예제 #1
0
void PoldiPeak::multiplyErrors(double factor) {
  setQ(UncertainValue(m_q.value(), m_q.error() * factor));
  setFwhm(
      UncertainValue(m_fwhmRelative.value(), m_fwhmRelative.error() * factor),
      PoldiPeak::Relative);
  setIntensity(
      UncertainValue(m_intensity.value(), m_intensity.error() * factor));
}
예제 #2
0
/**
 * Fit peak without background i.e, with background removed
 *  inspired from FitPowderDiffPeaks.cpp
 *  copied from PoldiPeakDetection2.cpp
 *
 @param workspaceindex :: indice of the row to use
 @param center :: gaussian parameter - center
 @param sigma :: gaussian parameter - width
 @param height :: gaussian parameter - height
 @param startX :: fit range - start X value
 @param endX :: fit range - end X value
 @returns A boolean status flag, true for fit success, false else
 */
bool ConvertEmptyToTof::doFitGaussianPeak(int workspaceindex, double &center,
                                          double &sigma, double &height,
                                          double startX, double endX) {

  g_log.debug("Calling doFitGaussianPeak...");

  // 1. Estimate
  sigma = sigma * 0.5;

  // 2. Use factory to generate Gaussian
  auto temppeak = API::FunctionFactory::Instance().createFunction("Gaussian");
  auto gaussianpeak = boost::dynamic_pointer_cast<API::IPeakFunction>(temppeak);
  gaussianpeak->setHeight(height);
  gaussianpeak->setCentre(center);
  gaussianpeak->setFwhm(sigma);

  // 3. Constraint
  double centerleftend = center - sigma * 0.5;
  double centerrightend = center + sigma * 0.5;
  std::ostringstream os;
  os << centerleftend << " < PeakCentre < " << centerrightend;
  auto *centerbound = API::ConstraintFactory::Instance().createInitialized(
      gaussianpeak.get(), os.str(), false);
  gaussianpeak->addConstraint(centerbound);

  g_log.debug("Calling createChildAlgorithm : Fit...");
  // 4. Fit
  API::IAlgorithm_sptr fitalg = createChildAlgorithm("Fit", -1, -1, true);
  fitalg->initialize();

  fitalg->setProperty(
      "Function", boost::dynamic_pointer_cast<API::IFunction>(gaussianpeak));
  fitalg->setProperty("InputWorkspace", m_inputWS);
  fitalg->setProperty("WorkspaceIndex", workspaceindex);
  fitalg->setProperty("Minimizer", "Levenberg-MarquardtMD");
  fitalg->setProperty("CostFunction", "Least squares");
  fitalg->setProperty("MaxIterations", 1000);
  fitalg->setProperty("Output", "FitGaussianPeak");
  fitalg->setProperty("StartX", startX);
  fitalg->setProperty("EndX", endX);

  // 5.  Result
  bool successfulfit = fitalg->execute();
  if (!fitalg->isExecuted() || !successfulfit) {
    // Early return due to bad fit
    g_log.warning() << "Fitting Gaussian peak for peak around "
                    << gaussianpeak->centre() << '\n';
    return false;
  }

  // 6. Get result
  center = gaussianpeak->centre();
  height = gaussianpeak->height();
  double fwhm = gaussianpeak->fwhm();

  return fwhm > 0.0;
}
예제 #3
0
/**
 * Create a function string from the given parameters and the algorithm inputs
 * @param peakHeight :: The height of the peak
 * @param peakLoc :: The location of the peak
 */
IFunction_sptr GetDetectorOffsets::createFunction(const double peakHeight,
                                                  const double peakLoc) {
  FunctionFactoryImpl &creator = FunctionFactory::Instance();
  auto background = creator.createFunction("LinearBackground");
  auto peak = boost::dynamic_pointer_cast<IPeakFunction>(
      creator.createFunction(getProperty("PeakFunction")));
  peak->setHeight(peakHeight);
  peak->setCentre(peakLoc);
  const double sigma(10.0);
  peak->setFwhm(2.0 * std::sqrt(2.0 * M_LN2) * sigma);

  auto fitFunc = new CompositeFunction(); // Takes ownership of the functions
  fitFunc->addFunction(background);
  fitFunc->addFunction(peak);

  return boost::shared_ptr<IFunction>(fitFunc);
}
/**
  * Gaussian fit to determine peak position if no user position given.
  *
  * @return :: detector position of the peak: Gaussian fit and position
  * of the maximum (serves as start value for the optimization)
  */
double LoadILLReflectometry::reflectometryPeak() {
  if (!isDefault("BeamCentre")) {
    return getProperty("BeamCentre");
  }
  size_t startIndex;
  size_t endIndex;
  std::tie(startIndex, endIndex) =
      fitIntegrationWSIndexRange(*m_localWorkspace);
  IAlgorithm_sptr integration = createChildAlgorithm("Integration");
  integration->initialize();
  integration->setProperty("InputWorkspace", m_localWorkspace);
  integration->setProperty("OutputWorkspace", "__unused_for_child");
  integration->setProperty("StartWorkspaceIndex", static_cast<int>(startIndex));
  integration->setProperty("EndWorkspaceIndex", static_cast<int>(endIndex));
  integration->execute();
  MatrixWorkspace_sptr integralWS = integration->getProperty("OutputWorkspace");
  IAlgorithm_sptr transpose = createChildAlgorithm("Transpose");
  transpose->initialize();
  transpose->setProperty("InputWorkspace", integralWS);
  transpose->setProperty("OutputWorkspace", "__unused_for_child");
  transpose->execute();
  integralWS = transpose->getProperty("OutputWorkspace");
  rebinIntegralWorkspace(*integralWS);
  // determine initial height: maximum value
  const auto maxValueIt =
      std::max_element(integralWS->y(0).cbegin(), integralWS->y(0).cend());
  const double height = *maxValueIt;
  // determine initial centre: index of the maximum value
  const size_t maxIndex = std::distance(integralWS->y(0).cbegin(), maxValueIt);
  const double centreByMax = static_cast<double>(maxIndex);
  g_log.debug() << "Peak maximum position: " << centreByMax << '\n';
  // determine sigma
  const auto &ys = integralWS->y(0);
  auto lessThanHalfMax = [height](const double x) { return x < 0.5 * height; };
  using IterType = HistogramData::HistogramY::const_iterator;
  std::reverse_iterator<IterType> revMaxValueIt{maxValueIt};
  auto revMinFwhmIt = std::find_if(revMaxValueIt, ys.crend(), lessThanHalfMax);
  auto maxFwhmIt = std::find_if(maxValueIt, ys.cend(), lessThanHalfMax);
  std::reverse_iterator<IterType> revMaxFwhmIt{maxFwhmIt};
  if (revMinFwhmIt == ys.crend() || maxFwhmIt == ys.cend()) {
    g_log.warning() << "Couldn't determine fwhm of beam, using position of max "
                       "value as beam center.\n";
    return centreByMax;
  }
  const double fwhm =
      static_cast<double>(std::distance(revMaxFwhmIt, revMinFwhmIt) + 1);
  g_log.debug() << "Initial fwhm (full width at half maximum): " << fwhm
                << '\n';
  // generate Gaussian
  auto func =
      API::FunctionFactory::Instance().createFunction("CompositeFunction");
  auto sum = boost::dynamic_pointer_cast<API::CompositeFunction>(func);
  func = API::FunctionFactory::Instance().createFunction("Gaussian");
  auto gaussian = boost::dynamic_pointer_cast<API::IPeakFunction>(func);
  gaussian->setHeight(height);
  gaussian->setCentre(centreByMax);
  gaussian->setFwhm(fwhm);
  sum->addFunction(gaussian);
  func = API::FunctionFactory::Instance().createFunction("LinearBackground");
  func->setParameter("A0", 0.);
  func->setParameter("A1", 0.);
  sum->addFunction(func);
  // call Fit child algorithm
  API::IAlgorithm_sptr fit = createChildAlgorithm("Fit");
  fit->initialize();
  fit->setProperty("Function",
                   boost::dynamic_pointer_cast<API::IFunction>(sum));
  fit->setProperty("InputWorkspace", integralWS);
  fit->setProperty("StartX", centreByMax - 3 * fwhm);
  fit->setProperty("EndX", centreByMax + 3 * fwhm);
  fit->execute();
  const std::string fitStatus = fit->getProperty("OutputStatus");
  if (fitStatus != "success") {
    g_log.warning("Fit not successful, using position of max value.\n");
    return centreByMax;
  }
  const auto centre = gaussian->centre();
  g_log.debug() << "Sigma: " << gaussian->fwhm() << '\n';
  g_log.debug() << "Estimated peak position: " << centre << '\n';
  return centre;
}
예제 #5
0
PoldiPeak::PoldiPeak(UncertainValue d, UncertainValue intensity,
                     UncertainValue fwhm, MillerIndices hkl)
    : m_hkl(hkl), m_intensity(intensity) {
  setD(d);
  setFwhm(fwhm, Relative);
}