iter->second.metadata.get_short_name();
        
        // Initialize the new model from the current model
        PoreModel updated_model = current_model_iter->second;
        uint32_t k = updated_model.k;
        const std::vector<StateSummary>& summaries = model_training_iter->second;

        // Generate the complete set of kmers
        std::string gen_kmer(k, 'A');
        std::vector<std::string> all_kmers;
        for(size_t ki = 0; ki < summaries.size(); ++ki) {
            all_kmers.push_back(gen_kmer);
            mtrain_alphabet->lexicographic_next(gen_kmer);
        }
        assert(gen_kmer == std::string(k, 'A'));
        assert(all_kmers.front() == std::string(k, 'A'));
        assert(all_kmers.back() == std::string(k, 'T'));

        // Update means for each kmer
        #pragma omp parallel for
        for(size_t ki = 0; ki < summaries.size(); ++ki) {
            assert(ki < all_kmers.size());
            std::string kmer = all_kmers[ki];

            // write the observed values to a tsv file
            #pragma omp critical
            {
                for(size_t ei = 0; ei < summaries[ki].events.size(); ++ei) {
                    summaries[ki].events[ei].write_tsv(training_ofs, model_short_name, kmer);
                }

            }

            bool is_m_kmer = kmer.find('M') != std::string::npos;
            bool update_kmer = opt::training_target == TT_ALL_KMERS ||
                               (is_m_kmer && opt::training_target == TT_METHYLATED_KMERS) ||
                               (!is_m_kmer && opt::training_target == TT_UNMETHYLATED_KMERS);
            bool trained = false;
            // only train if there are a sufficient number of events for this kmer
            if(update_kmer && summaries[ki].events.size() >= opt::min_number_of_events_to_train) {
                
                // train a mixture model where a minority of k-mers aren't methylated
                ParamMixture mixture;
                
                float incomplete_methylation_rate = 0.05f;
                std::string um_kmer = mtrain_alphabet->unmethylate(kmer);
                size_t um_ki = mtrain_alphabet->kmer_rank(um_kmer.c_str(), k);
                
                // Initialize the training parameters. If this is a kmer containing
                // a methylation site we train a two component mixture, otherwise
                // just fit a gaussian
                float major_weight = is_m_kmer ? 1 - incomplete_methylation_rate : 1.0f;
                mixture.log_weights.push_back(log(major_weight));
                mixture.params.push_back(current_model_iter->second.get_parameters(ki));
                
                if(is_m_kmer) {
                    // add second unmethylated component
                    mixture.log_weights.push_back(std::log(incomplete_methylation_rate));
                    mixture.params.push_back(current_model_iter->second.get_parameters(um_ki));
                }

                if(opt::verbose > 1) {
                    fprintf(stderr, "INIT__MIX %s\t%s\t[%.2lf %.2lf %.2lf]\t[%.2lf %.2lf %.2lf]\n", model_training_iter->first.c_str(), kmer.c_str(), 
                        std::exp(mixture.log_weights[0]), mixture.params[0].level_mean, mixture.params[0].level_stdv,
                        std::exp(mixture.log_weights[1]), mixture.params[1].level_mean, mixture.params[1].level_stdv);
                }

                ParamMixture trained_mixture = train_gaussian_mixture(summaries[ki].events, mixture);

                if(opt::verbose > 1) {
                    fprintf(stderr, "TRAIN_MIX %s\t%s\t[%.2lf %.2lf %.2lf]\t[%.2lf %.2lf %.2lf]\n", model_training_iter->first.c_str(), kmer.c_str(), 
                        std::exp(trained_mixture.log_weights[0]), trained_mixture.params[0].level_mean, trained_mixture.params[0].level_stdv,
                        std::exp(trained_mixture.log_weights[1]), trained_mixture.params[1].level_mean, trained_mixture.params[1].level_stdv);
                }

                #pragma omp critical
                updated_model.states[ki] = trained_mixture.params[0];

                if (model_stdv()) {
                    ParamMixture ig_mixture;
                    // weights
                    ig_mixture.log_weights = trained_mixture.log_weights;
                    // states
                    ig_mixture.params.emplace_back(trained_mixture.params[0]);

                    if(is_m_kmer) {
                        ig_mixture.params.emplace_back(current_model_iter->second.get_parameters(um_ki));
                    }
                    // run training
                    auto trained_ig_mixture = train_invgaussian_mixture(summaries[ki].events, ig_mixture);

                    LOG("methyltrain", debug)
                        << "IG_INIT__MIX " << model_training_iter->first.c_str() << " " << kmer.c_str() << " ["
                        << std::fixed << std::setprecision(5) << ig_mixture.params[0].sd_mean << " "
                        << ig_mixture.params[1].sd_mean << "]" << std::endl
                        << "IG_TRAIN_MIX " << model_training_iter->first.c_str() << " " << kmer.c_str() << " ["
                        << trained_ig_mixture.params[0].sd_mean << " "
                        << trained_ig_mixture.params[1].sd_mean << "]" << std::endl;

                    // update state
                    #pragma omp critical
                    {
                        updated_model.states[ki] = trained_ig_mixture.params[0];
                    }
                }

                trained = true;
            }

            #pragma omp critical
            {
                fprintf(summary_fp, "%s\t%s\t%d\t%d\t%d\t%zu\t%d\t%.2lf\t%.2lf\n",
                                        model_short_name.c_str(), kmer.c_str(), 
                                        summaries[ki].num_matches, summaries[ki].num_skips, summaries[ki].num_stays, 
                                        summaries[ki].events.size(), trained, updated_model.states[ki].level_mean, updated_model.states[ki].level_stdv);
            }

            // add the updated model into the collection (or replace what is already there)
            PoreModelSet::insert_model(opt::trained_model_type, updated_model);
        }
    }

    // cleanup records
    for(size_t i = 0; i < records.size(); ++i) {
        bam_destroy1(records[i]);
    }

    // cleanup
    sam_itr_destroy(itr);
    bam_hdr_destroy(hdr);
    fai_destroy(fai);
    sam_close(bam_fh);
    hts_idx_destroy(bam_idx);
    fclose(summary_fp);
}
예제 #5
0
loci_stats *bam_access_get_position_base_counts(char *chr, int posn){
	char *region = NULL;
	hts_itr_t *iter = NULL;
	bam1_t* b = NULL;
	bam_plp_t buf;
	loci_stats *stats = malloc(sizeof(loci_stats *));
	check_mem(stats);
	stats->base_counts = malloc(sizeof(int) * 4);
	check_mem(stats->base_counts);
	stats->base_counts[0] = 0;
	stats->base_counts[1] = 0;
	stats->base_counts[2] = 0;
	stats->base_counts[3] = 0;
	fholder->stats = stats;

	region = malloc((sizeof(char *) * (strlen(chr)+1))+sizeof(":")+sizeof("-")+(sizeof(char)*((no_of_digits(posn)*2)+1)));
	sprintf(region,"%s:%d-%d",chr,posn,posn);
	fholder->beg = posn;
	fholder->end = posn;

  // initialize pileup
	buf = bam_plp_init(pileup_func, (void *)fholder);
	bam_plp_set_maxcnt(buf,maxitercnt);

  /*
  sam_fetch(fholder->in, fholder->idx, ref, fholder->beg, fholder->end, buf, fetch_algo_func);
  */
  //Replace fetch with iterator for htslib compatibility.
  b = bam_init1();
  iter = sam_itr_querys(fholder->idx, fholder->head, region);
  int result;
  int count = 0;
  while ((result = sam_itr_next(fholder->in, iter, b)) >= 0) {
    if(b->core.qual < min_map_qual || (b->core.flag & BAM_FUNMAP)
			|| !(b->core.flag & BAM_FPROPER_PAIR) || (b->core.flag & BAM_FMUNMAP)//Proper pair and mate unmapped
			|| (b->core.flag & BAM_FDUP)//1024 is PCR/optical duplicate
			|| (b->core.flag & BAM_FSECONDARY) || (b->core.flag & BAM_FQCFAIL)//Secondary alignment, quality fail
			|| (b->core.flag & BAM_FSUPPLEMENTARY) ) continue;
    count++;
    bam_plp_push(buf, b);
  }
  sam_itr_destroy(iter);
  bam_plp_push(buf, 0);
  int tid, pos, n_plp = -1;
  const bam_pileup1_t *pil;
  while ( (pil=bam_plp_next(buf, &tid, &pos, &n_plp)) > 0) {
    if((pos+1) != posn) continue;
    int i=0;
   	for(i=0;i<n_plp;i++){
      const bam_pileup1_t *p = pil + i;
      int qual = bam_get_qual(p->b)[p->qpos];
      uint8_t c = bam_seqi(bam_get_seq(p->b), p->qpos);
      if(!(p->is_del) &&  qual >= min_base_qual
            &&  p->b->core.qual >= min_map_qual){
           //&& (c == 1 /*A*/|| c == 2 /*C*/|| c == 4 /*G*/|| c == 8 /*T*/)){
        //Now we add a new read pos struct to the list since the read is valid.
        //char cbase = toupper(bam_nt16_rev_table[c]);
        switch(c){
          case 1:
            fholder->stats->base_counts[0]++;
            break;

          case 2:
            fholder->stats->base_counts[1]++;
            break;

          case 4:
            fholder->stats->base_counts[2]++;
            break;

          case 8:
            fholder->stats->base_counts[3]++;
            break;

          default:
            break;

          }; // End of args switch statement */
   	    }
   	  }
  } //End of iteration through pileup
	//bam_plp_push(buf, 0); // finalize pileup
  bam_plp_destroy(buf);
	free(region);
	return fholder->stats;

error:
	//if(region) free(region);
	if(fholder->stats){
		if(fholder->stats->base_counts) free(fholder->stats->base_counts);
		free(fholder->stats);
	}
	if(iter) sam_itr_destroy(iter);
	if(b) bam_destroy1(b);
	if(region) free(region);
	return NULL;
}