예제 #1
0
// Sets the processor affinity
//
// Mathilda works by breaking up sets of Instructions to be
// executed by child processes. This function is called
// by child processes to bind them to a specific cpu
//
// @param[in] CPU number to bind to
// @return Returns OK or ERR from sched_setaffinity
int MathildaFork::set_affinity(uint32_t c) {
	if(c >= cores) {
		c = 0;
	}

	cpu_set_t cpus;
	CPU_ZERO(&cpus);
	CPU_SET(c, &cpus);

	int ret = sched_setaffinity(0, sizeof(cpus), &cpus);

	core = c;

#ifdef DEBUG
	if(ret == ERR) {
		fprintf(stdout, "[MathildaFork] Failed to bind process %d to CPU %d. Cache invalidation may occur!\n", getpid(), c);
	} else {
		fprintf(stdout, "[MathildaFork] Child (pid: %d) successfully bound to CPU %d\n", getpid(), c);
	}
#endif

	return ret;
}
예제 #2
0
파일: pfmsetup.c 프로젝트: naps62/CPD_PAPI
/**
 * set_affinity
 *
 * When loading or unloading a system-wide context, we must pin the pfmsetup
 * process to that CPU before making the system call. Also, get the current
 * affinity and return it to the caller so we can change it back later.
 **/
static int set_affinity(int cpu, cpu_set_t *old_cpu_set)
{
	cpu_set_t new_cpu_set;
	int rc;

	rc = sched_getaffinity(0, sizeof(*old_cpu_set), old_cpu_set);
	if (rc) {
		rc = errno;
		LOG_ERROR("Can't get current process affinity mask: %d\n", rc);
		return rc;
	}

	CPU_ZERO(&new_cpu_set);
	CPU_SET(cpu, &new_cpu_set);
	rc = sched_setaffinity(0, sizeof(new_cpu_set), &new_cpu_set);
	if (rc) {
		rc = errno;
		LOG_ERROR("Can't set process affinity to CPU %d: %d\n", cpu, rc);
		return rc;
	}

	return 0;
}
예제 #3
0
파일: tcopenmp.c 프로젝트: 00liujj/petsc
PETSC_EXTERN PetscErrorCode PetscThreadCommCreate_OpenMP(PetscThreadComm tcomm)
{
  PetscErrorCode ierr;

  PetscFunctionBegin;
  ierr                  = PetscStrcpy(tcomm->type,OPENMP);CHKERRQ(ierr);
  tcomm->ops->runkernel = PetscThreadCommRunKernel_OpenMP;
  tcomm->ops->getrank   = PetscThreadCommGetRank_OpenMP;
#pragma omp parallel num_threads(tcomm->nworkThreads) shared(tcomm)
  {
#if defined(PETSC_HAVE_SCHED_CPU_SET_T)
    cpu_set_t mset;
    PetscInt  ncores, icorr,trank;
    PetscGetNCores(&ncores);
    CPU_ZERO(&mset);
    trank = omp_get_thread_num();
    icorr = tcomm->affinities[trank]%ncores;
    CPU_SET(icorr,&mset);
    sched_setaffinity(0,sizeof(cpu_set_t),&mset);
#endif
  }
  PetscFunctionReturn(0);
}
예제 #4
0
파일: cpu_bind.c 프로젝트: msf/configs
int set_cpu_affinity(pid_t pid, unsigned long new_mask)
{
	unsigned long cur_mask;
	unsigned int len = sizeof(new_mask);

	if (sched_getaffinity(pid, len, (cpu_set_t *) &cur_mask) < 0) {
		perror("sched_getaffinity");
		return -1;
	}
	printf("pid %d's old affinity: %08lx\n", pid, cur_mask);

	if (sched_setaffinity(pid, len, (cpu_set_t *) &new_mask)) {
		perror("sched_setaffinity");
		return -1;
	}

	if (sched_getaffinity(pid, len, (cpu_set_t *) &cur_mask) < 0) {
		perror("sched_getaffinity");
		return -1;
	}
	printf(" pid %d's new affinity: %08lx\n", pid, cur_mask);
    return 0;
}
예제 #5
0
static void PtyReader_28979140(PtyReader_28979140_Arg* arg) {
  arg->finished = false;
  cpu_set_t cpus;
  ASSERT_EQ(0, sched_getaffinity(0, sizeof(cpu_set_t), &cpus));
  CPU_CLR(arg->main_cpu_id, &cpus);
  ASSERT_EQ(0, sched_setaffinity(0, sizeof(cpu_set_t), &cpus));

  uint32_t counter = 0;
  while (counter <= arg->data_count) {
    char buf[4096];  // Use big buffer to read to hit the bug more easily.
    size_t to_read = std::min(sizeof(buf), (arg->data_count + 1 - counter) * sizeof(uint32_t));
    ASSERT_TRUE(android::base::ReadFully(arg->slave_fd, buf, to_read));
    size_t num_of_value = to_read / sizeof(uint32_t);
    uint32_t* p = reinterpret_cast<uint32_t*>(buf);
    while (num_of_value-- > 0) {
      if (*p++ != counter++) {
        arg->matched = false;
      }
    }
  }
  close(arg->slave_fd);
  arg->finished = true;
}
예제 #6
0
static void 
__binding_cpu(void)
{
	int curr_cpu_max = __cpus_nums();
	
	srand(time(NULL));
	
	int num = rand() % curr_cpu_max;

	while(!num) {
		num = rand() % curr_cpu_max;
	}

	log_debug("CPU: %d\n", num);
	
	cpu_set_t mask;

	__CPU_ZERO(&mask);

	__CPU_SET(num, &mask);

	sched_setaffinity(0,sizeof(cpu_set_t),&mask);	
}
int main(int argc, char **argv)
{
	cpu_set_t mask;
	timespec start, end;
	list = NULL;

	CPU_ZERO(&mask);
	CPU_SET(0, &mask);
	sched_setaffinity(0, sizeof(mask), &mask);

	pgsz = sysconf(_SC_PAGESIZE);

	allocatedsize = 0;
	counter = 0;

	clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &start);
	allocate();
	clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &end);

	print_time_diff(start, end);

	return 0;
}
예제 #8
0
int main() {
  int64_t value = -1;

  // Lock to cpu0
  cpu_set_t mask;
  CPU_ZERO(&mask);
  CPU_SET(0, &mask);
  assert(!sched_setaffinity(0, sizeof(mask), &mask));

  while (1) {
    int fd = start_counter();

    timing_computation();

    ssize_t nread = read(fd, &value, sizeof(value));
    assert(nread == sizeof(value));
    close(fd);

    printf("%lld\n", value);
  }

  return 0;
}
RhsRobotBase::RhsRobotBase()			//Constructor
{
	cpu_set_t  mask;
	//struct sched_param param;

	printf("\n\t\t%s \"%s\"\n\tVersion %s built %s at %s\n\n", ROBOT_NAME, ROBOT_NICKNAME, ROBOT_VERSION, __DATE__, __TIME__);

	// run our code on the second core

	CPU_ZERO(&mask);
	CPU_SET(1, &mask);
	sched_setaffinity(0, sizeof(mask), &mask);

    //param.sched_priority = 10;
    //printf("did this work %d\n", sched_setscheduler(0, SCHED_FIFO, &param));

	// what are our priority limits?

	previousRobotState = ROBOT_STATE_UNKNOWN;
	currentRobotState = ROBOT_STATE_UNKNOWN;
	SmartDashboard::init();
	loop = 0;			//Initializes the loop counter
}
예제 #10
0
void
__upc_affinity_set (upc_info_p u, int thread_id)
{
  const upc_thread_info_p tinfo = &u->thread_info[thread_id];
  switch (u->sched_policy)
    {
    case GUPCR_SCHED_POLICY_CPU:
    case GUPCR_SCHED_POLICY_CPU_STRICT:
      {
	const int sched_affinity = tinfo->sched_affinity;
	cpu_set_t set;
	CPU_ZERO (&set);
	CPU_SET (sched_affinity, &set);
	if (sched_setaffinity (0, sizeof (set), &set))
	  {
	    __upc_fatal ("Scheduling cannot be set");
	  }
      }
      break;
    case GUPCR_SCHED_POLICY_NODE:
      __upc_numa_sched_set (u, thread_id);
      break;
    default:
      /* auto - no scheduling support */
      break;
    }
  /* set memory policy only if we are not AUTO scheduling */
  if ((u->sched_policy != GUPCR_SCHED_POLICY_AUTO) &&
      (u->mem_policy != GUPCR_MEM_POLICY_AUTO))
    __upc_numa_memory_affinity_set (u, thread_id);
#ifdef DEBUG_AFFINITY
  printf ("affinity: %d (%s,%s) scheduling (%d,%d)\n", thread_id,
	  upc_sched_policy_to_string (u->sched_policy),
	  upc_mem_policy_to_string (u->mem_policy),
	  tinfo->sched_affinity, tinfo->mem_affinity);
#endif /* DEBUG_AFFINITY */
}
예제 #11
0
int worker(int cpuid)
{
	/***********************************************/
	/*   Ensure   we   are  running  on  the  cpu  */
	/*   specified.				       */
	/***********************************************/
	cpu_set_t mask;
	CPU_ZERO(&mask);
	CPU_SET(cpuid, &mask);
	if (sched_setaffinity(getpid(), 64, &mask) < 0) {
		perror("sched_setaffinity");
//		exit(1);
	}

	/***********************************************/
	/*   Now we are locked to a cpu.	       */
	/***********************************************/

	/***********************************************/
	/*   Wait  for  master  to  give  us the "go"  */
	/*   signal.				       */
	/***********************************************/
	while (data[cpuid] == 0)
		;

	/***********************************************/
	/*   Let master know we saw it.		       */
	/***********************************************/
	data[cpuid] = 2;

	/***********************************************/
	/*   Wait for master to see our response.      */
	/***********************************************/
	while (data[cpuid] == 2)
		;
	exit(0);
}
예제 #12
0
void *thread_fn(void *param)
{
	struct thread_param *tp = param;
	struct timespec ts;
	int rc;
	unsigned long mask = 1 << tp->cpu;

	rc = sched_setaffinity(0, sizeof(mask), &mask);
	if (rc < 0) {
		EPRINTF("UNRESOLVED: Thread %s index %d: Can't set affinity: "
			"%d %s", tp->name, tp->index, rc, strerror(rc));
		exit(UNRESOLVED);
	}
	test_set_priority(pthread_self(), SCHED_FIFO, tp->priority);
	
	DPRINTF(stdout, "#EVENT %f %s Thread Started\n", 
		seconds_read() - base_time, tp->name);
	tp->progress = 0;
	ts.tv_sec = 0;
	ts.tv_nsec = tp->sleep_ms * 1000 * 1000;
	while (!tp->stop)
	{
		do_work(5, &tp->progress);
		if (tp->sleep_ms == 0)
			continue;
		rc = nanosleep(&ts, NULL);
		if (rc < 0) {
			EPRINTF("UNRESOLVED: Thread %s %d: nanosleep returned "
				"%d %s \n", tp->name, tp->index, rc, strerror(rc));
			exit(UNRESOLVED);
		}
	}
	
	DPRINTF(stdout, "#EVENT %f %s Thread Stopped\n", 
		seconds_read() - base_time, tp->name);
	return NULL;
}
예제 #13
0
void *incrementer(void *arg)
{
    int i;
    int proc_num = *(int *)arg;
    cpu_set_t set;

    CPU_ZERO(&set);
    CPU_SET(proc_num, &set);

    if (sched_setaffinity(gettid(), sizeof(cpu_set_t), &set)) {
        perror("sched_setaffinity");
        return NULL;
    }

    for (i = 0; i < INC_TO; i++) {
#if defined _USE_ATOMIC
        __sync_fetch_and_add(&global_int, 1);
#elif defined _USE_GTM 
        __transaction_atomic {
            global_int++;
        }
#elif defined _USE_MUTEX
        pthread_mutex_lock(&mutex);
        global_int++;
        pthread_mutex_unlock(&mutex);
#elif defined _USE_SPIN
        pthread_spin_lock(&spinlock);
        global_int++;
        pthread_spin_unlock(&spinlock);
#else
        global_int++;
#endif
    }

    return NULL;
}
// 将当前进程绑定到参数cpu_affinity对应比特位为1的位置的CPU核心。
// cpu_affinity[in]: 如果为1将绑定到第0个CPU,如果为2将绑定到第1个CPU,如果为4将绑定到第2个CPU,以此类推。
//                   同时支持绑定到多个CPU,比如为3可以绑定到第0和第1个CPU,为5可以绑定到第0和第2个CPU。
void
ngx_setaffinity(uint64_t cpu_affinity, ngx_log_t *log)
{
    cpu_set_t   mask;
    ngx_uint_t  i;

    ngx_log_error(NGX_LOG_NOTICE, log, 0,
                  "sched_setaffinity(0x%08Xl)", cpu_affinity);

    CPU_ZERO(&mask);
    i = 0;
    do {
        if (cpu_affinity & 1) {
            CPU_SET(i, &mask);
        }
        i++;
        cpu_affinity >>= 1;
    } while (cpu_affinity);

    if (sched_setaffinity(0, sizeof(cpu_set_t), &mask) == -1) {
        ngx_log_error(NGX_LOG_ALERT, log, ngx_errno,
                      "sched_setaffinity() failed");
    }
}
예제 #15
0
void *threadFunction(void *arg) {
  int threadID = *((int*)arg);
#ifdef USE_AFFINITY
  int cpu_id = threadID%4;
  cpu_set_t mask;
  CPU_ZERO(&mask);
  CPU_SET(cpu_id,&mask);
  sched_setaffinity(0,sizeof(mask),&mask);
#endif
  int matrixNum = 0;
  while (1) {
    HMap detectedEvents[4];
    AMap cops;
    AMap criminals;
    pthread_mutex_lock(&matrixFileMutex);
    matrixNum = fMatrixReader(detectedEvents);
    pthread_mutex_unlock(&matrixFileMutex);
    if (!matrixNum) { pthread_exit(0); }
    fGetMovement(detectedEvents[0],detectedEvents[1],cops);
    fGetMovement(detectedEvents[2],detectedEvents[3],criminals);
    fDetectCrucialEvent(cops, criminals, matrixNum);
  }
  pthread_exit(0);
}
예제 #16
0
/**
 * Try to ping process to a specific CPU. Returns the CPU we are
 * currently running on.
 */
static int pin_to_cpu(int run_cpu)
{
	cpu_set_t *cpusetp;
	size_t size;
	int num_cpus;

	num_cpus = CPU_SETSIZE; /* take default, currently 1024 */
	cpusetp = CPU_ALLOC(num_cpus);
	if (cpusetp == NULL)
		return sched_getcpu();

	size = CPU_ALLOC_SIZE(num_cpus);

	CPU_ZERO_S(size, cpusetp);
	CPU_SET_S(run_cpu, size, cpusetp);
	if (sched_setaffinity(0, size, cpusetp) < 0) {
		CPU_FREE(cpusetp);
		return sched_getcpu();
	}

	/* figure out on which cpus we actually run */
	CPU_FREE(cpusetp);
	return run_cpu;
}
예제 #17
0
/*
******************************************************************************
SUBROUTINE: set_affinity

Set this process to run on the input processor number.
The processor numbers start with 0 going to N-1 processors.
******************************************************************************
*/
int set_affinity(int processor)
{
extern int sched_getaffinity();
extern int sched_setaffinity();

unsigned long new_mask;

   unsigned int len = sizeof(new_mask);
   unsigned long cur_mask;
   pid_t p = 0;
   int ret;

   new_mask = 1<<(processor);

  //printf("set_affinity: %ld\n",new_mask);

   ret = sched_getaffinity(p, len, &cur_mask);
  // printf("sched_getaffinity = %d, cur_mask = %08lx\n",ret,cur_mask);
   if(ret != 0) abort();

   ret = sched_setaffinity(p, len, &new_mask);
  // printf("sched_setaffinity = %d, new_mask = %08lx\n",ret,new_mask);
   if(ret != 0) abort();

   ret = sched_getaffinity(p, len, &cur_mask);
  // printf("sched_getaffinity = %d, cur_mask = %08lx\n",ret,cur_mask);
   if(ret != 0) abort();
   if(cur_mask != new_mask)
   {
      printf("affinity did not get set! exiting\n");
      exit(-1);
   }
   fflush(stdout);

   return 0;
}
예제 #18
0
/*----------------------------------------------------------------------------*/
int main(int argc, char *argv[] )
{
	int core =0;

       if(argc >= 2)
       {
            core = atoi(argv[1]);
            printf("affinity to core %d \n", core);
       }
       else
       {
            printf("affinity to 0 core by default \n");
       }
       
  	/*initialize thread bind cpu*/
	cpu_set_t cpus;

	CPU_ZERO(&cpus);
	CPU_SET((unsigned)core, &cpus);
	sched_setaffinity(0, sizeof(cpus), &cpus);  

       RunServerThread();

}
예제 #19
0
void timing_enter_max_prio(void)
{
	int                 res;
	int                 new_scheduler = SCHED_FIFO;
	struct sched_param  new_sched_params;
	cpu_set_t           new_affinity;

	if (in_max_prio)
		return;

	/* remember old scheduler settings */
	res = sched_getaffinity(0, sizeof(affinity), &affinity);
	if (res < 0)
		return;
	scheduler = sched_getscheduler(0);
	if (scheduler < 0)
		return;
	res = sched_getparam(0, &sched_params);
	if (res < 0)
		return;

	/* set high prio */
	CPU_ZERO(&new_affinity);
	CPU_SET(0, &new_affinity);
	res = sched_setaffinity(0, sizeof(new_affinity), &new_affinity);
	if (res < 0)
		return;
	new_scheduler = SCHED_FIFO;
	new_sched_params = sched_params;
	new_sched_params.sched_priority = sched_get_priority_max(new_scheduler);
	res = sched_setscheduler(0, new_scheduler, &new_sched_params);
	if (res < 0)
		return;

	in_max_prio = 1;
}
예제 #20
0
int set_process_affinity(int cpu)
{
	int retval = -1;
#if defined(CPU_ZERO)	
	cpu_set_t cpu_mask;
	
	CPU_ZERO(&cpu_mask);
	if (cpu >= 0 && cpu <= CPU_SETSIZE) {
		CPU_SET(cpu, &cpu_mask);
	} else {
		fprintf (stderr, "Wrong cpu id: %d\n", cpu); 
		return -1;
	}
		
	retval = sched_setaffinity(0, sizeof(cpu_mask), &cpu_mask);
#elif defined(cpuset_create)
    cpuset_t *cpu_mask = cpuset_create();

    cpuset_zero(cpu_mask);
    if (cpu >= 0 && cpu <= cpuset_size(cpu_mask)) {
        cpuset_set(cpu, cpu_mask);
    } else {
        fprintf (stderr, "Wrong cpu id: %d\n", cpu);
        return -1;
    }
    retval = _sched_setaffinity(0, 0, cpuset_size(cpu_mask), cpu_mask);
    cpuset_destroy(cpu_mask);
#else
    #error "no cpuset"
#endif

	if (retval == -1)
	perror("Error at sched_setaffinity()");
        
    return retval;
}
예제 #21
0
void Sys_SetProcessorAffinity( void ) {
#if defined(__linux__)
	uint32_t cores;

	if ( sscanf( com_affinity->string, "%X", &cores ) != 1 )
		cores = 1; // set to first core only

	const long numCores = sysconf( _SC_NPROCESSORS_ONLN );
	if ( !cores )
		cores = (1 << numCores) - 1; // use all cores

	cpu_set_t set;
	CPU_ZERO( &set );
	for ( int i = 0; i < numCores; i++ ) {
		if ( cores & (1<<i) ) {
			CPU_SET( i, &set );
		}
	}

	sched_setaffinity( 0, sizeof( set ), &set );
#elif defined(MACOS_X)
	//TODO: Apple's APIs for this are weird but exist on a per-thread level. Good enough for us.
#endif
}
예제 #22
0
static PyObject *
set_process_affinity_mask(PyObject *self, PyObject *args)
{
  unsigned long new_mask;
  unsigned long cur_mask;
  unsigned int len = sizeof(new_mask);
  pid_t pid;

  if (!PyArg_ParseTuple(args, "il:set_process_affinity_mask", &pid, &new_mask))
    return NULL;

  if (sched_getaffinity(pid, len,
                        (cpu_set_t *)&cur_mask) < 0) {
    PyErr_SetFromErrno(PyExc_ValueError);
    return NULL;
  }

  if (sched_setaffinity(pid, len, (cpu_set_t *)&new_mask)) {
    PyErr_SetFromErrno(PyExc_ValueError);
    return NULL;
  }

  return Py_BuildValue("l", cur_mask);
}
예제 #23
0
int main(int ac, char **av)
{
	size_t	len;
	size_t	range;
	size_t	size;
	int	i;
	unsigned long mask = 0;
	unsigned int masklen = sizeof(mask);
        char   *addr;
	cpu_set_t core;
	int num_cpus = 1;

	if(ac > 1) num_cpus = atoi(av[1]);

       	for(i = 0; i < num_cpus; i++) {
	  
	  CPU_ZERO(&core);
	  CPU_SET(i, &core);

	  if (sched_setaffinity(0, sizeof(core), &core) < 0) {
	    perror("sched_setaffinity");
	    exit(-1);
	  }

	  len = 128 * 1024 * 1024;
	  addr = (char *)malloc(len);
	
	  fprintf(stderr, "\"stride=%d\n", STRIDE);
	  for (range = LOWER; range <= len; range = step(range)) {
	    loads(addr, range, STRIDE, i);
	  }
	  free(addr);
	}

	return(0);
}
예제 #24
0
//##################################################################################################
static void *magma_dapplyQ_parallel_section(void *arg)
{
    magma_int_t my_core_id   = ((magma_dapplyQ_id_data*)arg) -> id;
    magma_dapplyQ_data* data = ((magma_dapplyQ_id_data*)arg) -> data;

    magma_int_t allcores_num   = data -> threads_num;
    magma_int_t n              = data -> n;
    magma_int_t ne             = data -> ne;
    magma_int_t n_gpu          = data -> n_gpu;
    magma_int_t nb             = data -> nb;
    magma_int_t Vblksiz        = data -> Vblksiz;
    double *E         = data -> E;
    magma_int_t lde            = data -> lde;
    double *V         = data -> V;
    magma_int_t ldv            = data -> ldv;
    double *TAU       = data -> TAU;
    double *T         = data -> T;
    magma_int_t ldt            = data -> ldt;
    double *dE        = data -> dE;
    magma_int_t ldde           = data -> ldde;
    pthread_barrier_t* barrier = &(data -> barrier);

    magma_int_t info;

    #ifdef ENABLE_TIMER
    real_Double_t timeQcpu=0.0, timeQgpu=0.0;
    #endif

    magma_int_t n_cpu = ne - n_gpu;

    // with MKL and when using omp_set_num_threads instead of mkl_set_num_threads
    // it need that all threads setting it to 1.
    magma_set_lapack_numthreads(1);

#ifdef MAGMA_SETAFFINITY
    //#define PRINTAFFINITY
#ifdef PRINTAFFINITY
    affinity_set print_set;
    print_set.print_affinity(my_core_id, "starting affinity");
#endif
    cpu_set_t old_set, new_set;

    //store current affinity
    CPU_ZERO(&old_set);
    sched_getaffinity( 0, sizeof(old_set), &old_set);
    //set new affinity
    // bind threads
    CPU_ZERO(&new_set);
    CPU_SET(my_core_id, &new_set);
    sched_setaffinity( 0, sizeof(new_set), &new_set);
#ifdef PRINTAFFINITY
    print_set.print_affinity(my_core_id, "set affinity");
#endif
#endif

    if (my_core_id == 0) {
        //=============================================
        //   on GPU on thread 0:
        //    - apply V2*Z(:,1:N_GPU)
        //=============================================
        #ifdef ENABLE_TIMER
        timeQgpu = magma_wtime();
        #endif

        magma_dsetmatrix(n, n_gpu, E, lde, dE, ldde);
        magma_dbulge_applyQ_v2(MagmaLeft, n_gpu, n, nb, Vblksiz, dE, ldde, V, ldv, T, ldt, &info);
        magma_device_sync();

        #ifdef ENABLE_TIMER
        timeQgpu = magma_wtime()-timeQgpu;
        printf("  Finish Q2_GPU GGG timing= %f\n", timeQgpu);
        #endif
    } else {
        //=============================================
        //   on CPU on threads 1:allcores_num-1:
        //    - apply V2*Z(:,N_GPU+1:NE)
        //=============================================
        #ifdef ENABLE_TIMER
        if (my_core_id == 1)
            timeQcpu = magma_wtime();
        #endif

        magma_int_t n_loc = magma_ceildiv(n_cpu, allcores_num-1);
        double* E_loc = E + (n_gpu+ n_loc * (my_core_id-1))*lde;
        n_loc = min(n_loc,n_cpu - n_loc * (my_core_id-1));

        magma_dtile_bulge_applyQ(my_core_id, MagmaLeft, n_loc, n, nb, Vblksiz, E_loc, lde, V, ldv, TAU, T, ldt);
        pthread_barrier_wait(barrier);

        #ifdef ENABLE_TIMER
        if (my_core_id == 1) {
            timeQcpu = magma_wtime()-timeQcpu;
            printf("  Finish Q2_CPU CCC timing= %f\n", timeQcpu);
        }
        #endif
    } // END if my_core_id

#ifdef MAGMA_SETAFFINITY
    //restore old affinity
    sched_setaffinity(0, sizeof(old_set), &old_set);
#ifdef PRINTAFFINITY
    print_set.print_affinity(my_core_id, "restored_affinity");
#endif
#endif

    return 0;
}
예제 #25
0
int test__openat_syscall_event_on_all_cpus(int subtest __maybe_unused)
{
	int err = -1, fd, cpu;
	struct cpu_map *cpus;
	struct perf_evsel *evsel;
	unsigned int nr_openat_calls = 111, i;
	cpu_set_t cpu_set;
	struct thread_map *threads = thread_map__new(-1, getpid(), UINT_MAX);
	char sbuf[STRERR_BUFSIZE];
	char errbuf[BUFSIZ];

	if (threads == NULL) {
		pr_debug("thread_map__new\n");
		return -1;
	}

	cpus = cpu_map__new(NULL);
	if (cpus == NULL) {
		pr_debug("cpu_map__new\n");
		goto out_thread_map_delete;
	}

	CPU_ZERO(&cpu_set);

	evsel = perf_evsel__newtp("syscalls", "sys_enter_openat");
	if (IS_ERR(evsel)) {
		tracing_path__strerror_open_tp(errno, errbuf, sizeof(errbuf), "syscalls", "sys_enter_openat");
		pr_debug("%s\n", errbuf);
		goto out_thread_map_delete;
	}

	if (perf_evsel__open(evsel, cpus, threads) < 0) {
		pr_debug("failed to open counter: %s, "
			 "tweak /proc/sys/kernel/perf_event_paranoid?\n",
			 str_error_r(errno, sbuf, sizeof(sbuf)));
		goto out_evsel_delete;
	}

	for (cpu = 0; cpu < cpus->nr; ++cpu) {
		unsigned int ncalls = nr_openat_calls + cpu;
		/*
		 * XXX eventually lift this restriction in a way that
		 * keeps perf building on older glibc installations
		 * without CPU_ALLOC. 1024 cpus in 2010 still seems
		 * a reasonable upper limit tho :-)
		 */
		if (cpus->map[cpu] >= CPU_SETSIZE) {
			pr_debug("Ignoring CPU %d\n", cpus->map[cpu]);
			continue;
		}

		CPU_SET(cpus->map[cpu], &cpu_set);
		if (sched_setaffinity(0, sizeof(cpu_set), &cpu_set) < 0) {
			pr_debug("sched_setaffinity() failed on CPU %d: %s ",
				 cpus->map[cpu],
				 str_error_r(errno, sbuf, sizeof(sbuf)));
			goto out_close_fd;
		}
		for (i = 0; i < ncalls; ++i) {
			fd = openat(0, "/etc/passwd", O_RDONLY);
			close(fd);
		}
		CPU_CLR(cpus->map[cpu], &cpu_set);
	}

	/*
	 * Here we need to explicitly preallocate the counts, as if
	 * we use the auto allocation it will allocate just for 1 cpu,
	 * as we start by cpu 0.
	 */
	if (perf_evsel__alloc_counts(evsel, cpus->nr, 1) < 0) {
		pr_debug("perf_evsel__alloc_counts(ncpus=%d)\n", cpus->nr);
		goto out_close_fd;
	}

	err = 0;

	for (cpu = 0; cpu < cpus->nr; ++cpu) {
		unsigned int expected;

		if (cpus->map[cpu] >= CPU_SETSIZE)
			continue;

		if (perf_evsel__read_on_cpu(evsel, cpu, 0) < 0) {
			pr_debug("perf_evsel__read_on_cpu\n");
			err = -1;
			break;
		}

		expected = nr_openat_calls + cpu;
		if (perf_counts(evsel->counts, cpu, 0)->val != expected) {
			pr_debug("perf_evsel__read_on_cpu: expected to intercept %d calls on cpu %d, got %" PRIu64 "\n",
				 expected, cpus->map[cpu], perf_counts(evsel->counts, cpu, 0)->val);
			err = -1;
		}
	}

	perf_evsel__free_counts(evsel);
out_close_fd:
	perf_evsel__close_fd(evsel, 1, threads->nr);
out_evsel_delete:
	perf_evsel__delete(evsel);
out_thread_map_delete:
	thread_map__put(threads);
	return err;
}
예제 #26
0
/*
 *  stress_tlb_shootdown()
 *	stress out TLB shootdowns
 */
static int stress_tlb_shootdown(const args_t *args)
{
	const size_t page_size = args->page_size;
	const size_t mmap_size = page_size * MMAP_PAGES;
	pid_t pids[MAX_TLB_PROCS];
	cpu_set_t proc_mask_initial;

	if (sched_getaffinity(0, sizeof(proc_mask_initial), &proc_mask_initial) < 0) {
		pr_fail_err("could not get CPU affinity");
		return EXIT_FAILURE;
	}

	do {
		uint8_t *mem, *ptr;
		int retry = 128;
		cpu_set_t proc_mask;
		int32_t tlb_procs, i;
		const int32_t max_cpus = stress_get_processors_configured();

		CPU_ZERO(&proc_mask);
		CPU_OR(&proc_mask, &proc_mask_initial, &proc_mask);

		tlb_procs = max_cpus;
		if (tlb_procs > MAX_TLB_PROCS)
			tlb_procs = MAX_TLB_PROCS;
		if (tlb_procs < MIN_TLB_PROCS)
			tlb_procs = MIN_TLB_PROCS;

		for (;;) {
			mem = mmap(NULL, mmap_size, PROT_WRITE | PROT_READ,
				MAP_SHARED | MAP_ANONYMOUS, -1, 0);
			if ((void *)mem == MAP_FAILED) {
				if ((errno == EAGAIN) ||
				    (errno == ENOMEM) ||
				    (errno == ENFILE)) {
					if (--retry < 0)
						return EXIT_NO_RESOURCE;
				} else {
					pr_fail_err("mmap");
				}
			} else {
				break;
			}
		}
		(void)memset(mem, 0, mmap_size);

		for (i = 0; i < tlb_procs; i++)
			pids[i] = -1;

		for (i = 0; i < tlb_procs; i++) {
			int32_t j, cpu = -1;

			for (j = 0; j < max_cpus; j++) {
				if (CPU_ISSET(j, &proc_mask)) {
					cpu = j;
					CPU_CLR(j, &proc_mask);
					break;
				}
			}
			if (cpu == -1)
				break;

			pids[i] = fork();
			if (pids[i] < 0)
				break;
			if (pids[i] == 0) {
				cpu_set_t mask;
				char buffer[page_size];

				(void)setpgid(0, g_pgrp);
				stress_parent_died_alarm();

				/* Make sure this is killable by OOM killer */
				set_oom_adjustment(args->name, true);

				CPU_ZERO(&mask);
				CPU_SET(cpu % max_cpus, &mask);
				(void)sched_setaffinity(args->pid, sizeof(mask), &mask);

				for (ptr = mem; ptr < mem + mmap_size; ptr += page_size) {
					/* Force tlb shoot down on page */
					(void)mprotect(ptr, page_size, PROT_READ);
					(void)memcpy(buffer, ptr, page_size);
					(void)munmap(ptr, page_size);
				}
				_exit(0);
			}
		}

		for (i = 0; i < tlb_procs; i++) {
			if (pids[i] != -1) {
				int status, ret;

				ret = shim_waitpid(pids[i], &status, 0);
				if ((ret < 0) && (errno == EINTR)) {
					int j;

					/*
					 * We got interrupted, so assume
					 * it was the alarm (timedout) or
					 * SIGINT so force terminate
					 */
					for (j = i; j < tlb_procs; j++) {
						if (pids[j] != -1)
							(void)kill(pids[j], SIGKILL);
					}

					/* re-wait on the failed wait */
					(void)shim_waitpid(pids[i], &status, 0);

					/* and continue waitpid on the pids */
				}
			}
		}
		(void)munmap(mem, mmap_size);
		(void)sched_setaffinity(0, sizeof(proc_mask_initial), &proc_mask_initial);
		inc_counter(args);
	} while (keep_stressing());

	return EXIT_SUCCESS;
}
예제 #27
0
/* The main CPU accumulator thread */
void guppi_accum_thread(void *_args) {

    float **accumulator;      //indexed accumulator[accum_id][chan][subband][stokes]
    char accum_dirty[NUM_SW_STATES];
    struct sdfits_data_columns data_cols[NUM_SW_STATES];
    int payload_type;
    int i, j, k, rv;

    /* Get arguments */
    struct guppi_thread_args *args = (struct guppi_thread_args *)_args;

    /* Set cpu affinity */
    cpu_set_t cpuset, cpuset_orig;
    sched_getaffinity(0, sizeof(cpu_set_t), &cpuset_orig);
    //CPU_ZERO(&cpuset);
    CPU_CLR(13, &cpuset);
    CPU_SET(9, &cpuset);
    rv = sched_setaffinity(0, sizeof(cpu_set_t), &cpuset);
    if (rv<0) { 
        guppi_error("guppi_accum_thread", "Error setting cpu affinity.");
        perror("sched_setaffinity");
    }

    /* Set priority */
    rv = setpriority(PRIO_PROCESS, 0, args->priority);
    if (rv<0) {
        guppi_error("guppi_accum_thread", "Error setting priority level.");
        perror("set_priority");
    }

    /* Attach to status shared mem area */
    struct guppi_status st;
    rv = guppi_status_attach(&st);
    if (rv!=GUPPI_OK) {
        guppi_error("guppi_accum_thread", 
                "Error attaching to status shared memory.");
        pthread_exit(NULL);
    }
    pthread_cleanup_push((void *)guppi_status_detach, &st);
    pthread_cleanup_push((void *)set_exit_status, &st);
    pthread_cleanup_push((void *)guppi_thread_set_finished, args);

    /* Init status */
    guppi_status_lock_safe(&st);
    hputs(st.buf, STATUS_KEY, "init");
    guppi_status_unlock_safe(&st);

    /* Read in general parameters */
    struct guppi_params gp;
    struct sdfits sf;
    pthread_cleanup_push((void *)guppi_free_sdfits, &sf);

    /* Attach to databuf shared mem */
    struct guppi_databuf *db_in, *db_out;
    db_in = guppi_databuf_attach(args->input_buffer);
    char errmsg[256];
    if (db_in==NULL) {
        sprintf(errmsg,
                "Error attaching to input databuf(%d) shared memory.", 
                args->input_buffer);
        guppi_error("guppi_accum_thread", errmsg);
        pthread_exit(NULL);
    }
    pthread_cleanup_push((void *)guppi_databuf_detach, db_in);
    db_out = guppi_databuf_attach(args->output_buffer);
    if (db_out==NULL) {
        sprintf(errmsg,
                "Error attaching to output databuf(%d) shared memory.", 
                args->output_buffer);
        guppi_error("guppi_accum_thread", errmsg);
        pthread_exit(NULL);
    }
    pthread_cleanup_push((void *)guppi_databuf_detach, db_out);

    /* Determine high/low bandwidth mode */
    char bw_mode[16];
    if (hgets(st.buf, "BW_MODE", 16, bw_mode))
    {
        if(strncmp(bw_mode, "high", 4) == 0)
            payload_type = INT_PAYLOAD;
        else if(strncmp(bw_mode, "low", 3) == 0)
            payload_type = FLOAT_PAYLOAD;
        else
            guppi_error("guppi_net_thread", "Unsupported bandwidth mode");
    }
    else
        guppi_error("guppi_net_thread", "BW_MODE not set");

    /* Read nchan and nsubband from status shared memory */
    guppi_read_obs_params(st.buf, &gp, &sf);

    /* Allocate memory for vector accumulators */
    create_accumulators(&accumulator, sf.hdr.nchan, sf.hdr.nsubband);
    pthread_cleanup_push((void *)destroy_accumulators, accumulator);

    /* Clear the vector accumulators */
    for(i = 0; i < NUM_SW_STATES; i++) accum_dirty[i] = 1;
    reset_accumulators(accumulator, data_cols, accum_dirty, sf.hdr.nsubband, sf.hdr.nchan);

    /* Loop */
    int curblock_in=0, curblock_out=0;
    int first=1;
    float reqd_exposure=0;
    double accum_time=0;
    int integ_num;
    float pfb_rate;
    int heap, accumid, struct_offset, array_offset;
    char *hdr_in=NULL, *hdr_out=NULL;
    struct databuf_index *index_in, *index_out;

    int nblock_int=0, npacket=0, n_pkt_drop=0, n_heap_drop=0;

    signal(SIGINT,cc);
    while (run) {

        /* Note waiting status */
        guppi_status_lock_safe(&st);
        hputs(st.buf, STATUS_KEY, "waiting");
        guppi_status_unlock_safe(&st);

        /* Wait for buf to have data */
        rv = guppi_databuf_wait_filled(db_in, curblock_in);
        if (rv!=0) continue;

        /* Note waiting status and current block*/
        guppi_status_lock_safe(&st);
        hputs(st.buf, STATUS_KEY, "accumulating");
        hputi4(st.buf, "ACCBLKIN", curblock_in);
        guppi_status_unlock_safe(&st);

        /* Read param struct for this block */
        hdr_in = guppi_databuf_header(db_in, curblock_in);
        if (first) 
            guppi_read_obs_params(hdr_in, &gp, &sf);
        else
            guppi_read_subint_params(hdr_in, &gp, &sf);

        /* Do any first time stuff: first time code runs, not first time process this block */
        if (first) {

            /* Set up first output header. This header is copied from block to block
               each time a new block is created */
            hdr_out = guppi_databuf_header(db_out, curblock_out);
            memcpy(hdr_out, guppi_databuf_header(db_in, curblock_in),
                    GUPPI_STATUS_SIZE);

            /* Read required exposure and PFB rate from status shared memory */
            reqd_exposure = sf.data_columns.exposure;
            pfb_rate = sf.hdr.efsampfr / (2 * sf.hdr.nchan);

            /* Initialise the index in the output block */
            index_out = (struct databuf_index*)guppi_databuf_index(db_out, curblock_out);
            index_out->num_datasets = 0;
            index_out->array_size = sf.hdr.nsubband * sf.hdr.nchan * NUM_STOKES * 4;

            first=0;
        }

        /* Loop through each spectrum (heap) in input buffer */
        index_in = (struct databuf_index*)guppi_databuf_index(db_in, curblock_in);

        for(heap = 0; heap < index_in->num_heaps; heap++)
        {
            /* If invalid, record it and move to next heap */
            if(!index_in->cpu_gpu_buf[heap].heap_valid)
            {
                n_heap_drop++;
                continue;
            }

            /* Read in heap from buffer */
            char* heap_addr = (char*)(guppi_databuf_data(db_in, curblock_in) +
                                sizeof(struct freq_spead_heap) * heap);
            struct freq_spead_heap* freq_heap = (struct freq_spead_heap*)(heap_addr);

            char* payload_addr = (char*)(guppi_databuf_data(db_in, curblock_in) +
                                sizeof(struct freq_spead_heap) * MAX_HEAPS_PER_BLK +
                                (index_in->heap_size - sizeof(struct freq_spead_heap)) * heap );
            int *i_payload = (int*)(payload_addr);
            float *f_payload = (float*)(payload_addr);

            accumid = freq_heap->status_bits & 0x7;         

            /*Debug: print heap */
/*            printf("%d, %d, %d, %d, %d, %d\n", freq_heap->time_cntr, freq_heap->spectrum_cntr,
                freq_heap->integ_size, freq_heap->mode, freq_heap->status_bits,
                freq_heap->payload_data_off);
*/

            /* If we have accumulated for long enough, write vectors to output block */
            if(accum_time >= reqd_exposure)
            {
                for(i = 0; i < NUM_SW_STATES; i++)
                {
                    /*If a particular accumulator is dirty, write it to output buffer */
                    if(accum_dirty[i])
                    {
                        /*If insufficient space, first mark block as filled and request new block*/
                        index_out = (struct databuf_index*)(guppi_databuf_index(db_out, curblock_out));

                        if( (index_out->num_datasets+1) *
                            (index_out->array_size + sizeof(struct sdfits_data_columns)) > 
                            db_out->block_size)
                        {
                            printf("Accumulator finished with output block %d\n", curblock_out);

                            /* Write block number to status buffer */
                            guppi_status_lock_safe(&st);
                            hputi4(st.buf, "ACCBLKOU", curblock_out);
                            guppi_status_unlock_safe(&st);

                            /* Update packet count and loss fields in output header */
                            hputi4(hdr_out, "NBLOCK", nblock_int);
                            hputi4(hdr_out, "NPKT", npacket);
                            hputi4(hdr_out, "NPKTDROP", n_pkt_drop);
                            hputi4(hdr_out, "NHPDROP", n_heap_drop);

                            /* Close out current integration */
                            guppi_databuf_set_filled(db_out, curblock_out);

                            /* Wait for next output buf */
                            curblock_out = (curblock_out + 1) % db_out->n_block;
                            guppi_databuf_wait_free(db_out, curblock_out);

                            while ((rv=guppi_databuf_wait_free(db_out, curblock_out)) != GUPPI_OK)
                            {
                                if (rv==GUPPI_TIMEOUT) {
                                    guppi_warn("guppi_accum_thread", "timeout while waiting for output block");
                                    continue;
                                } else {
                                    guppi_error("guppi_accum_thread", "error waiting for free databuf");
                                    run=0;
                                    pthread_exit(NULL);
                                    break;
                                }
                            }

                            hdr_out = guppi_databuf_header(db_out, curblock_out);
                            memcpy(hdr_out, guppi_databuf_header(db_in, curblock_in),
                                    GUPPI_STATUS_SIZE);

                            /* Initialise the index in new output block */
                            index_out = (struct databuf_index*)guppi_databuf_index(db_out, curblock_out);
                            index_out->num_datasets = 0;
                            index_out->array_size = sf.hdr.nsubband * sf.hdr.nchan * NUM_STOKES * 4;
                            
                            nblock_int=0;
                            npacket=0;
                            n_pkt_drop=0;
                            n_heap_drop=0;
                        }            

                        /*Update index for output buffer*/
                        index_out = (struct databuf_index*)(guppi_databuf_index(db_out, curblock_out));

                        if(index_out->num_datasets == 0)
                            struct_offset = 0;
                        else
                            struct_offset = index_out->disk_buf[index_out->num_datasets-1].array_offset +
                                            index_out->array_size;

                        array_offset =  struct_offset + sizeof(struct sdfits_data_columns);
                        index_out->disk_buf[index_out->num_datasets].struct_offset = struct_offset;
                        index_out->disk_buf[index_out->num_datasets].array_offset = array_offset;

                        /*Copy sdfits_data_columns struct to disk buffer */
                        memcpy(guppi_databuf_data(db_out, curblock_out) + struct_offset,
                                &data_cols[i], sizeof(struct sdfits_data_columns));

                        /*Copy data array to disk buffer */
                        memcpy(guppi_databuf_data(db_out, curblock_out) + array_offset,
                                accumulator[i], index_out->array_size);
                        
                        /*Update SDFITS data_columns pointer to data array */
                        ((struct sdfits_data_columns*)
                        (guppi_databuf_data(db_out, curblock_out) + struct_offset))->data = 
                        (unsigned char*)(guppi_databuf_data(db_out, curblock_out) + array_offset);

                        index_out->num_datasets = index_out->num_datasets + 1;
                    }
                
                }

                accum_time = 0;
                integ_num += 1;

                reset_accumulators(accumulator, data_cols, accum_dirty,
                                sf.hdr.nsubband, sf.hdr.nchan);
            }

            /* Only add spectrum to accumulator if blanking bit is low */
            if((freq_heap->status_bits & 0x08) == 0)
            {
                /* Fill in data columns header fields */
                if(!accum_dirty[accumid])
                {
                    /*Record SPEAD header fields*/
                    data_cols[accumid].time = index_in->cpu_gpu_buf[heap].heap_rcvd_mjd;
                    data_cols[accumid].time_counter = freq_heap->time_cntr;
                    data_cols[accumid].integ_num = integ_num;
                    data_cols[accumid].sttspec = freq_heap->spectrum_cntr;
                    data_cols[accumid].accumid = accumid;

                    /* Fill in rest of fields from status buffer */
                    strcpy(data_cols[accumid].object, sf.data_columns.object);
                    data_cols[accumid].azimuth = sf.data_columns.azimuth;
                    data_cols[accumid].elevation = sf.data_columns.elevation;
                    data_cols[accumid].bmaj = sf.data_columns.bmaj;
                    data_cols[accumid].bmin = sf.data_columns.bmin;
                    data_cols[accumid].bpa = sf.data_columns.bpa;
                    data_cols[accumid].centre_freq_idx = sf.data_columns.centre_freq_idx;
                    data_cols[accumid].ra = sf.data_columns.ra;
                    data_cols[accumid].dec = sf.data_columns.dec;
                    data_cols[accumid].exposure = 0.0;

                    for(i = 0; i < NUM_SW_STATES; i++)
                        data_cols[accumid].centre_freq[i] = sf.data_columns.centre_freq[i];

                    accum_dirty[accumid] = 1;
                }

                data_cols[accumid].exposure += (float)(freq_heap->integ_size)/pfb_rate;
                data_cols[accumid].stpspec = freq_heap->spectrum_cntr;

                /* Add spectrum to appropriate vector accumulator (high-bw mode) */
                if(payload_type == INT_PAYLOAD)
                {
                    for(i = 0; i < sf.hdr.nchan; i++)
                    {
                        for(j = 0; j < sf.hdr.nsubband; j++)
                        {
                            for(k = 0; k < NUM_STOKES; k++)
                            {
                                accumulator[accumid]
                                           [i*sf.hdr.nsubband*NUM_STOKES + j*NUM_STOKES + k] +=
                                    (float)i_payload[i*sf.hdr.nsubband*NUM_STOKES + j*NUM_STOKES + k];
                            }
                        }
                    }
                }

                /* Add spectrum to appropriate vector accumulator (low-bw mode) */
                else
                {
                    for(i = 0; i < sf.hdr.nchan; i++)
                    {
                        for(j = 0; j < sf.hdr.nsubband; j++)
                        {
                            for(k = 0; k < NUM_STOKES; k++)
                            {
                                accumulator[accumid]
                                           [i*sf.hdr.nsubband*NUM_STOKES + j*NUM_STOKES + k] +=
                                    f_payload[i*sf.hdr.nsubband*NUM_STOKES + j*NUM_STOKES + k];
                            }
                        }
                    }
                }

            }
            
            accum_time += (double)freq_heap->integ_size / pfb_rate;
        }

        /* Update packet count and loss fields from input header */
        nblock_int++;
        npacket += gp.num_pkts_rcvd;
        n_pkt_drop += gp.num_pkts_dropped;

        /* Done with current input block */
        guppi_databuf_set_free(db_in, curblock_in);
        curblock_in = (curblock_in + 1) % db_in->n_block;

        /* Check for cancel */
        pthread_testcancel();
    }

    pthread_exit(NULL);
    pthread_cleanup_pop(0); /* Closes set_exit_status */
    pthread_cleanup_pop(0); /* Closes set_finished */
    pthread_cleanup_pop(0); /* Closes guppi_free_sdfits */
    pthread_cleanup_pop(0); /* Closes ? */
    pthread_cleanup_pop(0); /* Closes destroy_accumulators */
    pthread_cleanup_pop(0); /* Closes guppi_status_detach */
    pthread_cleanup_pop(0); /* Closes guppi_databuf_detach */
}
예제 #28
0
파일: ert_main.c 프로젝트: epffpe/Matlab
int main(int argc, char **argv)
{
  int ret;
  baseRateInfo_t info;
  pthread_attr_t attr;
  pthread_t baseRateThread;
  size_t stackSize;
  unsigned long cpuMask = 0x1;
  unsigned int len = sizeof(cpuMask);
  printf("**starting the model**\n");
  fflush(stdout);
  rtmSetErrorStatus(beagleboard_communication_M, 0);

  /* Unused arguments */
  (void)(argc);
  (void)(argv);

  /* All threads created by this process must run on a single CPU */
  ret = sched_setaffinity(0, len, (cpu_set_t *) &cpuMask);
  CHECK_STATUS(ret, "sched_setaffinity");

  /* Initialize semaphore used for thread synchronization */
  ret = sem_init(&stopSem, 0, 0);
  CHECK_STATUS(ret, "sem_init:stopSem");

  /* Create threads executing the Simulink model */
  pthread_attr_init(&attr);
  ret = pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
  CHECK_STATUS(ret, "pthread_attr_setinheritsched");
  ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
  CHECK_STATUS(ret, "pthread_attr_setdetachstate");

  /* PTHREAD_STACK_MIN is the minimum stack size required to start a thread */
  stackSize = 64000 + PTHREAD_STACK_MIN;
  ret = pthread_attr_setstacksize(&attr, stackSize);
  CHECK_STATUS(ret, "pthread_attr_setstacksize");

  /* Block signal used for timer notification */
  info.period = 0.01;
  info.signo = SIGRTMIN;
  sigemptyset(&info.sigMask);
  MW_blockSignal(info.signo, &info.sigMask);
  signal(SIGTERM, MW_exitHandler);     /* kill */
  signal(SIGHUP, MW_exitHandler);      /* kill -HUP */
  signal(SIGINT, MW_exitHandler);      /* Interrupt from keyboard */
  signal(SIGQUIT, MW_exitHandler);     /* Quit from keyboard */
  beagleboard_communication_initialize();

  /* Create base rate task */
  ret = pthread_create(&baseRateThread, &attr, (void *) baseRateTask, (void *)
                       &info);
  CHECK_STATUS(ret, "pthread_create");
  pthread_attr_destroy(&attr);

  /* Wait for a stopping condition. */
  MW_sem_wait(&stopSem);

  /* Received stop signal */
  printf("**stopping the model**\n");
  if (rtmGetErrorStatus(beagleboard_communication_M) != NULL) {
    printf("\n**%s**\n", rtmGetErrorStatus(beagleboard_communication_M));
  }

  /* Disable rt_OneStep() here */

  /* Terminate model */
  beagleboard_communication_terminate();
  return 0;
}
예제 #29
0
파일: ert_main.c 프로젝트: epffpe/Matlab
int main(int argc, char **argv)
{
  int ret;
  baseRateInfo_t info;
  pthread_attr_t attr;
  pthread_t baseRateThread;
  size_t stackSize;
  unsigned long cpuMask = 0x1;
  unsigned int len = sizeof(cpuMask);
  printf("**starting the model**\n");
  fflush(stdout);
  rtmSetErrorStatus(raspberrypi_audioequalizer_M, 0);
  rtExtModeParseArgs(argc, (const char_T **)argv, NULL);

  /* All threads created by this process must run on a single CPU */
  ret = sched_setaffinity(0, len, (cpu_set_t *) &cpuMask);
  CHECK_STATUS(ret, "sched_setaffinity");

  /* Initialize semaphore used for thread synchronization */
  ret = sem_init(&stopSem, 0, 0);
  CHECK_STATUS(ret, "sem_init:stopSem");

  /* Create threads executing the Simulink model */
  pthread_attr_init(&attr);
  ret = pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
  CHECK_STATUS(ret, "pthread_attr_setinheritsched");
  ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
  CHECK_STATUS(ret, "pthread_attr_setdetachstate");

  /* PTHREAD_STACK_MIN is the minimum stack size required to start a thread */
  stackSize = 64000 + PTHREAD_STACK_MIN;
  ret = pthread_attr_setstacksize(&attr, stackSize);
  CHECK_STATUS(ret, "pthread_attr_setstacksize");

  /* Block signal used for timer notification */
  info.period = 0.1;
  info.signo = SIGRTMIN;
  sigemptyset(&info.sigMask);
  MW_blockSignal(info.signo, &info.sigMask);
  signal(SIGTERM, MW_exitHandler);     /* kill */
  signal(SIGHUP, MW_exitHandler);      /* kill -HUP */
  signal(SIGINT, MW_exitHandler);      /* Interrupt from keyboard */
  signal(SIGQUIT, MW_exitHandler);     /* Quit from keyboard */
  raspberrypi_audioequalizer_initialize();

  /* External mode */
  rtSetTFinalForExtMode(&rtmGetTFinal(raspberrypi_audioequalizer_M));
  rtExtModeCheckInit(1);

  {
    boolean_T rtmStopReq = FALSE;
    rtExtModeWaitForStartPkt(raspberrypi_audioequalizer_M->extModeInfo, 1,
      &rtmStopReq);
    if (rtmStopReq) {
      rtmSetStopRequested(raspberrypi_audioequalizer_M, TRUE);
    }
  }

  rtERTExtModeStartMsg();

  /* Create base rate task */
  ret = pthread_create(&baseRateThread, &attr, (void *) baseRateTask, (void *)
                       &info);
  CHECK_STATUS(ret, "pthread_create");
  pthread_attr_destroy(&attr);

  /* Wait for a stopping condition. */
  MW_sem_wait(&stopSem);

  /* Received stop signal */
  printf("**stopping the model**\n");
  if (rtmGetErrorStatus(raspberrypi_audioequalizer_M) != NULL) {
    printf("\n**%s**\n", rtmGetErrorStatus(raspberrypi_audioequalizer_M));
  }

  /* External mode shutdown */
  rtExtModeShutdown(1);

  /* Disable rt_OneStep() here */

  /* Terminate model */
  raspberrypi_audioequalizer_terminate();
  return 0;
}
예제 #30
0
파일: init.c 프로젝트: aylusltd/julia
void julia_init(char *imageFile)
{
    jl_page_size = jl_getpagesize();
    jl_find_stack_bottom();
    jl_dl_handle = jl_load_dynamic_library(NULL, JL_RTLD_DEFAULT);
#ifdef __WIN32__
    uv_dlopen("ntdll.dll",jl_ntdll_handle); //bypass julia's pathchecking for system dlls
    uv_dlopen("Kernel32.dll",jl_kernel32_handle);
    uv_dlopen("msvcrt.dll",jl_crtdll_handle);
    uv_dlopen("Ws2_32.dll",jl_winsock_handle);
    _jl_exe_handle.handle = GetModuleHandleA(NULL);
#endif
    jl_io_loop = uv_default_loop(); //this loop will internal events (spawining process etc.)
    init_stdio();

#if defined(__linux__)
    int ncores = jl_cpu_cores();
    if (ncores > 1) {
        cpu_set_t cpumask;
        CPU_ZERO(&cpumask);
        for(int i=0; i < ncores; i++) {
            CPU_SET(i, &cpumask);
        }
        sched_setaffinity(0, sizeof(cpu_set_t), &cpumask);
    }
#endif

#ifdef JL_GC_MARKSWEEP
    jl_gc_init();
    jl_gc_disable();
#endif
    jl_init_frontend();
    jl_init_types();
    jl_init_tasks(jl_stack_lo, jl_stack_hi-jl_stack_lo);
    jl_init_codegen();
    jl_an_empty_cell = (jl_value_t*)jl_alloc_cell_1d(0);

    jl_init_serializer();

    if (!imageFile) {
        jl_main_module = jl_new_module(jl_symbol("Main"));
        jl_main_module->parent = jl_main_module;
        jl_core_module = jl_new_module(jl_symbol("Core"));
        jl_core_module->parent = jl_main_module;
        jl_set_const(jl_main_module, jl_symbol("Core"),
                     (jl_value_t*)jl_core_module);
        jl_module_using(jl_main_module, jl_core_module);
        jl_current_module = jl_core_module;
        jl_init_intrinsic_functions();
        jl_init_primitives();
        jl_load("boot.jl");
        jl_get_builtin_hooks();
        jl_boot_file_loaded = 1;
        jl_init_box_caches();
    }

    if (imageFile) {
        JL_TRY {
            jl_restore_system_image(imageFile);
        }
        JL_CATCH {
            JL_PRINTF(JL_STDERR, "error during init:\n");
            jl_show(jl_stderr_obj(), jl_exception_in_transit);
            JL_PRINTF(JL_STDOUT, "\n");
            jl_exit(1);
        }
    }

    // set module field of primitive types
    int i;
    void **table = jl_core_module->bindings.table;
    for(i=1; i < jl_core_module->bindings.size; i+=2) {
        if (table[i] != HT_NOTFOUND) {
            jl_binding_t *b = (jl_binding_t*)table[i];
            if (b->value && jl_is_datatype(b->value)) {
                jl_datatype_t *tt = (jl_datatype_t*)b->value;
                tt->name->module = jl_core_module;
            }
        }
    }

    // the Main module is the one which is always open, and set as the
    // current module for bare (non-module-wrapped) toplevel expressions.
    // it does "using Base" if Base is available.
    if (jl_base_module != NULL) {
        jl_add_standard_imports(jl_main_module);
    }
    // eval() uses Main by default, so Main.eval === Core.eval
    jl_module_import(jl_main_module, jl_core_module, jl_symbol("eval"));
    jl_current_module = jl_main_module;

#ifndef __WIN32__
    struct sigaction actf;
    memset(&actf, 0, sizeof(struct sigaction));
    sigemptyset(&actf.sa_mask);
    actf.sa_handler = fpe_handler;
    actf.sa_flags = 0;
    if (sigaction(SIGFPE, &actf, NULL) < 0) {
        JL_PRINTF(JL_STDERR, "sigaction: %s\n", strerror(errno));
        jl_exit(1);
    }

    stack_t ss;
    ss.ss_flags = 0;
    ss.ss_size = SIGSTKSZ;
    ss.ss_sp = malloc(ss.ss_size);
    if (sigaltstack(&ss, NULL) < 0) {
        JL_PRINTF(JL_STDERR, "sigaltstack: %s\n", strerror(errno));
        jl_exit(1);
    }

    struct sigaction act;
    memset(&act, 0, sizeof(struct sigaction));
    sigemptyset(&act.sa_mask);
    act.sa_sigaction = segv_handler;
    act.sa_flags = SA_ONSTACK | SA_SIGINFO;
    if (sigaction(SIGSEGV, &act, NULL) < 0) {
        JL_PRINTF(JL_STDERR, "sigaction: %s\n", strerror(errno));
        jl_exit(1);
    }
#else
    if (signal(SIGFPE, (void (__cdecl *)(int))fpe_handler) == SIG_ERR) {
        JL_PRINTF(JL_STDERR, "Couldn't set SIGFPE\n");
        jl_exit(1);
    }
#endif

#ifdef JL_GC_MARKSWEEP
    jl_gc_enable();
#endif
}