예제 #1
0
SpikeLoader::SpikeLoader( const URIHandler& params )
    : EventSource( params )
    , _impl( new Impl( *this, params ))
{
    if( getDt() < 0.f )
        setDt( params.getConfig().getTimestep( ));
}
예제 #2
0
TestLoader::TestLoader( const URIHandler& params )
    : EventSource( params )
    , _impl( new TestLoader::Impl( *this ))
{
    if( getDt() < 0.f )
        setDt( 1.f );
}
예제 #3
0
VSDLoader::VSDLoader( const URIHandler& params )
    : EventSource( params )
    , _impl( new VSDLoader::Impl( *this, params ))
{
    if( getDt() < 0.f )
        setDt( _impl->_voltageReport.getTimestep( ));
}
예제 #4
0
void ofxRParticleSystem::init()
{
    uniqueIDs = 0;
    count = new float;
    
    damping = new float;
    restitution = new float;
    accLimit = new float;
    velLimit = new float;
    dt = new float;
    
    setDt(1.0);
    setCount(0);
    setDamping(.25);
    setRestitution(1.0);
    setAccelerationLimit(5.0);
    setVelocityLimit(10.0);
    
    renderer = new ofxRParticleRenderer();
    renderer->setParticlesPtr(&particles);

    solver = NULL;
    solver = new ofxSolver(1);
    setSolver(*solver);
}
예제 #5
0
CompartmentLoader::CompartmentLoader( const URIHandler& params )
    : EventSource( params )
    , _impl( new CompartmentLoader::Impl( *this, params ))
{
    if( getDt() < 0.f )
        setDt( _impl->_report.getTimestep( ));
}
예제 #6
0
void ofxVerletSolver::init()
{
    zero.dpdt.set(0);
    zero.dvdt.set(0);
    dt = new float;
    bSelfAllocatedDt = true;
    setDt(1.0);
}
예제 #7
0
파일: Context.cpp 프로젝트: guparan/sofa
void Context::copySimulationContext(const Context& c)
{
    worldGravity_.setValue(c.getGravity());  ///< Gravity IN THE WORLD COORDINATE SYSTEM.
    setDt(c.getDt());
    setTime(c.getTime());
    setAnimate(c.getAnimate());



}
예제 #8
0
void BlockSegwayController::update() {
	// wait for a sensor update, check for exit condition every 100 ms
	if (poll(&_attPoll, 1, 100) < 0) return; // poll error

	uint64_t newTimeStamp = hrt_absolute_time();
	float dt = (newTimeStamp - _timeStamp) / 1.0e6f;
	_timeStamp = newTimeStamp;

	// check for sane values of dt
	// to prevent large control responses
	if (dt > 1.0f || dt < 0) return;

	// set dt for all child blocks
	setDt(dt);

	// check for new updates
	if (_param_update.updated()) updateParams();

	// get new information from subscriptions
	updateSubscriptions();

	// default all output to zero unless handled by mode
	for (unsigned i = 2; i < NUM_ACTUATOR_CONTROLS; i++)
		_actuators.control[i] = 0.0f;

	// only update guidance in auto mode
	if (_status.main_state == MAIN_STATE_AUTO) {
		// update guidance
	}

	// compute speed command
	float spdCmd = -th2v.update(_att.pitch) - q2v.update(_att.pitchspeed);

	// handle autopilot modes
	if (_status.main_state == MAIN_STATE_AUTO ||
	    _status.main_state == MAIN_STATE_ALTCTL ||
	    _status.main_state == MAIN_STATE_POSCTL) {
		_actuators.control[0] = spdCmd;
		_actuators.control[1] = spdCmd;

	} else if (_status.main_state == MAIN_STATE_MANUAL) {
		if (_status.navigation_state == NAVIGATION_STATE_DIRECT) {
			_actuators.control[CH_LEFT] = _manual.throttle;
			_actuators.control[CH_RIGHT] = _manual.pitch;

		} else if (_status.navigation_state == NAVIGATION_STATE_STABILIZE) {
			_actuators.control[0] = spdCmd;
			_actuators.control[1] = spdCmd;
		}
	}

	// update all publications
	updatePublications();

}
예제 #9
0
파일: Context.cpp 프로젝트: mhdsedighi/SOFA
void Context::copySimulationContext(const Context& c)
{
    worldGravity_.setValue(c.getGravity());  ///< Gravity IN THE WORLD COORDINATE SYSTEM.
    setDt(c.getDt());
    setTime(c.getTime());
    setAnimate(c.getAnimate());
#ifdef SOFA_SMP
    if(c.gpuPrioritary.getValue())
        gpuPrioritary.setValue(true);
#endif

#ifdef SOFA_SUPPORT_MOVING_FRAMES
    setPositionInWorld( c.getPositionInWorld());
    spatialVelocityInWorld_ = c.spatialVelocityInWorld_;
    velocityBasedLinearAccelerationInWorld_ = c.velocityBasedLinearAccelerationInWorld_;
#endif

#ifdef SOFA_SUPPORT_MULTIRESOLUTION
    // for multiresolution
// 	finestLevel_ = c.finestLevel_;
// 	coarsestLevel_ = c.coarsestLevel_;
// 	currentLevel_ = c.currentLevel_;
#endif

#ifdef SOFA_SMP
    if(!partition_)
    {
        if(processor.getValue()!=-1)
            is_partition_.setValue(true);
        if(is_partition())
        {

            partition_= new Iterative::IterativePartition();
//          partition_->setCPU(processor.getValue());
        }
    }
    if(processor.getValue()==-1&&c.processor.getValue()!=-1)
    {
        processor.setValue(c.processor.getValue());
        is_partition_.setValue(true);
    }
    if(c.is_partition()&&!partition_)
    {
        partition_=c.getPartition();
        is_partition_.setValue(true);
    }
    if((gpuPrioritary.getValue())&&partition_)
    {
        partition_->setGPUPrioritary();
    }

#endif

}
예제 #10
0
void mTecs::updateTimeMeasurement()
{
	if (!_dtCalculated) {
		float deltaTSeconds = 0.0f;
		if (!_firstIterationAfterReset) {
			hrt_abstime timestampNow = hrt_absolute_time();
			deltaTSeconds = (float)(timestampNow - timestampLastIteration) * 1e-6f;
			timestampLastIteration = timestampNow;
		}
		setDt(deltaTSeconds);

		_dtCalculated = true;
	}
}
예제 #11
0
void BlockMultiModeBacksideAutopilot::update()
{
	// wait for a sensor update, check for exit condition every 100 ms
	if (poll(&_attPoll, 1, 100) < 0) return; // poll error

	uint64_t newTimeStamp = hrt_absolute_time();
	float dt = (newTimeStamp - _timeStamp) / 1.0e6f;
	_timeStamp = newTimeStamp;

	// check for sane values of dt
	// to prevent large control responses
	if (dt > 1.0f || dt < 0) return;

	// set dt for all child blocks
	setDt(dt);

	// store old position command before update if new command sent
	if (_posCmd.updated()) {
		_lastPosCmd = _posCmd.getData();
	}

	// check for new updates
	if (_param_update.updated()) updateParams();

	// get new information from subscriptions
	updateSubscriptions();

	// default all output to zero unless handled by mode
	for (unsigned i = 4; i < NUM_ACTUATOR_CONTROLS; i++)
		_actuators.control[i] = 0.0f;

	// only update guidance in auto mode
	if (_status.state_machine == SYSTEM_STATE_AUTO) {
		// update guidance
		_guide.update(_pos, _att, _posCmd, _lastPosCmd);
	}

	// XXX handle STABILIZED (loiter on spot) as well
	// once the system switches from manual or auto to stabilized
	// the setpoint should update to loitering around this position

	// handle autopilot modes
	if (_status.state_machine == SYSTEM_STATE_AUTO ||
	    _status.state_machine == SYSTEM_STATE_STABILIZED) {

		// update guidance
		_guide.update(_pos, _att, _posCmd, _lastPosCmd);

		// calculate velocity, XXX should be airspeed, but using ground speed for now
		float v = sqrtf(_pos.vx * _pos.vx + _pos.vy * _pos.vy + _pos.vz * _pos.vz);

		// altitude hold
		float dThrottle = _h2Thr.update(_posCmd.altitude - _pos.alt);

		// heading hold
		float psiError = _wrap_pi(_guide.getPsiCmd() - _att.yaw);
		float phiCmd = _phiLimit.update(_psi2Phi.update(psiError));
		float pCmd = _phi2P.update(phiCmd - _att.roll);

		// velocity hold
		// negative sign because nose over to increase speed
		float thetaCmd = _theLimit.update(-_v2Theta.update(
				_vLimit.update(_vCmd.get()) - v));
		float qCmd = _theta2Q.update(thetaCmd - _att.pitch);

		// yaw rate cmd
		float rCmd = 0;

		// stabilization
		_stabilization.update(pCmd, qCmd, rCmd,
				      _att.rollspeed, _att.pitchspeed, _att.yawspeed);

		// output
		_actuators.control[CH_AIL] = _stabilization.getAileron() + _trimAil.get();
		_actuators.control[CH_ELV] = _stabilization.getElevator() + _trimElv.get();
		_actuators.control[CH_RDR] = _stabilization.getRudder() + _trimRdr.get();
		_actuators.control[CH_THR] = dThrottle + _trimThr.get();

		// XXX limit throttle to manual setting (safety) for now.
		// If it turns out to be confusing, it can be removed later once
		// a first binary release can be targeted.
		// This is not a hack, but a design choice.

		/* do not limit in HIL */
		if (!_status.flag_hil_enabled) {
			/* limit to value of manual throttle */
			_actuators.control[CH_THR] = (_actuators.control[CH_THR] < _manual.throttle) ?
						     _actuators.control[CH_THR] : _manual.throttle;
		}

	} else if (_status.state_machine == SYSTEM_STATE_MANUAL) {

		if (_status.manual_control_mode == VEHICLE_MANUAL_CONTROL_MODE_DIRECT) {
			_actuators.control[CH_AIL] = _manual.roll;
			_actuators.control[CH_ELV] = _manual.pitch;
			_actuators.control[CH_RDR] = _manual.yaw;
			_actuators.control[CH_THR] = _manual.throttle;

		} else if (_status.manual_control_mode == VEHICLE_MANUAL_CONTROL_MODE_SAS) {

			// calculate velocity, XXX should be airspeed, but using ground speed for now
			float v = sqrtf(_pos.vx * _pos.vx + _pos.vy * _pos.vy + _pos.vz * _pos.vz);

			// pitch channel -> rate of climb
			// TODO, might want to put a gain on this, otherwise commanding
			// from +1 -> -1 m/s for rate of climb
			//float dThrottle = _roc2Thr.update(
			//_rocMax.get()*_manual.pitch - _pos.vz);

			// roll channel -> bank angle
			float phiCmd = _phiLimit.update(_manual.roll * _phiLimit.getMax());
			float pCmd = _phi2P.update(phiCmd - _att.roll);

			// throttle channel -> velocity
			// negative sign because nose over to increase speed
			float vCmd = _manual.throttle * (_vLimit.getMax() - _vLimit.getMin()) + _vLimit.getMin();
			float thetaCmd = _theLimit.update(-_v2Theta.update(_vLimit.update(vCmd) - v));
			float qCmd = _theta2Q.update(thetaCmd - _att.pitch);

			// yaw rate cmd
			float rCmd = 0;

			// stabilization
			_stabilization.update(pCmd, qCmd, rCmd,
					      _att.rollspeed, _att.pitchspeed, _att.yawspeed);

			// output
			_actuators.control[CH_AIL] = _stabilization.getAileron() + _trimAil.get();
			_actuators.control[CH_ELV] = _stabilization.getElevator() + _trimElv.get();
			_actuators.control[CH_RDR] = _stabilization.getRudder() + _trimRdr.get();

			// currenlty using manual throttle
			// XXX if you enable this watch out, vz might be very noisy
			//_actuators.control[CH_THR] = dThrottle + _trimThr.get();
			_actuators.control[CH_THR] = _manual.throttle;

			// XXX limit throttle to manual setting (safety) for now.
			// If it turns out to be confusing, it can be removed later once
			// a first binary release can be targeted.
			// This is not a hack, but a design choice.

			/* do not limit in HIL */
			if (!_status.flag_hil_enabled) {
				/* limit to value of manual throttle */
				_actuators.control[CH_THR] = (_actuators.control[CH_THR] < _manual.throttle) ?
							     _actuators.control[CH_THR] : _manual.throttle;
			}
		}

		// body rates controller, disabled for now
		else if (0 /*_status.manual_control_mode == VEHICLE_MANUAL_CONTROL_MODE_SAS*/) {

			_stabilization.update(_manual.roll, _manual.pitch, _manual.yaw,
					      _att.rollspeed, _att.pitchspeed, _att.yawspeed);

			_actuators.control[CH_AIL] = _stabilization.getAileron();
			_actuators.control[CH_ELV] = _stabilization.getElevator();
			_actuators.control[CH_RDR] = _stabilization.getRudder();
			_actuators.control[CH_THR] = _manual.throttle;
		}
	}

	// update all publications
	updatePublications();
}
void BlockLocalPositionEstimator::update()
{

	// wait for a sensor update, check for exit condition every 100 ms
	int ret = px4_poll(_polls, 3, 100);

	if (ret < 0) {
		/* poll error, count it in perf */
		perf_count(_err_perf);
		return;
	}

	uint64_t newTimeStamp = hrt_absolute_time();
	float dt = (newTimeStamp - _timeStamp) / 1.0e6f;
	_timeStamp = newTimeStamp;

	// set dt for all child blocks
	setDt(dt);

	// auto-detect connected rangefinders while not armed
	bool armedState = _sub_armed.get().armed;

	if (!armedState && (_sub_lidar == NULL || _sub_sonar == NULL)) {
		detectDistanceSensors();
	}

	// reset pos, vel, and terrain on arming
	if (!_lastArmedState && armedState) {

		// we just armed, we are at home position on the ground
		_x(X_x) = 0;
		_x(X_y) = 0;

		// the pressure altitude of home may have drifted, so we don't
		// reset z to zero

		// reset flow integral
		_flowX = 0;
		_flowY = 0;

		// we aren't moving, all velocities are zero
		_x(X_vx) = 0;
		_x(X_vy) = 0;
		_x(X_vz) = 0;

		// assume we are on the ground, so terrain alt is local alt
		_x(X_tz) = _x(X_z);

		// reset lowpass filter as well
		_xLowPass.setState(_x);
	}

	_lastArmedState = armedState;

	// see which updates are available
	bool flowUpdated = _sub_flow.updated();
	bool paramsUpdated = _sub_param_update.updated();
	bool baroUpdated = _sub_sensor.updated();
	bool gpsUpdated = _gps_on.get() && _sub_gps.updated();
	bool homeUpdated = _sub_home.updated();
	bool visionUpdated = _vision_on.get() && _sub_vision_pos.updated();
	bool mocapUpdated = _sub_mocap.updated();
	bool lidarUpdated = (_sub_lidar != NULL) && _sub_lidar->updated();
	bool sonarUpdated = (_sub_sonar != NULL) && _sub_sonar->updated();

	// get new data
	updateSubscriptions();

	// update parameters
	if (paramsUpdated) {
		updateParams();
		updateSSParams();
	}

	// update home position projection
	if (homeUpdated) {
		updateHome();
	}

	// is xy valid?
	bool xy_stddev_ok = sqrtf(math::max(_P(X_x, X_x), _P(X_y, X_y))) < _xy_pub_thresh.get();

	if (_validXY) {
		// if valid and gps has timed out, set to not valid
		if (!xy_stddev_ok && !_gpsInitialized) {
			_validXY = false;
		}

	} else {
		if (xy_stddev_ok) {
			_validXY = true;
		}
	}

	// is z valid?
	bool z_stddev_ok = sqrtf(_P(X_z, X_z)) < _z_pub_thresh.get();

	if (_validZ) {
		// if valid and baro has timed out, set to not valid
		if (!z_stddev_ok && !_baroInitialized) {
			_validZ = false;
		}

	} else {
		if (z_stddev_ok) {
			_validZ = true;
		}
	}

	// is terrain valid?
	bool tz_stddev_ok = sqrtf(_P(X_tz, X_tz)) < _z_pub_thresh.get();

	if (_validTZ) {
		if (!tz_stddev_ok) {
			_validTZ = false;
		}

	} else {
		if (tz_stddev_ok) {
			_validTZ = true;
		}
	}

	// timeouts
	if (_validXY) {
		_time_last_xy = _timeStamp;
	}

	if (_validZ) {
		_time_last_z = _timeStamp;
	}

	if (_validTZ) {
		_time_last_tz = _timeStamp;
	}

	// check timeouts
	checkTimeouts();

	// if we have no lat, lon initialize projection at 0,0
	if (_validXY && !_map_ref.init_done) {
		map_projection_init(&_map_ref,
				    _init_home_lat.get(),
				    _init_home_lon.get());
	}

	// reinitialize x if necessary
	bool reinit_x = false;

	for (int i = 0; i < n_x; i++) {
		// should we do a reinit
		// of sensors here?
		// don't want it to take too long
		if (!PX4_ISFINITE(_x(i))) {
			reinit_x = true;
			break;
		}
	}

	if (reinit_x) {
		for (int i = 0; i < n_x; i++) {
			_x(i) = 0;
		}

		mavlink_and_console_log_info(&mavlink_log_pub, "[lpe] reinit x");
	}

	// reinitialize P if necessary
	bool reinit_P = false;

	for (int i = 0; i < n_x; i++) {
		for (int j = 0; j < n_x; j++) {
			if (!PX4_ISFINITE(_P(i, j))) {
				reinit_P = true;
				break;
			}
		}

		if (reinit_P) { break; }
	}

	if (reinit_P) {
		mavlink_and_console_log_info(&mavlink_log_pub, "[lpe] reinit P");
		initP();
	}

	// do prediction
	predict();

	// sensor corrections/ initializations
	if (gpsUpdated) {
		if (!_gpsInitialized) {
			gpsInit();

		} else {
			gpsCorrect();
		}
	}

	if (baroUpdated) {
		if (!_baroInitialized) {
			baroInit();

		} else {
			baroCorrect();
		}
	}

	if (lidarUpdated) {
		if (!_lidarInitialized) {
			lidarInit();

		} else {
			lidarCorrect();
		}
	}

	if (sonarUpdated) {
		if (!_sonarInitialized) {
			sonarInit();

		} else {
			sonarCorrect();
		}
	}

	if (flowUpdated) {
		if (!_flowInitialized) {
			flowInit();

		} else {
			perf_begin(_loop_perf);// TODO
			flowCorrect();
			//perf_count(_interval_perf);
			perf_end(_loop_perf);
		}
	}

	if (visionUpdated) {
		if (!_visionInitialized) {
			visionInit();

		} else {
			visionCorrect();
		}
	}

	if (mocapUpdated) {
		if (!_mocapInitialized) {
			mocapInit();

		} else {
			mocapCorrect();
		}
	}

	if (_altHomeInitialized) {
		// update all publications if possible
		publishLocalPos();
		publishEstimatorStatus();

		if (_validXY) {
			publishGlobalPos();
		}
	}

	// propagate delayed state, no matter what
	// if state is frozen, delayed state still
	// needs to be propagated with frozen state
	float dt_hist = 1.0e-6f * (_timeStamp - _time_last_hist);

	if (_time_last_hist == 0 ||
	    (dt_hist > HIST_STEP)) {
		_tDelay.update(Scalar<uint64_t>(_timeStamp));
		_xDelay.update(_x);
		_time_last_hist = _timeStamp;
	}
}
예제 #13
0
void BlockMultiModeBacksideAutopilot::update()
{
	// wait for a sensor update, check for exit condition every 100 ms
	if (poll(&_attPoll, 1, 100) < 0) return; // poll error

	uint64_t newTimeStamp = hrt_absolute_time();
	float dt = (newTimeStamp - _timeStamp) / 1.0e6f;
	_timeStamp = newTimeStamp;

	// check for sane values of dt
	// to prevent large control responses
	if (dt > 1.0f || dt < 0) return;

	// set dt for all child blocks
	setDt(dt);

	// store old position command before update if new command sent
	if (_posCmd.updated()) {
		_lastPosCmd = _posCmd.getData();
	}

	// check for new updates
	if (_param_update.updated()) updateParams();

	// get new information from subscriptions
	updateSubscriptions();

	// default all output to zero unless handled by mode
	for (unsigned i = 4; i < NUM_ACTUATOR_CONTROLS; i++)
		_actuators.control[i] = 0.0f;

	// handle autopilot modes
	if (_status.state_machine == SYSTEM_STATE_STABILIZED) {
		_stabilization.update(
			_ratesCmd.roll, _ratesCmd.pitch, _ratesCmd.yaw,
			_att.rollspeed, _att.pitchspeed, _att.yawspeed);
		_actuators.control[CH_AIL] = _stabilization.getAileron();
		_actuators.control[CH_ELV] = _stabilization.getElevator();
		_actuators.control[CH_RDR] = _stabilization.getRudder();
		_actuators.control[CH_THR] = _manual.throttle;

	} else if (_status.state_machine == SYSTEM_STATE_AUTO) {
		// update guidance
		_guide.update(_pos, _att, _posCmd, _lastPosCmd);

		// calculate velocity, XXX should be airspeed, but using ground speed for now
		float v = sqrtf(_pos.vx * _pos.vx + _pos.vy * _pos.vy + _pos.vz * _pos.vz);

		// commands
		float rCmd = 0;

		_backsideAutopilot.update(
			_posCmd.altitude, _vCmd.get(), rCmd, _guide.getPsiCmd(),
			_pos.alt, v,
			_att.roll, _att.pitch, _att.yaw,
			_att.rollspeed, _att.pitchspeed, _att.yawspeed
		);
		_actuators.control[CH_AIL] = _backsideAutopilot.getAileron();
		_actuators.control[CH_ELV] = _backsideAutopilot.getElevator();
		_actuators.control[CH_RDR] = _backsideAutopilot.getRudder();
		_actuators.control[CH_THR] = _backsideAutopilot.getThrottle();

	} else if (_status.state_machine == SYSTEM_STATE_MANUAL) {
		_actuators.control[CH_AIL] = _manual.roll;
		_actuators.control[CH_ELV] = _manual.pitch;
		_actuators.control[CH_RDR] = _manual.yaw;
		_actuators.control[CH_THR] = _manual.throttle;
	}

	// update all publications
	updatePublications();
}
void BlockLocalPositionEstimator::update()
{

	// wait for a sensor update, check for exit condition every 100 ms
	int ret = px4_poll(_polls, 3, 100);

	if (ret < 0) {
		/* poll error, count it in perf */
		perf_count(_err_perf);
		return;
	}

	uint64_t newTimeStamp = hrt_absolute_time();
	float dt = (newTimeStamp - _timeStamp) / 1.0e6f;
	_timeStamp = newTimeStamp;

	// set dt for all child blocks
	setDt(dt);

	// auto-detect connected rangefinders while not armed
	bool armedState = _sub_armed.get().armed;

	if (!armedState && (_sub_lidar == NULL || _sub_sonar == NULL)) {
		detectDistanceSensors();
	}

	// reset pos, vel, and terrain on arming

	// XXX this will be re-enabled for indoor use cases using a
	// selection param, but is really not helping outdoors
	// right now.

	// if (!_lastArmedState && armedState) {

	// 	// we just armed, we are at origin on the ground
	// 	_x(X_x) = 0;
	// 	_x(X_y) = 0;
	// 	// reset Z or not? _x(X_z) = 0;

	// 	// we aren't moving, all velocities are zero
	// 	_x(X_vx) = 0;
	// 	_x(X_vy) = 0;
	// 	_x(X_vz) = 0;

	// 	// assume we are on the ground, so terrain alt is local alt
	// 	_x(X_tz) = _x(X_z);

	// 	// reset lowpass filter as well
	// 	_xLowPass.setState(_x);
	// 	_aglLowPass.setState(0);
	// }

	_lastArmedState = armedState;

	// see which updates are available
	bool flowUpdated = _sub_flow.updated();
	bool paramsUpdated = _sub_param_update.updated();
	bool baroUpdated = _sub_sensor.updated();
	bool gpsUpdated = _gps_on.get() && _sub_gps.updated();
	bool visionUpdated = _vision_on.get() && _sub_vision_pos.updated();
	bool mocapUpdated = _sub_mocap.updated();
	bool lidarUpdated = (_sub_lidar != NULL) && _sub_lidar->updated();
	bool sonarUpdated = (_sub_sonar != NULL) && _sub_sonar->updated();
	bool landUpdated = (
				   (_sub_land.get().landed ||
				    ((!_sub_armed.get().armed) && (!_sub_land.get().freefall)))
				   && (!(_lidarInitialized || _mocapInitialized || _visionInitialized || _sonarInitialized))
				   && ((_timeStamp - _time_last_land) > 1.0e6f / LAND_RATE));

	// get new data
	updateSubscriptions();

	// update parameters
	if (paramsUpdated) {
		updateParams();
		updateSSParams();
	}

	// is xy valid?
	bool vxy_stddev_ok = false;

	if (math::max(_P(X_vx, X_vx), _P(X_vy, X_vy)) < _vxy_pub_thresh.get()*_vxy_pub_thresh.get()) {
		vxy_stddev_ok = true;
	}

	if (_validXY) {
		// if valid and gps has timed out, set to not valid
		if (!vxy_stddev_ok && !_gpsInitialized) {
			_validXY = false;
		}

	} else {
		if (vxy_stddev_ok) {
			if (_flowInitialized || _gpsInitialized || _visionInitialized || _mocapInitialized) {
				_validXY = true;
			}
		}
	}

	// is z valid?
	bool z_stddev_ok = sqrtf(_P(X_z, X_z)) < _z_pub_thresh.get();

	if (_validZ) {
		// if valid and baro has timed out, set to not valid
		if (!z_stddev_ok && !_baroInitialized) {
			_validZ = false;
		}

	} else {
		if (z_stddev_ok) {
			_validZ = true;
		}
	}

	// is terrain valid?
	bool tz_stddev_ok = sqrtf(_P(X_tz, X_tz)) < _z_pub_thresh.get();

	if (_validTZ) {
		if (!tz_stddev_ok) {
			_validTZ = false;
		}

	} else {
		if (tz_stddev_ok) {
			_validTZ = true;
		}
	}

	// timeouts
	if (_validXY) {
		_time_last_xy = _timeStamp;
	}

	if (_validZ) {
		_time_last_z = _timeStamp;
	}

	if (_validTZ) {
		_time_last_tz = _timeStamp;
	}

	// check timeouts
	checkTimeouts();

	// if we have no lat, lon initialize projection at 0,0
	if (_validXY && !_map_ref.init_done) {
		map_projection_init(&_map_ref,
				    _init_origin_lat.get(),
				    _init_origin_lon.get());
	}

	// reinitialize x if necessary
	bool reinit_x = false;

	for (int i = 0; i < n_x; i++) {
		// should we do a reinit
		// of sensors here?
		// don't want it to take too long
		if (!PX4_ISFINITE(_x(i))) {
			reinit_x = true;
			mavlink_and_console_log_info(&mavlink_log_pub, "[lpe] reinit x, x(%d) not finite", i);
			break;
		}
	}

	if (reinit_x) {
		for (int i = 0; i < n_x; i++) {
			_x(i) = 0;
		}

		mavlink_and_console_log_info(&mavlink_log_pub, "[lpe] reinit x");
	}

	// force P symmetry and reinitialize P if necessary
	bool reinit_P = false;

	for (int i = 0; i < n_x; i++) {
		for (int j = 0; j <= i; j++) {
			if (!PX4_ISFINITE(_P(i, j))) {
				reinit_P = true;
			}

			if (i == j) {
				// make sure diagonal elements are positive
				if (_P(i, i) <= 0) {
					reinit_P = true;
				}

			} else {
				// copy elememnt from upper triangle to force
				// symmetry
				_P(j, i) = _P(i, j);
			}

			if (reinit_P) { break; }
		}

		if (reinit_P) { break; }
	}

	if (reinit_P) {
		mavlink_and_console_log_info(&mavlink_log_pub, "[lpe] reinit P");
		initP();
	}

	// do prediction
	predict();

	// sensor corrections/ initializations
	if (gpsUpdated) {
		if (!_gpsInitialized) {
			gpsInit();

		} else {
			gpsCorrect();
		}
	}

	if (baroUpdated) {
		if (!_baroInitialized) {
			baroInit();

		} else {
			baroCorrect();
		}
	}

	if (lidarUpdated) {
		if (!_lidarInitialized) {
			lidarInit();

		} else {
			lidarCorrect();
		}
	}

	if (sonarUpdated) {
		if (!_sonarInitialized) {
			sonarInit();

		} else {
			sonarCorrect();
		}
	}

	if (flowUpdated) {
		if (!_flowInitialized) {
			flowInit();

		} else {
			perf_begin(_loop_perf);// TODO
			flowCorrect();
			//perf_count(_interval_perf);
			perf_end(_loop_perf);
		}
	}

	if (visionUpdated) {
		if (!_visionInitialized) {
			visionInit();

		} else {
			visionCorrect();
		}
	}

	if (mocapUpdated) {
		if (!_mocapInitialized) {
			mocapInit();

		} else {
			mocapCorrect();
		}
	}

	if (landUpdated) {
		if (!_landInitialized) {
			landInit();

		} else {
			landCorrect();
		}
	}

	if (_altOriginInitialized) {
		// update all publications if possible
		publishLocalPos();
		publishEstimatorStatus();
		_pub_innov.update();

		if (_validXY) {
			publishGlobalPos();
		}
	}

	// propagate delayed state, no matter what
	// if state is frozen, delayed state still
	// needs to be propagated with frozen state
	float dt_hist = 1.0e-6f * (_timeStamp - _time_last_hist);

	if (_time_last_hist == 0 ||
	    (dt_hist > HIST_STEP)) {
		_tDelay.update(Scalar<uint64_t>(_timeStamp));
		_xDelay.update(_x);
		_time_last_hist = _timeStamp;
	}
}
예제 #15
0
SynapseLoader::SynapseLoader( const URIHandler& params )
    : EventSource( params )
    , _impl( new Impl( *this, params ))
{
    setDt( 1.f );
}
void BlockLocalPositionEstimator::update()
{
	// wait for a sensor update, check for exit condition every 100 ms
	int ret = px4_poll(_polls, 3, 100);

	if (ret < 0) {
		return;
	}

	uint64_t newTimeStamp = hrt_absolute_time();
	float dt = (newTimeStamp - _timeStamp) / 1.0e6f;
	_timeStamp = newTimeStamp;

	// set dt for all child blocks
	setDt(dt);

	// auto-detect connected rangefinders while not armed
	bool armedState = _sub_armed.get().armed;

	if (!armedState && (_sub_lidar == nullptr || _sub_sonar == nullptr)) {
		// detect distance sensors
		for (int i = 0; i < N_DIST_SUBS; i++) {
			uORB::Subscription<distance_sensor_s> *s = _dist_subs[i];

			if (s == _sub_lidar || s == _sub_sonar) { continue; }

			if (s->updated()) {
				s->update();

				if (s->get().timestamp == 0) { continue; }

				if (s->get().type == distance_sensor_s::MAV_DISTANCE_SENSOR_LASER &&
				    s->get().orientation == distance_sensor_s::ROTATION_DOWNWARD_FACING &&
				    _sub_lidar == nullptr) {
					_sub_lidar = s;
					mavlink_and_console_log_info(&mavlink_log_pub, "%sDownward-facing Lidar detected with ID %i", msg_label, i);

				} else if (s->get().type == distance_sensor_s::MAV_DISTANCE_SENSOR_ULTRASOUND &&
					   s->get().orientation == distance_sensor_s::ROTATION_DOWNWARD_FACING &&
					   _sub_sonar == nullptr) {
					_sub_sonar = s;
					mavlink_and_console_log_info(&mavlink_log_pub, "%sDownward-facing Sonar detected with ID %i", msg_label, i);
				}
			}
		}
	}

	// reset pos, vel, and terrain on arming

	// XXX this will be re-enabled for indoor use cases using a
	// selection param, but is really not helping outdoors
	// right now.

	// if (!_lastArmedState && armedState) {

	//      // we just armed, we are at origin on the ground
	//      _x(X_x) = 0;
	//      _x(X_y) = 0;
	//      // reset Z or not? _x(X_z) = 0;

	//      // we aren't moving, all velocities are zero
	//      _x(X_vx) = 0;
	//      _x(X_vy) = 0;
	//      _x(X_vz) = 0;

	//      // assume we are on the ground, so terrain alt is local alt
	//      _x(X_tz) = _x(X_z);

	//      // reset lowpass filter as well
	//      _xLowPass.setState(_x);
	//      _aglLowPass.setState(0);
	// }

	_lastArmedState = armedState;

	// see which updates are available
	bool paramsUpdated = _sub_param_update.updated();
	_baroUpdated = false;

	if ((_fusion.get() & FUSE_BARO) && _sub_sensor.updated()) {
		int32_t baro_timestamp_relative = _sub_sensor.get().baro_timestamp_relative;

		if (baro_timestamp_relative != _sub_sensor.get().RELATIVE_TIMESTAMP_INVALID) {
			uint64_t baro_timestamp = _sub_sensor.get().timestamp +	\
						  _sub_sensor.get().baro_timestamp_relative;

			if (baro_timestamp != _timeStampLastBaro) {
				_baroUpdated = true;
				_timeStampLastBaro = baro_timestamp;
			}
		}
	}

	_flowUpdated = (_fusion.get() & FUSE_FLOW) && _sub_flow.updated();
	_gpsUpdated = (_fusion.get() & FUSE_GPS) && _sub_gps.updated();
	_visionUpdated = (_fusion.get() & FUSE_VIS_POS) && _sub_vision_pos.updated();
	_mocapUpdated = _sub_mocap.updated();
	_lidarUpdated = (_sub_lidar != nullptr) && _sub_lidar->updated();
	_sonarUpdated = (_sub_sonar != nullptr) && _sub_sonar->updated();
	_landUpdated = landed() && ((_timeStamp - _time_last_land) > 1.0e6f / LAND_RATE);// throttle rate
	bool targetPositionUpdated = _sub_landing_target_pose.updated();

	// get new data
	updateSubscriptions();

	// update parameters
	if (paramsUpdated) {
		updateParams();
		updateSSParams();
	}

	// is xy valid?
	bool vxy_stddev_ok = false;

	if (math::max(_P(X_vx, X_vx), _P(X_vy, X_vy)) < _vxy_pub_thresh.get() * _vxy_pub_thresh.get()) {
		vxy_stddev_ok = true;
	}

	if (_estimatorInitialized & EST_XY) {
		// if valid and gps has timed out, set to not valid
		if (!vxy_stddev_ok && (_sensorTimeout & SENSOR_GPS)) {
			_estimatorInitialized &= ~EST_XY;
		}

	} else {
		if (vxy_stddev_ok) {
			if (!(_sensorTimeout & SENSOR_GPS)
			    || !(_sensorTimeout & SENSOR_FLOW)
			    || !(_sensorTimeout & SENSOR_VISION)
			    || !(_sensorTimeout & SENSOR_MOCAP)
			    || !(_sensorTimeout & SENSOR_LAND)
			    || !(_sensorTimeout & SENSOR_LAND_TARGET)
			   ) {
				_estimatorInitialized |= EST_XY;
			}
		}
	}

	// is z valid?
	bool z_stddev_ok = sqrtf(_P(X_z, X_z)) < _z_pub_thresh.get();

	if (_estimatorInitialized & EST_Z) {
		// if valid and baro has timed out, set to not valid
		if (!z_stddev_ok && (_sensorTimeout & SENSOR_BARO)) {
			_estimatorInitialized &= ~EST_Z;
		}

	} else {
		if (z_stddev_ok) {
			_estimatorInitialized |= EST_Z;
		}
	}

	// is terrain valid?
	bool tz_stddev_ok = sqrtf(_P(X_tz, X_tz)) < _z_pub_thresh.get();

	if (_estimatorInitialized & EST_TZ) {
		if (!tz_stddev_ok) {
			_estimatorInitialized &= ~EST_TZ;
		}

	} else {
		if (tz_stddev_ok) {
			_estimatorInitialized |= EST_TZ;
		}
	}

	// check timeouts
	checkTimeouts();

	// if we have no lat, lon initialize projection to LPE_LAT, LPE_LON parameters
	if (!_map_ref.init_done && (_estimatorInitialized & EST_XY) && _fake_origin.get()) {
		map_projection_init(&_map_ref,
				    _init_origin_lat.get(),
				    _init_origin_lon.get());

		// set timestamp when origin was set to current time
		_time_origin = _timeStamp;

		mavlink_and_console_log_info(&mavlink_log_pub, "[lpe] global origin init (parameter) : lat %6.2f lon %6.2f alt %5.1f m",
					     double(_init_origin_lat.get()), double(_init_origin_lon.get()), double(_altOrigin));
	}

	// reinitialize x if necessary
	bool reinit_x = false;

	for (int i = 0; i < n_x; i++) {
		// should we do a reinit
		// of sensors here?
		// don't want it to take too long
		if (!PX4_ISFINITE(_x(i))) {
			reinit_x = true;
			mavlink_and_console_log_info(&mavlink_log_pub, "%sreinit x, x(%d) not finite", msg_label, i);
			break;
		}
	}

	if (reinit_x) {
		for (int i = 0; i < n_x; i++) {
			_x(i) = 0;
		}

		mavlink_and_console_log_info(&mavlink_log_pub, "%sreinit x", msg_label);
	}

	// force P symmetry and reinitialize P if necessary
	bool reinit_P = false;

	for (int i = 0; i < n_x; i++) {
		for (int j = 0; j <= i; j++) {
			if (!PX4_ISFINITE(_P(i, j))) {
				mavlink_and_console_log_info(&mavlink_log_pub,
							     "%sreinit P (%d, %d) not finite", msg_label, i, j);
				reinit_P = true;
			}

			if (i == j) {
				// make sure diagonal elements are positive
				if (_P(i, i) <= 0) {
					mavlink_and_console_log_info(&mavlink_log_pub,
								     "%sreinit P (%d, %d) negative", msg_label, i, j);
					reinit_P = true;
				}

			} else {
				// copy elememnt from upper triangle to force
				// symmetry
				_P(j, i) = _P(i, j);
			}

			if (reinit_P) { break; }
		}

		if (reinit_P) { break; }
	}

	if (reinit_P) {
		initP();
	}

	// do prediction
	predict();

	// sensor corrections/ initializations
	if (_gpsUpdated) {
		if (_sensorTimeout & SENSOR_GPS) {
			gpsInit();

		} else {
			gpsCorrect();
		}
	}

	if (_baroUpdated) {
		if (_sensorTimeout & SENSOR_BARO) {
			baroInit();

		} else {
			baroCorrect();
		}
	}

	if (_lidarUpdated) {
		if (_sensorTimeout & SENSOR_LIDAR) {
			lidarInit();

		} else {
			lidarCorrect();
		}
	}

	if (_sonarUpdated) {
		if (_sensorTimeout & SENSOR_SONAR) {
			sonarInit();

		} else {
			sonarCorrect();
		}
	}

	if (_flowUpdated) {
		if (_sensorTimeout & SENSOR_FLOW) {
			flowInit();

		} else {
			flowCorrect();
		}
	}

	if (_visionUpdated) {
		if (_sensorTimeout & SENSOR_VISION) {
			visionInit();

		} else {
			visionCorrect();
		}
	}

	if (_mocapUpdated) {
		if (_sensorTimeout & SENSOR_MOCAP) {
			mocapInit();

		} else {
			mocapCorrect();
		}
	}

	if (_landUpdated) {
		if (_sensorTimeout & SENSOR_LAND) {
			landInit();

		} else {
			landCorrect();
		}
	}

	if (targetPositionUpdated) {
		if (_sensorTimeout & SENSOR_LAND_TARGET) {
			landingTargetInit();

		} else {
			landingTargetCorrect();
		}
	}

	if (_altOriginInitialized) {
		// update all publications if possible
		publishLocalPos();
		publishEstimatorStatus();
		_pub_innov.get().timestamp = _timeStamp;
		_pub_innov.update();

		if ((_estimatorInitialized & EST_XY) && (_map_ref.init_done || _fake_origin.get())) {
			publishGlobalPos();
		}
	}

	// propagate delayed state, no matter what
	// if state is frozen, delayed state still
	// needs to be propagated with frozen state
	float dt_hist = 1.0e-6f * (_timeStamp - _time_last_hist);

	if (_time_last_hist == 0 ||
	    (dt_hist > HIST_STEP)) {
		_tDelay.update(Scalar<uint64_t>(_timeStamp));
		_xDelay.update(_x);
		_time_last_hist = _timeStamp;
	}
}
예제 #17
0
Visitor::Result AnimateVisitor::processNodeTopDown(simulation::Node* node)
{
    if (!node->isActive()) return Visitor::RESULT_PRUNE;
    if (node->isSleeping()) return Visitor::RESULT_PRUNE;
    if (!firstNodeVisited)
    {
        firstNodeVisited=true;
        
        sofa::core::ConstraintParams cparams(*this->params);
        MechanicalResetConstraintVisitor resetConstraint(&cparams);
        node->execute(&resetConstraint);
    }

    if (dt == 0) setDt(node->getDt());
    else node->setDt(dt);

    if (node->collisionPipeline != NULL)
    {
        processCollisionPipeline(node, node->collisionPipeline);
    }
    if (!node->solver.empty() )
    {
        sofa::helper::AdvancedTimer::StepVar timer("Mechanical",node);
        SReal nextTime = node->getTime() + dt;
        {
            IntegrateBeginEvent evBegin;
            PropagateEventVisitor eventPropagation( this->params, &evBegin);
            eventPropagation.execute(node);
        }

        MechanicalBeginIntegrationVisitor beginVisitor(this->params, dt);
        node->execute(&beginVisitor);

        sofa::core::MechanicalParams m_mparams(*this->params);
        m_mparams.setDt(dt);

        {
            unsigned int constraintId=0;
            core::ConstraintParams cparams;
            simulation::MechanicalAccumulateConstraint(&cparams, core::MatrixDerivId::constraintJacobian(),constraintId).execute(node);
        }

        for( unsigned i=0; i<node->solver.size(); i++ )
        {
            ctime_t t0 = begin(node, node->solver[i]);
            node->solver[i]->solve(params, getDt());
            end(node, node->solver[i], t0);
        }

        MechanicalProjectPositionAndVelocityVisitor(&m_mparams, nextTime,
            sofa::core::VecCoordId::position(), sofa::core::VecDerivId::velocity()
        ).execute( node );
        MechanicalPropagateOnlyPositionAndVelocityVisitor(&m_mparams, nextTime,VecCoordId::position(),VecDerivId::velocity(),
#ifdef SOFA_SUPPORT_MAPPED_MASS
                VecDerivId::dx(),
#endif
                true).execute( node );

        MechanicalEndIntegrationVisitor endVisitor(this->params, dt);
        node->execute(&endVisitor);

        {
            IntegrateEndEvent evBegin;
            PropagateEventVisitor eventPropagation(this->params, &evBegin);
            eventPropagation.execute(node);
        }

        return RESULT_PRUNE;
    }
    {
        // process InteractionForceFields
        for_each(this, node, node->interactionForceField, &AnimateVisitor::fwdInteractionForceField);
        return RESULT_CONTINUE;
    }
}
예제 #18
0
Visitor::Result AnimateVisitor::processNodeTopDown(simulation::Node* node)
{

    //cerr<<"AnimateVisitor::process Node  "<<node->getName()<<endl;
    if (!node->isActive()) return Visitor::RESULT_PRUNE;
#ifdef SOFA_HAVE_EIGEN2
    if (!firstNodeVisited)
    {
        firstNodeVisited=true;

//        core::behavior::BaseAnimationLoop* presenceAnimationManager;
//        node->get(presenceAnimationManager, core::objectmodel::BaseContext::SearchDown);
//        if (!presenceAnimationManager)
//        {
//          std::cerr << "AnimateVisitor::processNodeTopDown, ERROR: no BaseAnimationLoop found while searching down from node: " << node->getName() << std::endl;

//        }
        sofa::core::MechanicalParams mparams(*this->params);
        mparams.setDt(dt);
        MechanicalResetConstraintVisitor resetConstraint(&mparams);
        node->execute(&resetConstraint);
    }
#endif

    if (dt == 0) setDt(node->getDt());
    else node->setDt(dt);

    if (node->collisionPipeline != NULL)
    {

        //ctime_t t0 = begin(node, node->collisionPipeline);
#ifndef SOFA_SMP
        {
            CollisionBeginEvent evBegin;
            PropagateEventVisitor eventPropagation(this->params /* PARAMS FIRST */, &evBegin);
            eventPropagation.execute(node);
        }
        processCollisionPipeline(node, node->collisionPipeline);
        {
            CollisionEndEvent evEnd;
            PropagateEventVisitor eventPropagation(this->params /* PARAMS FIRST */, &evEnd);
            eventPropagation.execute(node);
        }
#endif
        //end(node, node->collisionPipeline, t0);
    }
    /*	if (node->solver != NULL)
    	{
    		ctime_t t0 = begin(node, node->solver);
    		processOdeSolver(node, node->solver);
    		end(node, node->solver, t0);
    		return RESULT_PRUNE;
            }*/
    if (!node->solver.empty() )
    {
        sofa::helper::AdvancedTimer::StepVar timer("Mechanical",node);
        double nextTime = node->getTime() + dt;


        {
            IntegrateBeginEvent evBegin;
            PropagateEventVisitor eventPropagation( this->params /* PARAMS FIRST */, &evBegin);
            eventPropagation.execute(node);
        }

        MechanicalBeginIntegrationVisitor beginVisitor(this->params /* PARAMS FIRST */, dt);
        node->execute(&beginVisitor);

        sofa::core::MechanicalParams m_mparams(*this->params);
        m_mparams.setDt(dt);

#ifdef SOFA_HAVE_EIGEN2
        {
            unsigned int constraintId=0;
            core::ConstraintParams cparams;
            //MechanicalAccumulateConstraint(&m_mparams /* PARAMS FIRST */, constraintId, VecCoordId::position()).execute(node);
            simulation::MechanicalAccumulateConstraint(&cparams /* PARAMS FIRST */, core::MatrixDerivId::holonomicC(),constraintId).execute(node);
        }
#endif

        for( unsigned i=0; i<node->solver.size(); i++ )
        {
            ctime_t t0 = begin(node, node->solver[i]);
            //cerr<<"AnimateVisitor::processNodeTpDown  solver  "<<node->solver[i]->getName()<<endl;
            node->solver[i]->solve(params /* PARAMS FIRST */, getDt());
            end(node, node->solver[i], t0);
        }

        MechanicalPropagatePositionAndVelocityVisitor(&m_mparams /* PARAMS FIRST */, nextTime,VecCoordId::position(),VecDerivId::velocity(),
#ifdef SOFA_SUPPORT_MAPPED_MASS
                VecDerivId::dx(),
#endif
                true).execute( node );

        MechanicalEndIntegrationVisitor endVisitor(this->params /* PARAMS FIRST */, dt);
        node->execute(&endVisitor);

        {
            IntegrateEndEvent evBegin;
            PropagateEventVisitor eventPropagation(this->params /* PARAMS FIRST */, &evBegin);
            eventPropagation.execute(node);
        }

        return RESULT_PRUNE;
    }
    /*
    if (node->mechanicalModel != NULL)
    {
    	std::cerr << "Graph Error: MechanicalState without solver." << std::endl;
    	return RESULT_PRUNE;
    }
    */
    {
        // process InteractionForceFields
        for_each(this, node, node->interactionForceField, &AnimateVisitor::fwdInteractionForceField);
        return RESULT_CONTINUE;
    }
}