u_int initarm(void *arg) { ofw_handle_t ofw_handle = arg; paddr_t pclean; vaddr_t isa_io_virtaddr, isa_mem_virtaddr; paddr_t isadmaphysbufs; extern char shark_fiq[], shark_fiq_end[]; /* Don't want to get hit with interrupts 'til we're ready. */ (void)disable_interrupts(I32_bit | F32_bit); set_cpufuncs(); /* XXX - set these somewhere else? -JJK */ boothowto = 0; /* Init the OFW interface. */ /* MUST do this before invoking any OFW client services! */ ofw_init(ofw_handle); /* Configure ISA stuff: must be done before consinit */ ofw_configisa(&isa_io_physaddr, &isa_mem_physaddr); /* Map-in ISA I/O and memory space. */ /* XXX - this should be done in the isa-bus attach routine! -JJK */ isa_mem_virtaddr = ofw_map(isa_mem_physaddr, L1_S_SIZE, 0); isa_io_virtaddr = ofw_map(isa_io_physaddr, L1_S_SIZE, 0); /* Set-up the ISA system: must be done before consinit */ isa_init(isa_io_virtaddr, isa_mem_virtaddr); /* Initialize the console (which will call into OFW). */ /* This will allow us to see panic messages and other printf output. */ consinit(); /* Get boot info and process it. */ ofw_getbootinfo(&boot_file, &boot_args); process_kernel_args(); ofw_configisadma(&isadmaphysbufs); #if (NISADMA > 0) isa_dma_init(); #endif /* allocate a cache clean space */ if ((pclean = ofw_getcleaninfo()) != -1) { sa1_cache_clean_addr = ofw_map(pclean, 0x4000 * 2, L2_B | L2_C); sa1_cache_clean_size = 0x4000; } /* Configure memory. */ ofw_configmem(); /* * Set-up stacks. * The kernel stack for SVC mode will be updated on return * from this routine. */ set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + PAGE_SIZE); /* Set-up exception handlers. */ /* * Take control of selected vectors from OFW. * We take: undefined, swi, pre-fetch abort, data abort, addrexc, * irq, fiq * OFW retains: reset */ arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL & ~ARM_VEC_RESET); data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* why is this needed? -JJK */ /* Initialise the undefined instruction handlers. */ undefined_init(); /* Now for the SHARK-specific part of the FIQ set-up */ shark_fiqhandler.fh_func = shark_fiq; shark_fiqhandler.fh_size = shark_fiq_end - shark_fiq; shark_fiqhandler.fh_flags = 0; shark_fiqhandler.fh_regs = &shark_fiqregs; shark_fiqregs.fr_r8 = isa_io_virtaddr; shark_fiqregs.fr_r9 = 0; /* no routine right now */ shark_fiqregs.fr_r10 = 0; /* no arg right now */ shark_fiqregs.fr_r11 = 0; /* scratch */ shark_fiqregs.fr_r12 = 0; /* scratch */ shark_fiqregs.fr_r13 = 0; /* must set a stack when r9 is set! */ if (fiq_claim(&shark_fiqhandler)) panic("Cannot claim FIQ vector."); #if NKSYMS || defined(DDB) || defined(MODULAR) #ifndef __ELF__ { struct exec *kernexec = (struct exec *)KERNEL_TEXT_BASE; extern int end; extern char *esym; ksyms_addsyms_elf(kernexec->a_syms, &end, esym); } #endif /* __ELF__ */ #endif /* NKSYMS || defined(DDB) || defined(MODULAR) */ #ifdef DDB db_machine_init(); if (boothowto & RB_KDB) Debugger(); #endif /* Return the new stackbase. */ return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); }
u_int initarm(void *arg) { int loop; int loop1; u_int l1pagetable; extern int etext __asm("_etext"); extern int end __asm("_end"); int progress_counter = 0; #ifdef DO_MEMORY_DISK vm_offset_t md_root_start; #define MD_ROOT_SIZE (MEMORY_DISK_ROOT_SIZE * DEV_BSIZE) #endif #define gpio8(reg) (*(volatile uint8_t *)(ioreg_vaddr(S3C2800_GPIO_BASE) + (reg))) #define LEDSTEP() __LED(progress_counter++) #define pdatc gpio8(GPIO_PDATC) #define __LED(x) (pdatc = (pdatc & ~0x07) | (~(x) & 0x07)) LEDSTEP(); /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("CPU not recognized!"); LEDSTEP(); /* Disable all peripheral interrupts */ ioreg32(S3C2800_INTCTL_BASE + INTCTL_INTMSK) = 0; consinit(); #ifdef VERBOSE_INIT_ARM printf("consinit done\n"); #endif #ifdef KGDB LEDSTEP(); kgdb_port_init(); #endif LEDSTEP(); #ifdef VERBOSE_INIT_ARM /* Talk to the user */ printf("\nNetBSD/evbarm (SMDK2800) booting ...\n"); #endif /* * Ok we have the following memory map * * Physical Address Range Description * ----------------------- ---------------------------------- * 0x00000000 - 0x00ffffff Intel flash Memory (16MB) * 0x02000000 - 0x020fffff AMD flash Memory (1MB) * or (depend on DIPSW setting) * 0x00000000 - 0x000fffff AMD flash Memory (1MB) * 0x02000000 - 0x02ffffff Intel flash Memory (16MB) * * 0x08000000 - 0x09ffffff SDRAM (32MB) * 0x20000000 - 0x3fffffff PCI space * * The initarm() has the responsibility for creating the kernel * page tables. * It must also set up various memory pointers that are used * by pmap etc. */ /* Fake bootconfig structure for the benefit of pmap.c */ /* XXX must make the memory description h/w independent */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = SDRAM_START; bootconfig.dram[0].pages = SDRAM_SIZE / PAGE_SIZE; /* * Set up the variables that define the availablilty of * physical memory. For now, we're going to set * physical_freestart to 0x08200000 (where the kernel * was loaded), and allocate the memory we need downwards. * If we get too close to the bottom of SDRAM, we * will panic. We will update physical_freestart and * physical_freeend later to reflect what pmap_bootstrap() * wants to see. * * XXX pmap_bootstrap() needs an enema. */ physical_start = bootconfig.dram[0].address; physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); #if DO_MEMORY_DISK #ifdef MEMORY_DISK_ROOT_ROM md_root_start = MEMORY_DISK_ROOT_ADDR; boothowto |= RB_RDONLY; #else /* Reserve physmem for ram disk */ md_root_start = ((physical_end - MD_ROOT_SIZE) & ~(L1_S_SIZE-1)); printf("Reserve %ld bytes for memory disk\n", physical_end - md_root_start); /* copy fs contents */ memcpy((void *)md_root_start, (void *)MEMORY_DISK_ROOT_ADDR, MD_ROOT_SIZE); physical_end = md_root_start; #endif #endif physical_freestart = 0x08000000UL; /* XXX */ physical_freeend = 0x08200000UL; physmem = (physical_end - physical_start) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM /* Tell the user about the memory */ printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, physical_start, physical_end - 1); #endif /* * XXX * Okay, the kernel starts 2MB in from the bottom of physical * memory. We are going to allocate our bootstrap pages downwards * from there. * * We need to allocate some fixed page tables to get the kernel * going. We allocate one page directory and a number of page * tables and store the physical addresses in the kernel_pt_table * array. * * The kernel page directory must be on a 16K boundary. The page * tables must be on 4K boundaries. What we do is allocate the * page directory on the first 16K boundary that we encounter, and * the page tables on 4K boundaries otherwise. Since we allocate * at least 3 L2 page tables, we are guaranteed to encounter at * least one 16K aligned region. */ #ifdef VERBOSE_INIT_ARM printf("Allocating page tables\n"); #endif free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", physical_freestart, free_pages, free_pages); #endif /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #define alloc_pages(var, np) \ physical_freeend -= ((np) * PAGE_SIZE); \ if (physical_freeend < physical_freestart) \ panic("initarm: out of memory"); \ (var) = physical_freeend; \ free_pages -= (np); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); loop1 = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) panic("initarm: Failed to align the kernel page directory\n"); /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ alloc_pages(systempage.pv_pa, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); #ifdef VERBOSE_INIT_ARM printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); #endif alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); LEDSTEP(); /* * Ok we have allocated physical pages for the primary kernel * page tables */ #ifdef VERBOSE_INIT_ARM printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); #endif /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, 0x00000000, &kernel_pt_table[KERNEL_PT_SYS]); for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_KERNEL + loop]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif /* Now we fill in the L2 pagetable for the kernel static code/data */ { size_t textsize = (uintptr_t)&etext - KERNEL_TEXT_BASE; size_t totalsize = (uintptr_t)&end - KERNEL_TEXT_BASE; u_int logical; textsize = (textsize + PGOFSET) & ~PGOFSET; totalsize = (totalsize + PGOFSET) & ~PGOFSET; logical = 0x00200000; /* offset of kernel in RAM */ logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, textsize, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, totalsize - textsize, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); } #ifdef VERBOSE_INIT_ARM printf("Constructing L2 page tables\n"); #endif /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } /* Map the vector page. */ #if 1 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the * cache-clean code there. */ pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE); #else pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); #endif #ifdef MEMORY_DISK_DYNAMIC /* map MD root image */ pmap_map_chunk(l1pagetable, SMDK2800_MEMORY_DISK_VADDR, md_root_start, MD_ROOT_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); md_root_setconf((void *)md_root_start, MD_ROOT_SIZE); #endif /* MEMORY_DISK_DYNAMIC */ /* * map integrated peripherals at same address in l1pagetable * so that we can continue to use console. */ pmap_devmap_bootstrap(l1pagetable, smdk2800_devmap); /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* * Update the physical_freestart/physical_freeend/free_pages * variables. */ { physical_freestart = physical_start + (((((uintptr_t)&end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE); physical_freeend = physical_end; free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; } /* Switch tables */ #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", physical_freestart, free_pages, free_pages); printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); #endif LEDSTEP(); cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); cpu_setttb(kernel_l1pt.pv_pa, true); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init */ uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); #ifdef VERBOSE_INIT_ARM printf("done!\n"); #endif #if 0 /* * The IFPGA registers have just moved. * Detach the diagnostic serial port and reattach at the new address. */ plcomcndetach(); /* * XXX this should only be done in main() but it useful to * have output earlier ... */ consinit(); #endif LEDSTEP(); #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ #ifdef VERBOSE_INIT_ARM printf("init subsystems: stacks "); #endif set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); LEDSTEP(); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. * Until then we will use a handler that just panics but tells us * why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slightly better one. */ #ifdef VERBOSE_INIT_ARM printf("vectors "); #endif data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ #ifdef VERBOSE_INIT_ARM printf("undefined "); #endif undefined_init(); LEDSTEP(); /* Load memory into UVM. */ #ifdef VERBOSE_INIT_ARM printf("page "); #endif uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ uvm_page_physload(atop(physical_freestart), atop(physical_freeend), atop(physical_freestart), atop(physical_freeend), VM_FREELIST_DEFAULT); LEDSTEP(); /* Boot strap pmap telling it where the kernel page table is */ #ifdef VERBOSE_INIT_ARM printf("pmap "); #endif pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); LEDSTEP(); /* Setup the IRQ system */ #ifdef VERBOSE_INIT_ARM printf("irq "); #endif /* XXX irq_init(); */ #ifdef VERBOSE_INIT_ARM printf("done.\n"); #endif #ifdef BOOTHOWTO_INIT boothowto |= BOOTHOWTO_INIT; #endif { uint8_t gpio = ~gpio8(GPIO_PDATF); if (gpio & (1<<5)) /* SW3 */ boothowto ^= RB_SINGLE; if (gpio & (1<<7)) /* SW7 */ boothowto ^= RB_KDB; #ifdef VERBOSE_INIT_ARM printf( "sw: %x boothowto: %x\n", gpio, boothowto ); #endif } #ifdef KGDB if (boothowto & RB_KDB) { kgdb_debug_init = 1; kgdb_connect(1); } #endif #ifdef DDB db_machine_init(); if (boothowto & RB_KDB) Debugger(); #endif /* We return the new stack pointer address */ return (kernelstack.pv_va + USPACE_SVC_STACK_TOP); }
void * initarm(void *arg, void *arg2) { struct pv_addr kernel_l1pt; struct pv_addr md_addr; struct pv_addr md_bla; struct pv_addr dpcpu; int loop; u_int l1pagetable; vm_offset_t freemempos; vm_offset_t lastalloced; vm_offset_t lastaddr; uint32_t memsize = 32 * 1024 * 1024; sa1110_uart_vaddr = SACOM1_VBASE; boothowto = RB_VERBOSE | RB_SINGLE; cninit(); set_cpufuncs(); lastaddr = fake_preload_metadata(); physmem = memsize / PAGE_SIZE; pcpu0_init(); /* Do basic tuning, hz etc */ init_param1(); physical_start = (vm_offset_t) KERNBASE; physical_end = lastaddr; physical_freestart = (((vm_offset_t)physical_end) + PAGE_MASK) & ~PAGE_MASK; md_addr.pv_va = md_addr.pv_pa = MDROOT_ADDR; freemempos = (vm_offset_t)round_page(physical_freestart); memset((void *)freemempos, 0, 256*1024); /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = (var).pv_pa; #define alloc_pages(var, np) \ (var) = freemempos; \ freemempos += ((np) * PAGE_SIZE);\ memset((char *)(var), 0, ((np) * PAGE_SIZE)); while ((freemempos & (L1_TABLE_SIZE - 1)) != 0) freemempos += PAGE_SIZE; valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); valloc_pages(md_bla, L2_TABLE_SIZE / PAGE_SIZE); alloc_pages(sa1_cache_clean_addr, CPU_SA110_CACHE_CLEAN_SIZE / PAGE_SIZE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) { valloc_pages(kernel_pt_table[loop], L2_TABLE_SIZE / PAGE_SIZE); } else { kernel_pt_table[loop].pv_pa = freemempos + (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) * L2_TABLE_SIZE_REAL; kernel_pt_table[loop].pv_va = kernel_pt_table[loop].pv_pa; } } /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ valloc_pages(systempage, 1); /* Allocate dynamic per-cpu area. */ valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE); dpcpu_init((void *)dpcpu.pv_va, 0); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, KSTACK_PAGES); lastalloced = kernelstack.pv_va; /* * Allocate memory for the l1 and l2 page tables. The scheme to avoid * wasting memory by allocating the l1pt on the first 16k memory was * taken from NetBSD rpc_machdep.c. NKPT should be greater than 12 for * this to work (which is supposed to be the case). */ /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, 0x00000000, &kernel_pt_table[KERNEL_PT_SYS]); pmap_link_l2pt(l1pagetable, KERNBASE, &kernel_pt_table[KERNEL_PT_KERNEL]); pmap_link_l2pt(l1pagetable, 0xd0000000, &kernel_pt_table[KERNEL_PT_IO]); pmap_link_l2pt(l1pagetable, lastalloced & ~((L1_S_SIZE * 4) - 1), &kernel_pt_table[KERNEL_PT_L1]); pmap_link_l2pt(l1pagetable, 0x90000000, &kernel_pt_table[KERNEL_PT_IRQ]); pmap_link_l2pt(l1pagetable, MDROOT_ADDR, &md_bla); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00100000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); pmap_map_chunk(l1pagetable, KERNBASE, KERNBASE, ((uint32_t)lastaddr - KERNBASE), VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map the DPCPU pages */ pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa, DPCPU_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, md_addr.pv_va, md_addr.pv_pa, MD_ROOT_SIZE * 1024, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } pmap_map_chunk(l1pagetable, md_bla.pv_va, md_bla.pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); /* Map the vector page. */ pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map the statically mapped devices. */ pmap_devmap_bootstrap(l1pagetable, assabet_devmap); pmap_map_chunk(l1pagetable, sa1_cache_clean_addr, 0xf0000000, CPU_SA110_CACHE_CLEAN_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; undefined_init(); cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); setttb(kernel_l1pt.pv_pa); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * We must now clean the cache again.... * Cleaning may be done by reading new data to displace any * dirty data in the cache. This will have happened in setttb() * but since we are boot strapping the addresses used for the read * may have just been remapped and thus the cache could be out * of sync. A re-clean after the switch will cure this. * After booting there are no gross relocations of the kernel thus * this problem will not occur after initarm(). */ cpu_idcache_wbinv_all(); bootverbose = 1; /* Set stack for exception handlers */ proc_linkup0(&proc0, &thread0); thread0.td_kstack = kernelstack.pv_va; thread0.td_pcb = (struct pcb *) (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1; thread0.td_pcb->pcb_flags = 0; thread0.td_frame = &proc0_tf; /* Enable MMU, I-cache, D-cache, write buffer. */ cpufunc_control(0x337f, 0x107d); arm_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); pmap_curmaxkvaddr = freemempos + KERNEL_PT_VMDATA_NUM * 0x400000; dump_avail[0] = phys_avail[0] = round_page(virtual_avail); dump_avail[1] = phys_avail[1] = 0xc0000000 + 0x02000000 - 1; dump_avail[2] = phys_avail[2] = 0; dump_avail[3] = phys_avail[3] = 0; mutex_init(); pmap_bootstrap(freemempos, 0xd0000000, &kernel_l1pt); init_param2(physmem); kdb_init(); return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP - sizeof(struct pcb))); }
void * initarm(struct arm_boot_params *abp) { struct pv_addr kernel_l1pt; int loop; u_int l1pagetable; vm_offset_t freemempos; vm_offset_t afterkern; vm_offset_t lastaddr; int i; uint32_t memsize; boothowto = 0; /* Likely not needed */ lastaddr = parse_boot_param(abp); i = 0; set_cpufuncs(); cpufuncs.cf_sleep = s3c24x0_sleep; pcpu_init(pcpup, 0, sizeof(struct pcpu)); PCPU_SET(curthread, &thread0); /* Do basic tuning, hz etc */ init_param1(); #define KERNEL_TEXT_BASE (KERNBASE) freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK; /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_va, (np)); \ (var).pv_pa = (var).pv_va + (KERNPHYSADDR - KERNVIRTADDR); #define alloc_pages(var, np) \ (var) = freemempos; \ freemempos += (np * PAGE_SIZE); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0) freemempos += PAGE_SIZE; valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) { valloc_pages(kernel_pt_table[loop], L2_TABLE_SIZE / PAGE_SIZE); } else { kernel_pt_table[loop].pv_va = freemempos - (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) * L2_TABLE_SIZE_REAL; kernel_pt_table[loop].pv_pa = kernel_pt_table[loop].pv_va - KERNVIRTADDR + KERNPHYSADDR; } } /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ valloc_pages(systempage, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, KSTACK_PAGES); valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE); /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_va; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH, &kernel_pt_table[KERNEL_PT_SYS]); for (i = 0; i < KERNEL_PT_KERN_NUM; i++) pmap_link_l2pt(l1pagetable, KERNBASE + i * L1_S_SIZE, &kernel_pt_table[KERNEL_PT_KERN + i]); pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR, (((uint32_t)(lastaddr) - KERNBASE) + PAGE_SIZE) & ~(PAGE_SIZE - 1), VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); afterkern = round_page((lastaddr + L1_S_SIZE) & ~(L1_S_SIZE - 1)); for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) { pmap_link_l2pt(l1pagetable, afterkern + i * L1_S_SIZE, &kernel_pt_table[KERNEL_PT_AFKERNEL + i]); } /* Map the vector page. */ pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); pmap_map_chunk(l1pagetable, msgbufpv.pv_va, msgbufpv.pv_pa, msgbufsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } pmap_devmap_bootstrap(l1pagetable, s3c24x0_devmap); cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); setttb(kernel_l1pt.pv_pa); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE); set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * We must now clean the cache again.... * Cleaning may be done by reading new data to displace any * dirty data in the cache. This will have happened in setttb() * but since we are boot strapping the addresses used for the read * may have just been remapped and thus the cache could be out * of sync. A re-clean after the switch will cure this. * After booting there are no gross reloations of the kernel thus * this problem will not occur after initarm(). */ cpu_idcache_wbinv_all(); /* Disable all peripheral interrupts */ ioreg_write32(S3C24X0_INTCTL_BASE + INTCTL_INTMSK, ~0); memsize = board_init(); /* Find pclk for uart */ switch(ioreg_read32(S3C24X0_GPIO_BASE + GPIO_GSTATUS1) >> 16) { case 0x3241: s3c2410_clock_freq2(S3C24X0_CLKMAN_BASE, NULL, NULL, &s3c2410_pclk); break; case 0x3244: s3c2440_clock_freq2(S3C24X0_CLKMAN_BASE, NULL, NULL, &s3c2410_pclk); break; } cninit(); /* Set stack for exception handlers */ data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; undefined_init(); init_proc0(kernelstack.pv_va); arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); pmap_curmaxkvaddr = afterkern + 0x100000 * (KERNEL_PT_KERN_NUM - 1); arm_dump_avail_init(memsize, sizeof(dump_avail) / sizeof(dump_avail[0])); pmap_bootstrap(freemempos, KERNVIRTADDR + 3 * memsize, &kernel_l1pt); msgbufp = (void*)msgbufpv.pv_va; msgbufinit(msgbufp, msgbufsize); mutex_init(); physmem = memsize / PAGE_SIZE; phys_avail[0] = virtual_avail - KERNVIRTADDR + KERNPHYSADDR; phys_avail[1] = PHYSADDR + memsize; phys_avail[2] = 0; phys_avail[3] = 0; init_param2(physmem); kdb_init(); return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP - sizeof(struct pcb))); }
u_int initarm(void *arg) { int loop; int loop1; u_int l1pagetable; extern char _end[]; /* * Turn the led off, then turn it yellow. * 0x80 - red; 0x04 - fan; 0x02 - green. */ ISA_PUTBYTE(0x338, 0x04); ISA_PUTBYTE(0x338, 0x86); /* * Set up a diagnostic console so we can see what's going * on. */ cn_tab = &kcomcons; /* Talk to the user */ printf("\nNetBSD/netwinder booting ...\n"); /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("CPU not recognized!"); /* * We are currently running with the MMU enabled and the * entire address space mapped VA==PA, except for the * first 64MB of RAM is also double-mapped at 0xf0000000. * There is an L1 page table at 0x00008000. * * We also have the 21285's PCI I/O space mapped where * we expect it. */ printf("initarm: Configuring system ...\n"); /* * Copy out the boot info passed by the firmware. Note that * early versions of NeTTrom fill this in with bogus values, * so we need to sanity check it. */ memcpy(&nwbootinfo, (void *)(KERNEL_BASE + 0x100), sizeof(nwbootinfo)); #ifdef VERBOSE_INIT_ARM printf("NeTTrom boot info:\n"); printf("\tpage size = 0x%08lx\n", nwbootinfo.bi_pagesize); printf("\tnpages = %ld (0x%08lx)\n", nwbootinfo.bi_nrpages, nwbootinfo.bi_nrpages); printf("\trootdev = 0x%08lx\n", nwbootinfo.bi_rootdev); printf("\tcmdline = %s\n", nwbootinfo.bi_cmdline); #endif if (nwbootinfo.bi_nrpages != 0x02000 && nwbootinfo.bi_nrpages != 0x04000 && nwbootinfo.bi_nrpages != 0x08000 && nwbootinfo.bi_nrpages != 0x10000) { nwbootinfo.bi_pagesize = 0xdeadbeef; nwbootinfo.bi_nrpages = 0x01000; /* 16MB */ nwbootinfo.bi_rootdev = 0; } /* Fake bootconfig structure for the benefit of pmap.c */ /* XXX must make the memory description h/w independent */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = 0; bootconfig.dram[0].pages = nwbootinfo.bi_nrpages; /* * Set up the variables that define the availablilty of * physical memory. * * Since the NetWinder NeTTrom doesn't load ELF symbols * for us, we can safely assume that everything after end[] * is free. We start there and allocate upwards. */ physical_start = bootconfig.dram[0].address; physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); physical_freestart = ((((vaddr_t) _end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE; physical_freeend = physical_end; free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", physical_freestart, free_pages, free_pages); #endif physmem = (physical_end - physical_start) / PAGE_SIZE; /* Tell the user about the memory */ printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, physical_start, physical_end - 1); /* * Okay, we need to allocate some fixed page tables to get the * kernel going. We allocate one page directory and a number * of page tables and store the physical addresses in the * kernel_pt_table array. * * The kernel page directory must be on a 16K boundary. The page * tables must be on 4K boundaries. What we do is allocate the * page directory on the first 16K boundary that we encounter, * and the page tables on 4K boundaries otherwise. Since we * allocate at least 3 L2 page tables, we are guaranteed to * encounter at least one 16K aligned region. */ #ifdef VERBOSE_INIT_ARM printf("Allocating page tables\n"); #endif /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #define alloc_pages(var, np) \ (var) = physical_freestart; \ physical_freestart += ((np) * PAGE_SIZE);\ free_pages -= (np); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); loop1 = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) panic("initarm: Failed to align the kernel page directory"); /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ alloc_pages(systempage.pv_pa, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); #ifdef VERBOSE_INIT_ARM printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); #endif alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); /* * Ok we have allocated physical pages for the primary kernel * page tables */ #ifdef VERBOSE_INIT_ARM printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); #endif /* * Now we start consturction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, 0x00000000, &kernel_pt_table[KERNEL_PT_SYS]); pmap_link_l2pt(l1pagetable, KERNEL_BASE, &kernel_pt_table[KERNEL_PT_KERNEL]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif /* Now we fill in the L2 pagetable for the kernel static code/data */ { /* * The kernel starts in the first 1MB of RAM, and we'd * like to use a section mapping for text, so we'll just * map from KERNEL_BASE to etext[] to _end[]. */ extern char etext[]; size_t textsize = (uintptr_t) etext - KERNEL_BASE; size_t totalsize = (uintptr_t) _end - KERNEL_BASE; u_int logical; textsize = (textsize + PGOFSET) & ~PGOFSET; totalsize = (totalsize + PGOFSET) & ~PGOFSET; textsize = textsize & ~PGOFSET; totalsize = (totalsize + PGOFSET) & ~PGOFSET; logical = 0; /* offset into RAM */ logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, totalsize - textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); } #ifdef VERBOSE_INIT_ARM printf("Constructing L2 page tables\n"); #endif /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } /* Map the vector page. */ pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* * Map devices we can map w/ section mappings. */ loop = 0; while (l1_sec_table[loop].size) { vm_size_t sz; #ifdef VERBOSE_INIT_ARM printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa, l1_sec_table[loop].pa + l1_sec_table[loop].size - 1, l1_sec_table[loop].va); #endif for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE) pmap_map_section(l1pagetable, l1_sec_table[loop].va + sz, l1_sec_table[loop].pa + sz, l1_sec_table[loop].prot, l1_sec_table[loop].cache); ++loop; } /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* Switch tables */ #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", physical_freestart, free_pages, free_pages); printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); #endif cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); cpu_setttb(kernel_l1pt.pv_pa, true); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init */ uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); #ifdef VERBOSE_INIT_ARM printf("done!\n"); #endif /* * XXX this should only be done in main() but it useful to * have output earlier ... */ consinit(); #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ printf("init subsystems: stacks "); set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. * Until then we will use a handler that just panics but tells us * why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slightly better one. */ printf("vectors "); data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ printf("undefined "); undefined_init(); /* Load memory into UVM. */ printf("page "); uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ /* XXX Always one RAM block -- nuke the loop. */ for (loop = 0; loop < bootconfig.dramblocks; loop++) { paddr_t start = (paddr_t)bootconfig.dram[loop].address; paddr_t end = start + (bootconfig.dram[loop].pages * PAGE_SIZE); #if NISADMA > 0 paddr_t istart, isize; extern struct arm32_dma_range *footbridge_isa_dma_ranges; extern int footbridge_isa_dma_nranges; #endif if (start < physical_freestart) start = physical_freestart; if (end > physical_freeend) end = physical_freeend; #if 0 printf("%d: %lx -> %lx\n", loop, start, end - 1); #endif #if NISADMA > 0 if (arm32_dma_range_intersect(footbridge_isa_dma_ranges, footbridge_isa_dma_nranges, start, end - start, &istart, &isize)) { /* * Place the pages that intersect with the * ISA DMA range onto the ISA DMA free list. */ #if 0 printf(" ISADMA 0x%lx -> 0x%lx\n", istart, istart + isize - 1); #endif uvm_page_physload(atop(istart), atop(istart + isize), atop(istart), atop(istart + isize), VM_FREELIST_ISADMA); /* * Load the pieces that come before the * intersection onto the default free list. */ if (start < istart) { #if 0 printf(" BEFORE 0x%lx -> 0x%lx\n", start, istart - 1); #endif uvm_page_physload(atop(start), atop(istart), atop(start), atop(istart), VM_FREELIST_DEFAULT); } /* * Load the pieces that come after the * intersection onto the default free list. */ if ((istart + isize) < end) { #if 0 printf(" AFTER 0x%lx -> 0x%lx\n", (istart + isize), end - 1); #endif uvm_page_physload(atop(istart + isize), atop(end), atop(istart + isize), atop(end), VM_FREELIST_DEFAULT); } } else { uvm_page_physload(atop(start), atop(end), atop(start), atop(end), VM_FREELIST_DEFAULT); } #else /* NISADMA > 0 */ uvm_page_physload(atop(start), atop(end), atop(start), atop(end), VM_FREELIST_DEFAULT); #endif /* NISADMA > 0 */ } /* Boot strap pmap telling it where the kernel page table is */ printf("pmap "); pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); /* Now that pmap is inited, we can set cpu_reset_address */ cpu_reset_address_paddr = vtophys((vaddr_t)netwinder_reset); /* Setup the IRQ system */ printf("irq "); footbridge_intr_init(); printf("done.\n"); /* * Warn the user if the bootinfo was bogus. We already * faked up some safe values. */ if (nwbootinfo.bi_pagesize == 0xdeadbeef) printf("WARNING: NeTTrom boot info corrupt\n"); #ifdef DDB db_machine_init(); if (boothowto & RB_KDB) Debugger(); #endif /* Turn the led green */ ISA_PUTBYTE(0x338, 0x06); /* We return the new stack pointer address */ return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); }
/* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { extern vaddr_t xscale_cache_clean_addr; #ifdef DIAGNOSTIC extern vsize_t xscale_minidata_clean_size; #endif int loop; int loop1; u_int l1pagetable; paddr_t memstart; psize_t memsize; /* Calibrate the delay loop. */ i80321_calibrate_delay(); i80321_hardclock_hook = NULL; /* * Since we map the on-board devices VA==PA, and the kernel * is running VA==PA, it's possible for us to initialize * the console now. */ consinit(); #ifdef VERBOSE_INIT_ARM /* Talk to the user */ printf("\nNetBSD/evbarm (NPWR_FC) booting ...\n"); #endif /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("cpu not recognized!"); /* * We are currently running with the MMU enabled and the * entire address space mapped VA==PA, except for the * first 64M of RAM is also double-mapped at 0xc0000000. * There is an L1 page table at 0xa0004000. */ /* * Fetch the SDRAM start/size from the i80321 SDRAM configration * registers. */ i80321_sdram_bounds(&obio_bs_tag, VERDE_PMMR_BASE + VERDE_MCU_BASE, &memstart, &memsize); #ifdef VERBOSE_INIT_ARM printf("initarm: Configuring system ...\n"); #endif /* Fake bootconfig structure for the benefit of pmap.c */ /* XXX must make the memory description h/w independent */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = memstart; bootconfig.dram[0].pages = memsize / PAGE_SIZE; /* * Set up the variables that define the availablilty of * physical memory. For now, we're going to set * physical_freestart to 0xa0200000 (where the kernel * was loaded), and allocate the memory we need downwards. * If we get too close to the L1 table that we set up, we * will panic. We will update physical_freestart and * physical_freeend later to reflect what pmap_bootstrap() * wants to see. * * XXX pmap_bootstrap() needs an enema. */ physical_start = bootconfig.dram[0].address; physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); physical_freestart = 0xa0009000UL; physical_freeend = 0xa0200000UL; physmem = (physical_end - physical_start) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM /* Tell the user about the memory */ printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, physical_start, physical_end - 1); #endif /* * Okay, the kernel starts 2MB in from the bottom of physical * memory. We are going to allocate our bootstrap pages downwards * from there. * * We need to allocate some fixed page tables to get the kernel * going. We allocate one page directory and a number of page * tables and store the physical addresses in the kernel_pt_table * array. * * The kernel page directory must be on a 16K boundary. The page * tables must be on 4K bounaries. What we do is allocate the * page directory on the first 16K boundary that we encounter, and * the page tables on 4K boundaries otherwise. Since we allocate * at least 3 L2 page tables, we are guaranteed to encounter at * least one 16K aligned region. */ #ifdef VERBOSE_INIT_ARM printf("Allocating page tables\n"); #endif free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", physical_freestart, free_pages, free_pages); #endif /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #define alloc_pages(var, np) \ physical_freeend -= ((np) * PAGE_SIZE); \ if (physical_freeend < physical_freestart) \ panic("initarm: out of memory"); \ (var) = physical_freeend; \ free_pages -= (np); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); loop1 = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) panic("initarm: Failed to align the kernel page directory"); /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ alloc_pages(systempage.pv_pa, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); /* Allocate enough pages for cleaning the Mini-Data cache. */ KASSERT(xscale_minidata_clean_size <= PAGE_SIZE); valloc_pages(minidataclean, 1); #ifdef VERBOSE_INIT_ARM printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); #endif /* * XXX Defer this to later so that we can reclaim the memory * XXX used by the RedBoot page tables. */ alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); /* * Ok we have allocated physical pages for the primary kernel * page tables */ #ifdef VERBOSE_INIT_ARM printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); #endif /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1), &kernel_pt_table[KERNEL_PT_SYS]); for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_KERNEL + loop]); pmap_link_l2pt(l1pagetable, IQ80321_IOPXS_VBASE, &kernel_pt_table[KERNEL_PT_IOPXS]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif /* Now we fill in the L2 pagetable for the kernel static code/data */ { extern char etext[], _end[]; size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; u_int logical; textsize = (textsize + PGOFSET) & ~PGOFSET; totalsize = (totalsize + PGOFSET) & ~PGOFSET; logical = 0x00200000; /* offset of kernel in RAM */ logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, totalsize - textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); } #ifdef VERBOSE_INIT_ARM printf("Constructing L2 page tables\n"); #endif /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } /* Map the Mini-Data cache clean area. */ xscale_setup_minidata(l1pagetable, minidataclean.pv_va, minidataclean.pv_pa); /* Map the vector page. */ pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map the statically mapped devices. */ pmap_devmap_bootstrap(l1pagetable, iq80321_devmap); /* * Give the XScale global cache clean code an appropriately * sized chunk of unmapped VA space starting at 0xff000000 * (our device mappings end before this address). */ xscale_cache_clean_addr = 0xff000000U; /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* * Update the physical_freestart/physical_freeend/free_pages * variables. */ { extern char _end[]; physical_freestart = physical_start + (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE); physical_freeend = physical_end; free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; } /* Switch tables */ #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", physical_freestart, free_pages, free_pages); printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); #endif cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); cpu_setttb(kernel_l1pt.pv_pa, true); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init */ uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); #ifdef VERBOSE_INIT_ARM printf("done!\n"); #endif #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ #ifdef VERBOSE_INIT_ARM printf("init subsystems: stacks "); #endif set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. * Until then we will use a handler that just panics but tells us * why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slighly better one. */ #ifdef VERBOSE_INIT_ARM printf("vectors "); #endif data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ #ifdef VERBOSE_INIT_ARM printf("undefined "); #endif undefined_init(); /* Load memory into UVM. */ #ifdef VERBOSE_INIT_ARM printf("page "); #endif uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ uvm_page_physload(atop(physical_freestart), atop(physical_freeend), atop(physical_freestart), atop(physical_freeend), VM_FREELIST_DEFAULT); /* Boot strap pmap telling it where the kernel page table is */ #ifdef VERBOSE_INIT_ARM printf("pmap "); #endif pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); /* Setup the IRQ system */ #ifdef VERBOSE_INIT_ARM printf("irq "); #endif i80321_intr_init(); #ifdef VERBOSE_INIT_ARM printf("done.\n"); #endif #ifdef BOOTHOWTO boothowto = BOOTHOWTO; #endif #ifdef DDB db_machine_init(); if (boothowto & RB_KDB) Debugger(); #endif /* We return the new stack pointer address */ return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); }
/* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg0, void *arg1, void *arg2) { extern vaddr_t xscale_cache_clean_addr; extern cpu_kcore_hdr_t cpu_kcore_hdr; int loop; int loop1; u_int l1pagetable; pv_addr_t kernel_l1pt; paddr_t memstart; psize_t memsize; extern u_int32_t esym; /* &_end if no symbols are loaded */ #ifdef DIAGNOSTIC extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */ #endif /* setup a serial console for very early boot */ consinit(); /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("cpu not recognized!"); /* * Examine the boot args string for options we need to know about * now. */ /* XXX should really be done after setting up the console, but we * XXX need to parse the console selection flags right now. */ process_kernel_args((char *)0xa0200000 - MAX_BOOT_STRING - 1); /* Calibrate the delay loop. */ #if 1 i80321_calibrate_delay(); #endif /* Talk to the user */ printf("\nOpenBSD/armish booting ...\n"); /* * Reset the secondary PCI bus. RedBoot doesn't stop devices * on the PCI bus before handing us control, so we have to * do this. * * XXX This is arguably a bug in RedBoot, and doing this reset * XXX could be problematic in the future if we encounter an * XXX application where the PPB in the i80312 is used as a * XXX PPB. */ //#define VERBOSE_INIT_ARM /* * Fetch the SDRAM start/size from the i80312 SDRAM configuration * registers. */ i80321_sdram_bounds(&obio_bs_tag, VERDE_PMMR_BASE + VERDE_MCU_BASE, &memstart, &memsize); #define DEBUG #ifdef DEBUG printf("initarm: Configuring system ...\n"); #endif /* Fake bootconfig structure for the benefit of pmap.c */ /* XXX must make the memory description h/w independant */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = memstart; bootconfig.dram[0].pages = memsize / PAGE_SIZE; /* * Set up the variables that define the availablilty of * physical memory. For now, we're going to set * physical_freestart to 0xa0200000 (where the kernel * was loaded), and allocate the memory we need downwards. * If we get too close to the page tables that RedBoot * set up, we will panic. We will update physical_freestart * and physical_freeend later to reflect what pmap_bootstrap() * wants to see. * * XXX pmap_bootstrap() needs an enema. */ physical_start = bootconfig.dram[0].address; physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); physical_freestart = 0xa0009000UL; physical_freeend = 0xa0200000UL; physmem = (physical_end - physical_start) / PAGE_SIZE; #ifdef DEBUG /* Tell the user about the memory */ printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, physical_start, physical_end - 1); #endif /* * Okay, the kernel starts 2MB in from the bottom of physical * memory. We are going to allocate our bootstrap pages downwards * from there. * * We need to allocate some fixed page tables to get the kernel * going. We allocate one page directory and a number of page * tables and store the physical addresses in the kernel_pt_table * array. * * The kernel page directory must be on a 16K boundary. The page * tables must be on 4K boundaries. What we do is allocate the * page directory on the first 16K boundary that we encounter, and * the page tables on 4K boundaries otherwise. Since we allocate * at least 3 L2 page tables, we are guaranteed to encounter at * least one 16K aligned region. */ #ifdef VERBOSE_INIT_ARM printf("Allocating page tables\n"); #endif free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", physical_freestart, free_pages, free_pages); #endif /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #define alloc_pages(var, np) \ physical_freeend -= ((np) * PAGE_SIZE); \ if (physical_freeend < physical_freestart) \ panic("initarm: out of memory"); \ (var) = physical_freeend; \ free_pages -= (np); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); loop1 = 0; kernel_l1pt.pv_pa = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) panic("initarm: Failed to align the kernel page directory"); /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ alloc_pages(systempage.pv_pa, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); /* Allocate enough pages for cleaning the Mini-Data cache. */ KASSERT(xscale_minidata_clean_size <= PAGE_SIZE); valloc_pages(minidataclean, 1); #ifdef VERBOSE_INIT_ARM printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); #endif /* * XXX Defer this to later so that we can reclaim the memory * XXX used by the RedBoot page tables. */ alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); /* * Ok we have allocated physical pages for the primary kernel * page tables */ #ifdef VERBOSE_INIT_ARM printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); #endif /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; #ifdef HIGH_VECT /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1), &kernel_pt_table[KERNEL_PT_SYS]); #else /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, 0x00000000, &kernel_pt_table[KERNEL_PT_SYS]); #endif for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_KERNEL + loop]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); #if 0 pmap_link_l2pt(l1pagetable, IQ80321_IOPXS_VBASE, &kernel_pt_table[KERNEL_PT_IOPXS]); #endif /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif /* Now we fill in the L2 pagetable for the kernel static code/data * and the symbol table. */ { extern char etext[]; #ifdef VERBOSE_INIT_ARM extern char _end[]; #endif size_t textsize = (u_int32_t) etext - KERNEL_TEXT_BASE; size_t totalsize = esym - KERNEL_TEXT_BASE; u_int logical; #ifdef VERBOSE_INIT_ARM printf("kernelsize text %x total %x end %xesym %x\n", textsize, totalsize, _end, esym); #endif textsize = round_page(textsize); totalsize = round_page(totalsize); logical = 0x00200000; /* offset of kernel in RAM */ /* Update dump information */ cpu_kcore_hdr.kernelbase = KERNEL_BASE; cpu_kcore_hdr.kerneloffs = logical; cpu_kcore_hdr.staticsize = totalsize; logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, totalsize - textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); } #ifdef VERBOSE_INIT_ARM printf("Constructing L2 page tables\n"); #endif /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } /* Map the Mini-Data cache clean area. */ xscale_setup_minidata(l1pagetable, minidataclean.pv_va, minidataclean.pv_pa); /* Map the vector page. */ #ifdef HIGH_VECT pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); #else pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); #endif pmap_devmap_bootstrap(l1pagetable, iq80321_devmap); /* * Give the XScale global cache clean code an appropriately * sized chunk of unmapped VA space starting at 0xff000000 * (our device mappings end before this address). */ xscale_cache_clean_addr = 0xff000000U; /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* * Update the physical_freestart/physical_freeend/free_pages * variables. */ { physical_freestart = physical_start - KERNEL_BASE + round_page(esym); physical_freeend = physical_end; free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; } #ifdef VERBOSE_INIT_ARM printf("physical_freestart %x end %x\n", physical_freestart, physical_freeend); #endif /* be a client to all domains */ cpu_domains(0x55555555); /* Switch tables */ #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", physical_freestart, free_pages, free_pages); printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); #endif cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); setttb(kernel_l1pt.pv_pa); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init */ proc0paddr = (struct user *)kernelstack.pv_va; proc0.p_addr = proc0paddr; #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif #ifdef HIGH_VECT arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); #else arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); #endif /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ #ifdef VERBOSE_INIT_ARM printf("init subsystems: stacks "); #endif set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. * Until then we will use a handler that just panics but tells us * why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slightly better one. */ #ifdef VERBOSE_INIT_ARM printf("vectors "); #endif data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ #ifdef VERBOSE_INIT_ARM printf("undefined "); #endif undefined_init(); /* Load memory into UVM. */ #ifdef VERBOSE_INIT_ARM printf("page "); #endif uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ uvm_page_physload(atop(physical_freestart), atop(physical_freeend), atop(physical_freestart), atop(physical_freeend), 0); /* Boot strap pmap telling it where the kernel page table is */ #ifdef VERBOSE_INIT_ARM printf("pmap "); #endif pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); /* Update dump information */ cpu_kcore_hdr.pmap_kernel_l1 = (u_int32_t)pmap_kernel()->pm_l1; cpu_kcore_hdr.pmap_kernel_l2 = (u_int32_t)&(pmap_kernel()->pm_l2); /* Setup the IRQ system */ #ifdef VERBOSE_INIT_ARM printf("irq "); #endif i80321intc_intr_init(); #ifdef VERBOSE_INIT_ARM printf("done.\n"); #endif #ifdef DDB db_machine_init(); /* Firmware doesn't load symbols. */ ddb_init(); if (boothowto & RB_KDB) Debugger(); #endif /* We return the new stack pointer address */ return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); }
/* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("cpu not recognized!"); /* map some peripheral registers */ pmap_devmap_bootstrap((vaddr_t)armreg_ttbr_read() & -L1_TABLE_SIZE, netwalker_devmap); cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); /* Register devmap for devices we mapped in start */ pmap_devmap_register(netwalker_devmap); setup_ioports(); consinit(); #ifdef NO_POWERSAVE cpu_do_powersave=0; #endif init_clocks(); #ifdef KGDB kgdb_port_init(); #endif /* Talk to the user */ printf("\nNetBSD/evbarm (" ___STRING(EVBARM_BOARDTYPE) ") booting ...\n"); #ifdef BOOT_ARGS char mi_bootargs[] = BOOT_ARGS; parse_mi_bootargs(mi_bootargs); #endif bootargs[0] = '\0'; #if defined(VERBOSE_INIT_ARM) || 1 printf("initarm: Configuring system"); printf(", CLIDR=%010o CTR=%#x", armreg_clidr_read(), armreg_ctr_read()); printf("\n"); #endif /* * Ok we have the following memory map * * Physical Address Range Description * ----------------------- ---------------------------------- * * 0x90000000 - 0xAFFFFFFF DDR SDRAM (512MByte) * * The initarm() has the responsibility for creating the kernel * page tables. * It must also set up various memory pointers that are used * by pmap etc. */ #ifdef VERBOSE_INIT_ARM printf("initarm: Configuring system ...\n"); #endif /* Fake bootconfig structure for the benefit of pmap.c */ /* XXX must make the memory description h/w independent */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = MEMSTART; bootconfig.dram[0].pages = (MEMSIZE * 1024 * 1024) / PAGE_SIZE; psize_t ram_size = bootconfig.dram[0].pages * PAGE_SIZE; #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS if (ram_size > KERNEL_VM_BASE - KERNEL_BASE) { printf("%s: dropping RAM size from %luMB to %uMB\n", __func__, (unsigned long) (ram_size >> 20), (KERNEL_VM_BASE - KERNEL_BASE) >> 20); ram_size = KERNEL_VM_BASE - KERNEL_BASE; }
void * initarm(struct arm_boot_params *abp) { #define next_chunk2(a,b) (((a) + (b)) &~ ((b)-1)) #define next_page(a) next_chunk2(a,PAGE_SIZE) struct pv_addr kernel_l1pt; struct pv_addr dpcpu; int loop, i; u_int l1pagetable; vm_offset_t freemempos; vm_offset_t freemem_pt; vm_offset_t afterkern; vm_offset_t freemem_after; vm_offset_t lastaddr; uint32_t memsize; lastaddr = parse_boot_param(abp); set_cpufuncs(); /* NB: sets cputype */ pcpu_init(pcpup, 0, sizeof(struct pcpu)); PCPU_SET(curthread, &thread0); /* Do basic tuning, hz etc */ init_param1(); /* * We allocate memory downwards from where we were loaded * by RedBoot; first the L1 page table, then NUM_KERNEL_PTS * entries in the L2 page table. Past that we re-align the * allocation boundary so later data structures (stacks, etc) * can be mapped with different attributes (write-back vs * write-through). Note this leaves a gap for expansion * (or might be repurposed). */ freemempos = KERNPHYSADDR; /* macros to simplify initial memory allocation */ #define alloc_pages(var, np) do { \ freemempos -= (np * PAGE_SIZE); \ (var) = freemempos; \ /* NB: this works because locore maps PA=VA */ \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); \ } while (0) #define valloc_pages(var, np) do { \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = (var).pv_pa + (KERNVIRTADDR - KERNPHYSADDR); \ } while (0) /* force L1 page table alignment */ while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0) freemempos -= PAGE_SIZE; /* allocate contiguous L1 page table */ valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); /* now allocate L2 page tables; they are linked to L1 below */ for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) { valloc_pages(kernel_pt_table[loop], L2_TABLE_SIZE / PAGE_SIZE); } else { kernel_pt_table[loop].pv_pa = freemempos + (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) * L2_TABLE_SIZE_REAL; kernel_pt_table[loop].pv_va = kernel_pt_table[loop].pv_pa + (KERNVIRTADDR - KERNPHYSADDR); } } freemem_pt = freemempos; /* base of allocated pt's */ /* * Re-align allocation boundary so we can map the area * write-back instead of write-through for the stacks and * related structures allocated below. */ freemempos = PHYSADDR + 0x100000; /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ valloc_pages(systempage, 1); /* Allocate dynamic per-cpu area. */ valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE); dpcpu_init((void *)dpcpu.pv_va, 0); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, KSTACK_PAGES); alloc_pages(minidataclean.pv_pa, 1); valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE); #ifdef ARM_USE_SMALL_ALLOC freemempos -= PAGE_SIZE; freemem_pt = trunc_page(freemem_pt); freemem_after = freemempos - ((freemem_pt - (PHYSADDR + 0x100000)) / PAGE_SIZE) * sizeof(struct arm_small_page); arm_add_smallalloc_pages( (void *)(freemem_after + (KERNVIRTADDR - KERNPHYSADDR)), (void *)0xc0100000, freemem_pt - (PHYSADDR + 0x100000), 1); freemem_after -= ((freemem_after - (PHYSADDR + 0x1000)) / PAGE_SIZE) * sizeof(struct arm_small_page); arm_add_smallalloc_pages( (void *)(freemem_after + (KERNVIRTADDR - KERNPHYSADDR)), (void *)0xc0001000, trunc_page(freemem_after) - (PHYSADDR + 0x1000), 0); freemempos = trunc_page(freemem_after); freemempos -= PAGE_SIZE; #endif /* * Now construct the L1 page table. First map the L2 * page tables into the L1 so we can replace L1 mappings * later on if necessary */ l1pagetable = kernel_l1pt.pv_va; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00100000 - 1), &kernel_pt_table[KERNEL_PT_SYS]); pmap_link_l2pt(l1pagetable, IXP425_IO_VBASE, &kernel_pt_table[KERNEL_PT_IO]); pmap_link_l2pt(l1pagetable, IXP425_MCU_VBASE, &kernel_pt_table[KERNEL_PT_IO + 1]); pmap_link_l2pt(l1pagetable, IXP425_PCI_MEM_VBASE, &kernel_pt_table[KERNEL_PT_IO + 2]); pmap_link_l2pt(l1pagetable, KERNBASE, &kernel_pt_table[KERNEL_PT_BEFOREKERN]); pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR, 0x100000, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, KERNBASE + 0x100000, PHYSADDR + 0x100000, 0x100000, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE, KERNEL_TEXT_PHYS, next_chunk2(((uint32_t)lastaddr) - KERNEL_TEXT_BASE, L1_S_SIZE), VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); freemem_after = next_page((int)lastaddr); afterkern = round_page(next_chunk2((vm_offset_t)lastaddr, L1_S_SIZE)); for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) { pmap_link_l2pt(l1pagetable, afterkern + i * 0x00100000, &kernel_pt_table[KERNEL_PT_AFKERNEL + i]); } pmap_map_entry(l1pagetable, afterkern, minidataclean.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); #ifdef ARM_USE_SMALL_ALLOC if ((freemem_after + 2 * PAGE_SIZE) <= afterkern) { arm_add_smallalloc_pages((void *)(freemem_after), (void*)(freemem_after + PAGE_SIZE), afterkern - (freemem_after + PAGE_SIZE), 0); } #endif /* Map the Mini-Data cache clean area. */ xscale_setup_minidata(l1pagetable, afterkern, minidataclean.pv_pa); /* Map the vector page. */ pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); if (cpu_is_ixp43x()) pmap_devmap_bootstrap(l1pagetable, ixp435_devmap); else pmap_devmap_bootstrap(l1pagetable, ixp425_devmap); /* * Give the XScale global cache clean code an appropriately * sized chunk of unmapped VA space starting at 0xff000000 * (our device mappings end before this address). */ xscale_cache_clean_addr = 0xff000000U; cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); setttb(kernel_l1pt.pv_pa); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE*PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE*PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE*PAGE_SIZE); /* * We must now clean the cache again.... * Cleaning may be done by reading new data to displace any * dirty data in the cache. This will have happened in setttb() * but since we are boot strapping the addresses used for the read * may have just been remapped and thus the cache could be out * of sync. A re-clean after the switch will cure this. * After booting there are no gross relocations of the kernel thus * this problem will not occur after initarm(). */ cpu_idcache_wbinv_all(); /* ready to setup the console (XXX move earlier if possible) */ cninit(); /* * Fetch the RAM size from the MCU registers. The * expansion bus was mapped above so we can now read 'em. */ if (cpu_is_ixp43x()) memsize = ixp435_ddram_size(); else memsize = ixp425_sdram_size(); physmem = memsize / PAGE_SIZE; /* Set stack for exception handlers */ data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; undefined_init(); init_proc0(kernelstack.pv_va); arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); pmap_curmaxkvaddr = afterkern + PAGE_SIZE; arm_dump_avail_init(memsize, sizeof(dump_avail) / sizeof(dump_avail[0])); pmap_bootstrap(pmap_curmaxkvaddr, 0xd0000000, &kernel_l1pt); msgbufp = (void*)msgbufpv.pv_va; msgbufinit(msgbufp, msgbufsize); mutex_init(); i = 0; #ifdef ARM_USE_SMALL_ALLOC phys_avail[i++] = PHYSADDR; phys_avail[i++] = PHYSADDR + PAGE_SIZE; /* *XXX: Gross hack to get our * pages in the vm_page_array. */ #endif phys_avail[i++] = round_page(virtual_avail - KERNBASE + PHYSADDR); phys_avail[i++] = trunc_page(PHYSADDR + memsize - 1); phys_avail[i++] = 0; phys_avail[i] = 0; init_param2(physmem); kdb_init(); /* use static kernel environment if so configured */ if (envmode == 1) kern_envp = static_env; return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP - sizeof(struct pcb))); #undef next_page #undef next_chunk2 }
void * initarm(struct arm_boot_params *abp) { struct pv_addr kernel_l1pt; struct pv_addr dpcpu; int loop; u_int l1pagetable; vm_offset_t freemempos; vm_offset_t freemem_pt; vm_offset_t afterkern; vm_offset_t freemem_after; vm_offset_t lastaddr; int i, j; uint32_t memsize[PXA2X0_SDRAM_BANKS], memstart[PXA2X0_SDRAM_BANKS]; lastaddr = parse_boot_param(abp); set_cpufuncs(); pcpu_init(pcpup, 0, sizeof(struct pcpu)); PCPU_SET(curthread, &thread0); /* Do basic tuning, hz etc */ init_param1(); freemempos = 0xa0200000; /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = (var).pv_pa + 0x20000000; #define alloc_pages(var, np) \ freemempos -= (np * PAGE_SIZE); \ (var) = freemempos; \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0) freemempos -= PAGE_SIZE; valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) { valloc_pages(kernel_pt_table[loop], L2_TABLE_SIZE / PAGE_SIZE); } else { kernel_pt_table[loop].pv_pa = freemempos + (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) * L2_TABLE_SIZE_REAL; kernel_pt_table[loop].pv_va = kernel_pt_table[loop].pv_pa + 0x20000000; } } freemem_pt = freemempos; freemempos = 0xa0100000; /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ valloc_pages(systempage, 1); /* Allocate dynamic per-cpu area. */ valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE); dpcpu_init((void *)dpcpu.pv_va, 0); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, KSTACK_PAGES); alloc_pages(minidataclean.pv_pa, 1); valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE); #ifdef ARM_USE_SMALL_ALLOC freemempos -= PAGE_SIZE; freemem_pt = trunc_page(freemem_pt); freemem_after = freemempos - ((freemem_pt - 0xa0100000) / PAGE_SIZE) * sizeof(struct arm_small_page); arm_add_smallalloc_pages((void *)(freemem_after + 0x20000000) , (void *)0xc0100000, freemem_pt - 0xa0100000, 1); freemem_after -= ((freemem_after - 0xa0001000) / PAGE_SIZE) * sizeof(struct arm_small_page); arm_add_smallalloc_pages((void *)(freemem_after + 0x20000000) , (void *)0xc0001000, trunc_page(freemem_after) - 0xa0001000, 0); freemempos = trunc_page(freemem_after); freemempos -= PAGE_SIZE; #endif /* * Allocate memory for the l1 and l2 page tables. The scheme to avoid * wasting memory by allocating the l1pt on the first 16k memory was * taken from NetBSD rpc_machdep.c. NKPT should be greater than 12 for * this to work (which is supposed to be the case). */ /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_va; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00100000 - 1), &kernel_pt_table[KERNEL_PT_SYS]); #if 0 /* XXXBJR: What is this? Don't know if there's an analogue. */ pmap_link_l2pt(l1pagetable, IQ80321_IOPXS_VBASE, &kernel_pt_table[KERNEL_PT_IOPXS]); #endif pmap_link_l2pt(l1pagetable, KERNBASE, &kernel_pt_table[KERNEL_PT_BEFOREKERN]); pmap_map_chunk(l1pagetable, KERNBASE, SDRAM_START, 0x100000, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, KERNBASE + 0x100000, SDRAM_START + 0x100000, 0x100000, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); pmap_map_chunk(l1pagetable, KERNBASE + 0x200000, SDRAM_START + 0x200000, (((uint32_t)(lastaddr) - KERNBASE - 0x200000) + L1_S_SIZE) & ~(L1_S_SIZE - 1), VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); freemem_after = ((int)lastaddr + PAGE_SIZE) & ~(PAGE_SIZE - 1); afterkern = round_page(((vm_offset_t)lastaddr + L1_S_SIZE) & ~(L1_S_SIZE - 1)); for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) { pmap_link_l2pt(l1pagetable, afterkern + i * 0x00100000, &kernel_pt_table[KERNEL_PT_AFKERNEL + i]); } pmap_map_entry(l1pagetable, afterkern, minidataclean.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); #ifdef ARM_USE_SMALL_ALLOC if ((freemem_after + 2 * PAGE_SIZE) <= afterkern) { arm_add_smallalloc_pages((void *)(freemem_after), (void*)(freemem_after + PAGE_SIZE), afterkern - (freemem_after + PAGE_SIZE), 0); } #endif /* Map the Mini-Data cache clean area. */ xscale_setup_minidata(l1pagetable, afterkern, minidataclean.pv_pa); /* Map the vector page. */ pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_devmap_bootstrap(l1pagetable, pxa_devmap); /* * Give the XScale global cache clean code an appropriately * sized chunk of unmapped VA space starting at 0xff000000 * (our device mappings end before this address). */ xscale_cache_clean_addr = 0xff000000U; cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); setttb(kernel_l1pt.pv_pa); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ set_stackptrs(0); /* * We must now clean the cache again.... * Cleaning may be done by reading new data to displace any * dirty data in the cache. This will have happened in setttb() * but since we are boot strapping the addresses used for the read * may have just been remapped and thus the cache could be out * of sync. A re-clean after the switch will cure this. * After booting there are no gross relocations of the kernel thus * this problem will not occur after initarm(). */ cpu_idcache_wbinv_all(); /* * Sort out bus_space for on-board devices. */ pxa_obio_tag_init(); /* * Fetch the SDRAM start/size from the PXA2X0 SDRAM configration * registers. */ pxa_probe_sdram(obio_tag, PXA2X0_MEMCTL_BASE, memstart, memsize); physmem = 0; for (i = 0; i < PXA2X0_SDRAM_BANKS; i++) { physmem += memsize[i] / PAGE_SIZE; } /* Fire up consoles. */ cninit(); /* Set stack for exception handlers */ data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; undefined_init(); init_proc0(kernelstack.pv_va); /* Enable MMU, I-cache, D-cache, write buffer. */ arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); pmap_curmaxkvaddr = afterkern + PAGE_SIZE; /* * ARM USE_SMALL_ALLOC uses dump_avail, so it must be filled before * calling pmap_bootstrap. */ i = 0; for (j = 0; j < PXA2X0_SDRAM_BANKS; j++) { if (memsize[j] > 0) { dump_avail[i++] = round_page(memstart[j]); dump_avail[i++] = trunc_page(memstart[j] + memsize[j]); } } dump_avail[i] = 0; dump_avail[i] = 0; vm_max_kernel_address = 0xd0000000; pmap_bootstrap(pmap_curmaxkvaddr, &kernel_l1pt); msgbufp = (void*)msgbufpv.pv_va; msgbufinit(msgbufp, msgbufsize); mutex_init(); i = 0; #ifdef ARM_USE_SMALL_ALLOC phys_avail[i++] = 0xa0000000; phys_avail[i++] = 0xa0001000; /* *XXX: Gross hack to get our * pages in the vm_page_array . */ #endif for (j = 0; j < PXA2X0_SDRAM_BANKS; j++) { if (memsize[j] > 0) { phys_avail[i] = round_page(memstart[j]); dump_avail[i++] = round_page(memstart[j]); phys_avail[i] = trunc_page(memstart[j] + memsize[j]); dump_avail[i++] = trunc_page(memstart[j] + memsize[j]); } } dump_avail[i] = 0; phys_avail[i++] = 0; dump_avail[i] = 0; phys_avail[i] = 0; #ifdef ARM_USE_SMALL_ALLOC phys_avail[2] = round_page(virtual_avail - KERNBASE + phys_avail[2]); #else phys_avail[0] = round_page(virtual_avail - KERNBASE + phys_avail[0]); #endif init_param2(physmem); kdb_init(); return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP - sizeof(struct pcb))); }
u_int initarm(void *arg) { const struct pmap_devmap const *devmap; bus_addr_t rambase; const psize_t ram_reserve = 0x200000; psize_t ram_size; /* allocate/map our basic memory mapping */ switch (EXYNOS_PRODUCT_FAMILY(exynos_soc_id)) { #if defined(EXYNOS4) case EXYNOS4_PRODUCT_FAMILY: devmap = e4_devmap; rambase = EXYNOS4_SDRAM_PBASE; break; #endif #if defined(EXYNOS5) case EXYNOS5_PRODUCT_FAMILY: devmap = e5_devmap; rambase = EXYNOS5_SDRAM_PBASE; break; #endif default: /* Won't work, but... */ panic("Unknown product family %llx", EXYNOS_PRODUCT_FAMILY(exynos_soc_id)); } pmap_devmap_register(devmap); /* bootstrap soc. uart_address is determined in odroid_start */ paddr_t uart_address = armreg_tpidruro_read(); exynos_bootstrap(EXYNOS_CORE_VBASE, EXYNOS_IOPHYSTOVIRT(uart_address)); /* set up CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("cpu not recognized!"); /* get normal console working */ consinit(); #ifdef KGDB kgdb_port_init(); #endif #ifdef VERBOSE_INIT_ARM printf("\nuboot arg = %#"PRIxPTR", %#"PRIxPTR", %#"PRIxPTR", %#"PRIxPTR"\n", uboot_args[0], uboot_args[1], uboot_args[2], uboot_args[3]); printf("Exynos SoC ID %08x\n", exynos_soc_id); printf("initarm: cbar=%#x\n", armreg_cbar_read()); #endif /* determine cpu0 clock rate */ exynos_clocks_bootstrap(); #ifdef VERBOSE_INIT_ARM printf("CPU0 now running on %"PRIu64" Mhz\n", exynos_get_cpufreq()/(1000*1000)); #endif #if NARML2CC > 0 if (CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid)) { /* probe and enable the PL310 L2CC */ const bus_space_handle_t pl310_bh = EXYNOS_IOPHYSTOVIRT(armreg_cbar_read()); #ifdef ARM_TRUSTZONE_FIRMWARE exynos4_l2cc_init(); #endif arml2cc_init(&exynos_bs_tag, pl310_bh, 0x2000); } #endif cpu_reset_address = exynos_wdt_reset; #ifdef VERBOSE_INIT_ARM printf("\nNetBSD/evbarm (odroid) booting ...\n"); #endif #ifdef BOOT_ARGS char mi_bootargs[] = BOOT_ARGS; parse_mi_bootargs(mi_bootargs); #endif boot_args = bootargs; parse_mi_bootargs(boot_args); exynos_extract_mac_adress(); /* * Determine physical memory by looking at the PoP package. This PoP * package ID seems to be only available on Exynos4 * * First assume the default 2Gb of memory, dictated by mapping too */ ram_size = (psize_t) 0xC0000000 - 0x40000000; #if defined(EXYNOS4) switch (exynos_pop_id) { case EXYNOS_PACKAGE_ID_2_GIG: KASSERT(ram_size <= 2UL*1024*1024*1024); break; default: printf("Unknown PoP package id 0x%08x, assuming 1Gb\n", exynos_pop_id); ram_size = (psize_t) 0x10000000; } #endif /* Fake bootconfig structure for the benefit of pmap.c. */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = rambase; bootconfig.dram[0].pages = ram_size / PAGE_SIZE; #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS const bool mapallmem_p = true; #ifndef PMAP_NEED_ALLOC_POOLPAGE if (ram_size > KERNEL_VM_BASE - KERNEL_BASE) { printf("%s: dropping RAM size from %luMB to %uMB\n", __func__, (unsigned long) (ram_size >> 20), (KERNEL_VM_BASE - KERNEL_BASE) >> 20); ram_size = KERNEL_VM_BASE - KERNEL_BASE; }
/* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { extern vaddr_t xscale_cache_clean_addr; int loop; int loop1; u_int l1pagetable; #ifdef DIAGNOSTIC extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */ #endif /* Register devmap for devices we mapped in start */ pmap_devmap_register(viper_devmap); /* start 32.768 kHz OSC */ ioreg_write(VIPER_CLKMAN_VBASE + 0x08, 2); /* Get ready for splfoo() */ pxa2x0_intr_bootstrap(VIPER_INTCTL_VBASE); /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("cpu not recognized!"); #if 0 /* Calibrate the delay loop. */ #endif /* setup GPIO for BTUART, in case bootloader doesn't take care of it */ pxa2x0_gpio_bootstrap(VIPER_GPIO_VBASE); pxa2x0_gpio_config(viper_gpioconf); /* turn on clock to UART block. XXX: this should not be done here. */ ioreg_write(VIPER_CLKMAN_VBASE+CLKMAN_CKEN, CKEN_FFUART|CKEN_BTUART | ioreg_read(VIPER_CLKMAN_VBASE+CLKMAN_CKEN)); consinit(); #ifdef KGDB kgdb_port_init(); #endif /* Talk to the user */ printf("\nNetBSD/evbarm (viper) booting ...\n"); #if 0 /* * Examine the boot args string for options we need to know about * now. */ process_kernel_args((char *)nwbootinfo.bt_args); #endif printf("initarm: Configuring system ...\n"); /* Fake bootconfig structure for the benefit of pmap.c */ /* XXX must make the memory description h/w independent */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = MEMSTART; bootconfig.dram[0].pages = MEMSIZE / PAGE_SIZE; /* * Set up the variables that define the availablilty of * physical memory. For now, we're going to set * physical_freestart to 0xa0200000 (where the kernel * was loaded), and allocate the memory we need downwards. * If we get too close to the page tables that RedBoot * set up, we will panic. We will update physical_freestart * and physical_freeend later to reflect what pmap_bootstrap() * wants to see. * * XXX pmap_bootstrap() needs an enema. * (now that would be truly hardcore XXX) */ physical_start = bootconfig.dram[0].address; physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); physical_freestart = 0xa0009000UL; physical_freeend = 0xa0200000UL; physmem = (physical_end - physical_start) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM /* Tell the user about the memory */ printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, physical_start, physical_end - 1); #endif /* * Okay, the kernel starts 2MB in from the bottom of physical * memory. We are going to allocate our bootstrap pages downwards * from there. * * We need to allocate some fixed page tables to get the kernel * going. We allocate one page directory and a number of page * tables and store the physical addresses in the kernel_pt_table * array. * * The kernel page directory must be on a 16K boundary. The page * tables must be on 4K boundaries. What we do is allocate the * page directory on the first 16K boundary that we encounter, and * the page tables on 4K boundaries otherwise. Since we allocate * at least 3 L2 page tables, we are guaranteed to encounter at * least one 16K aligned region. */ #ifdef VERBOSE_INIT_ARM printf("Allocating page tables\n"); #endif free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", physical_freestart, free_pages, free_pages); #endif /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #define alloc_pages(var, np) \ physical_freeend -= ((np) * PAGE_SIZE); \ if (physical_freeend < physical_freestart) \ panic("initarm: out of memory"); \ (var) = physical_freeend; \ free_pages -= (np); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); loop1 = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) panic("initarm: Failed to align the kernel page directory"); /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ alloc_pages(systempage.pv_pa, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); /* Allocate enough pages for cleaning the Mini-Data cache. */ KASSERT(xscale_minidata_clean_size <= PAGE_SIZE); valloc_pages(minidataclean, 1); #ifdef VERBOSE_INIT_ARM printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); #endif /* * XXX Defer this to later so that we can reclaim the memory * XXX used by the RedBoot page tables. */ alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); /* * Ok we have allocated physical pages for the primary kernel * page tables */ #ifdef VERBOSE_INIT_ARM printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); #endif /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, 0x00000000, &kernel_pt_table[KERNEL_PT_SYS]); for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_KERNEL + loop]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif /* Now we fill in the L2 pagetable for the kernel static code/data */ { extern char etext[], _end[]; size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; u_int logical; textsize = (textsize + PGOFSET) & ~PGOFSET; totalsize = (totalsize + PGOFSET) & ~PGOFSET; logical = 0x00200000; /* offset of kernel in RAM */ logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, totalsize - textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); } #ifdef VERBOSE_INIT_ARM printf("Constructing L2 page tables\n"); #endif /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } /* Map the Mini-Data cache clean area. */ xscale_setup_minidata(l1pagetable, minidataclean.pv_va, minidataclean.pv_pa); /* Map the vector page. */ #if 1 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the * cache-clean code there. */ pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE); #else pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); #endif /* * map integrated peripherals at same address in l1pagetable * so that we can continue to use console. */ pmap_devmap_bootstrap(l1pagetable, viper_devmap); /* * Give the XScale global cache clean code an appropriately * sized chunk of unmapped VA space starting at 0xff000000 * (our device mappings end before this address). */ xscale_cache_clean_addr = 0xff000000U; /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* * Update the physical_freestart/physical_freeend/free_pages * variables. */ { extern char _end[]; physical_freestart = physical_start + (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE); physical_freeend = physical_end; free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; } /* Switch tables */ #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", physical_freestart, free_pages, free_pages); printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); #endif cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); setttb(kernel_l1pt.pv_pa); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init */ proc0paddr = (struct user *)kernelstack.pv_va; lwp0.l_addr = proc0paddr; #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ printf("init subsystems: stacks "); set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. * Until then we will use a handler that just panics but tells us * why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slightly better one. */ printf("vectors "); data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ printf("undefined "); undefined_init(); /* Load memory into UVM. */ printf("page "); uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ uvm_page_physload(atop(physical_freestart), atop(physical_freeend), atop(physical_freestart), atop(physical_freeend), VM_FREELIST_DEFAULT); /* Boot strap pmap telling it where the kernel page table is */ printf("pmap "); pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); #ifdef __HAVE_MEMORY_DISK__ md_root_setconf(memory_disk, sizeof memory_disk); #endif #ifdef KGDB if (boothowto & RB_KDB) { kgdb_debug_init = 1; kgdb_connect(1); } #endif #ifdef DDB db_machine_init(); /* Firmware doesn't load symbols. */ ddb_init(0, NULL, NULL); if (boothowto & RB_KDB) Debugger(); #endif /* We return the new stack pointer address */ return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); }
/* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { extern char _end[]; extern vaddr_t startup_pagetable; extern struct btinfo_common bootinfo; struct btinfo_common *btinfo = &bootinfo; struct btinfo_model *model = NULL; struct btinfo_memory *memory = NULL; struct btinfo_video *video = NULL; struct btinfo_bootargs *args = NULL; u_int l1pagetable, _end_physical; int loop, loop1, n, i; /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("cpu not recognized!"); /* map some peripheral registers at static I/O area. */ pmap_devmap_bootstrap(startup_pagetable, epoc32_devmap); bootconfig.dramblocks = 0; while (btinfo->type != BTINFO_NONE) { switch (btinfo->type) { case BTINFO_MODEL: model = (struct btinfo_model *)btinfo; btinfo = &(model + 1)->common; strncpy(epoc32_model, model->model, sizeof(epoc32_model)); break; case BTINFO_MEMORY: memory = (struct btinfo_memory *)btinfo; btinfo = &(memory + 1)->common; /* * Fake bootconfig structure for the benefit of pmap.c */ i = bootconfig.dramblocks; bootconfig.dram[i].address = memory->address; bootconfig.dram[i].pages = memory->size / PAGE_SIZE; bootconfig.dramblocks++; break; case BTINFO_VIDEO: video = (struct btinfo_video *)btinfo; btinfo = &(video + 1)->common; epoc32_fb_width = video->width; epoc32_fb_height = video->height; break; case BTINFO_BOOTARGS: args = (struct btinfo_bootargs *)btinfo; btinfo = &(args + 1)->common; memcpy(bootargs, args->bootargs, min(sizeof(bootargs), sizeof(args->bootargs))); bootargs[sizeof(bootargs) - 1] = '\0'; boot_args = bootargs; break; default: #define NEXT_BOOTINFO(bi) (struct btinfo_common *)((char *)bi + (bi)->len) btinfo = NEXT_BOOTINFO(btinfo); } } if (bootconfig.dramblocks == 0) panic("BTINFO_MEMORY not found"); consinit(); if (boot_args != NULL) parse_mi_bootargs(boot_args); physical_start = bootconfig.dram[0].address; physical_freestart = bootconfig.dram[0].address; physical_freeend = KERNEL_TEXT_BASE; free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #define alloc_pages(var, np) \ physical_freeend -= ((np) * PAGE_SIZE); \ if (physical_freeend < physical_freestart) \ panic("initarm: out of memory"); \ (var) = physical_freeend; \ free_pages -= (np); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); loop1 = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0) panic("initarm: Failed to align the kernel page directory"); /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ alloc_pages(systempage.pv_pa, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_va; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, 0x00000000, &kernel_pt_table[KERNEL_PT_SYS]); pmap_link_l2pt(l1pagetable, KERNEL_BASE, &kernel_pt_table[KERNEL_PT_KERNEL]); /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE; /* Now we fill in the L2 pagetable for the kernel static code/data */ { extern char etext[]; size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; size_t datasize; PhysMem *dram = bootconfig.dram; u_int logical, physical, size; textsize = (textsize + PGOFSET) & ~PGOFSET; totalsize = (totalsize + PGOFSET) & ~PGOFSET; datasize = totalsize - textsize; /* data and bss */ logical = KERNEL_OFFSET; /* offset of kernel in RAM */ physical = KERNEL_OFFSET; i = 0; size = dram[i].pages * PAGE_SIZE - physical; /* Map kernel text section. */ while (1 /*CONSTINT*/) { size = pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, dram[i].address + physical, textsize < size ? textsize : size, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); logical += size; physical += size; textsize -= size; if (physical >= dram[i].pages * PAGE_SIZE) { i++; size = dram[i].pages * PAGE_SIZE; physical = 0; } if (textsize == 0) break; } size = dram[i].pages * PAGE_SIZE - physical; /* Map data and bss section. */ while (1 /*CONSTINT*/) { size = pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, dram[i].address + physical, datasize < size ? datasize : size, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); logical += size; physical += size; datasize -= size; if (physical >= dram[i].pages * PAGE_SIZE) { i++; size = dram[i].pages * PAGE_SIZE; physical = 0; } if (datasize == 0) break; } _end_physical = dram[i].address + physical; n = i; physical_end = dram[n].address + dram[n].pages * PAGE_SIZE; n++; } /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); /* Map the vector page. */ pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_devmap_bootstrap(l1pagetable, epoc32_devmap); pmap_devmap_bootstrap(l1pagetable, epoc32_fb_devmap); epoc32_fb_addr = ARM7XX_FB_VBASE; /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* Switch tables */ cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); cpu_setttb(kernel_l1pt.pv_pa, true); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init */ uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. Until then we will use a handler that just panics but * tells us why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slightly better one. */ data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ undefined_init(); /* Load memory into UVM. */ uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ uvm_page_physload( atop(_end_physical), atop(physical_end), atop(_end_physical), atop(physical_end), VM_FREELIST_DEFAULT); physmem = bootconfig.dram[0].pages; for (i = 1; i < n; i++) physmem += bootconfig.dram[i].pages; if (physmem < 0x400000) physical_end = 0; for (loop = n; loop < bootconfig.dramblocks; loop++) { size_t start = bootconfig.dram[loop].address; size_t size = bootconfig.dram[loop].pages * PAGE_SIZE; uvm_page_physload(atop(start), atop(start + size), atop(start), atop(start + size), VM_FREELIST_DEFAULT); physmem += bootconfig.dram[loop].pages; if (physical_end == 0 && physmem >= 0x400000 / PAGE_SIZE) /* Fixup physical_end for Series5. */ physical_end = start + size; } /* Boot strap pmap telling it where the kernel page table is */ pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); #ifdef __HAVE_MEMORY_DISK__ md_root_setconf(memory_disk, sizeof memory_disk); #endif #if NKSYMS || defined(DDB) || defined(MODULAR) /* Firmware doesn't load symbols. */ ddb_init(0, NULL, NULL); #endif #ifdef DDB db_machine_init(); if (boothowto & RB_KDB) Debugger(); #endif /* We return the new stack pointer address */ return kernelstack.pv_va + USPACE_SVC_STACK_TOP; }
/* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { extern vaddr_t xscale_cache_clean_addr; #ifdef DIAGNOSTIC extern vsize_t xscale_minidata_clean_size; #endif int loop; int loop1; u_int kerneldatasize; u_int l1pagetable; u_int freemempos; uint32_t reg; /* * Make sure the power-down GPIO pin is configured correctly, as * cpu_reboot() may be called early on (e.g. from within ddb(9)). */ /* Pin is active-high, so make sure it's driven low */ reg = GPRD(IXP425_GPIO_GPOUTR); reg &= ~(1u << GPIO_POWER_OFF); GPWR(IXP425_GPIO_GPOUTR, reg); /* Set as output */ reg = GPRD(IXP425_GPIO_GPOER); reg &= ~(1u << GPIO_POWER_OFF); GPWR(IXP425_GPIO_GPOER, reg); /* * Since we map v0xf0000000 == p0xc8000000, it's possible for * us to initialize the console now. */ consinit(); #ifdef VERBOSE_INIT_ARM /* Talk to the user */ printf("\nNetBSD/evbarm (Linksys NSLU2) booting ...\n"); #endif /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("cpu not recognized!"); /* XXX overwrite bootconfig to hardcoded values */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = 0x10000000; bootconfig.dram[0].pages = ixp425_sdram_size() / PAGE_SIZE; kerneldatasize = (uint32_t)&end - (uint32_t)KERNEL_TEXT_BASE; #ifdef VERBOSE_INIT_ARM printf("kernsize=0x%x\n", kerneldatasize); #endif kerneldatasize = ((kerneldatasize - 1) & ~(PAGE_SIZE * 4 - 1)) + PAGE_SIZE * 8; /* * Set up the variables that define the availablilty of * physical memory. For now, we're going to set * physical_freestart to 0x10200000 (where the kernel * was loaded), and allocate the memory we need downwards. * If we get too close to the L1 table that we set up, we * will panic. We will update physical_freestart and * physical_freeend later to reflect what pmap_bootstrap() * wants to see. * * XXX pmap_bootstrap() needs an enema. */ physical_start = bootconfig.dram[0].address; physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); physical_freestart = physical_start + (KERNEL_TEXT_BASE - KERNEL_BASE) + kerneldatasize; physical_freeend = physical_end; physmem = (physical_end - physical_start) / PAGE_SIZE; /* Tell the user about the memory */ #ifdef VERBOSE_INIT_ARM printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, physical_start, physical_end - 1); printf("Allocating page tables\n"); #endif free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; freemempos = 0x10000000; #ifdef VERBOSE_INIT_ARM printf("physical_start = 0x%08lx, physical_end = 0x%08lx\n", physical_start, physical_end); #endif /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #if 0 #define alloc_pages(var, np) \ physical_freeend -= ((np) * PAGE_SIZE); \ if (physical_freeend < physical_freestart) \ panic("initarm: out of memory"); \ (var) = physical_freeend; \ free_pages -= (np); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); #else #define alloc_pages(var, np) \ (var) = freemempos; \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); \ freemempos += (np) * PAGE_SIZE; #endif loop1 = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) panic("initarm: Failed to align the kernel page directory"); /* * Allocate a page for the system page. * This page will just contain the system vectors and can be * shared by all processes. */ alloc_pages(systempage.pv_pa, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); /* Allocate enough pages for cleaning the Mini-Data cache. */ KASSERT(xscale_minidata_clean_size <= PAGE_SIZE); valloc_pages(minidataclean, 1); #ifdef VERBOSE_INIT_ARM printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); #endif /* * XXX Defer this to later so that we can reclaim the memory * XXX used by the RedBoot page tables. */ alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); /* * Ok we have allocated physical pages for the primary kernel * page tables */ #ifdef VERBOSE_INIT_ARM printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); #endif /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1), &kernel_pt_table[KERNEL_PT_SYS]); for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_KERNEL + loop]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); pmap_link_l2pt(l1pagetable, IXP425_IO_VBASE, &kernel_pt_table[KERNEL_PT_IO]); #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif /* Now we fill in the L2 pagetable for the kernel static code/data */ { extern char etext[], _end[]; size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; u_int logical; textsize = (textsize + PGOFSET) & ~PGOFSET; totalsize = (totalsize + PGOFSET) & ~PGOFSET; logical = 0x00200000; /* offset of kernel in RAM */ logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, totalsize - textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); } #ifdef VERBOSE_INIT_ARM printf("Constructing L2 page tables\n"); #endif /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } /* Map the Mini-Data cache clean area. */ xscale_setup_minidata(l1pagetable, minidataclean.pv_va, minidataclean.pv_pa); /* Map the vector page. */ pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* * Map the IXP425 registers */ pmap_devmap_bootstrap(l1pagetable, nslu2_devmap); /* * Give the XScale global cache clean code an appropriately * sized chunk of unmapped VA space starting at 0xff000000 * (our device mappings end before this address). */ xscale_cache_clean_addr = 0xff000000U; /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* * Update the physical_freestart/physical_freeend/free_pages * variables. */ { extern char _end[]; physical_freestart = physical_start + (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE); physical_freeend = physical_end; free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; } /* Switch tables */ #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", physical_freestart, free_pages, free_pages); printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); #endif cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); cpu_setttb(kernel_l1pt.pv_pa, true); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init */ uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ #ifdef VERBOSE_INIT_ARM printf("init subsystems: stacks "); #endif set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. * Until then we will use a handler that just panics but tells us * why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slightly better one. */ #ifdef VERBOSE_INIT_ARM printf("vectors "); #endif data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ #ifdef VERBOSE_INIT_ARM printf("undefined "); #endif undefined_init(); /* Load memory into UVM. */ #ifdef VERBOSE_INIT_ARM printf("page "); #endif uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ uvm_page_physload(atop(physical_freestart), atop(physical_freeend), atop(physical_freestart), atop(physical_freeend), VM_FREELIST_DEFAULT); /* Boot strap pmap telling it where the kernel page table is */ #ifdef VERBOSE_INIT_ARM printf("pmap "); #endif pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); /* Setup the IRQ system */ #ifdef VERBOSE_INIT_ARM printf("irq "); #endif ixp425_intr_init(); #ifdef VERBOSE_INIT_ARM printf("\nAll initialization done!\nNow Starting NetBSD, Here we go!\n"); #endif #ifdef BOOTHOWTO boothowto = BOOTHOWTO; #endif #ifdef DDB db_machine_init(); if (boothowto & RB_KDB) Debugger(); #endif /* We return the new stack pointer address */ return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); }
void * initarm(struct arm_boot_params *abp) { #define next_chunk2(a,b) (((a) + (b)) &~ ((b)-1)) #define next_page(a) next_chunk2(a,PAGE_SIZE) struct pv_addr kernel_l1pt; struct pv_addr dpcpu; int loop, i; u_int l1pagetable; vm_offset_t freemempos; vm_offset_t freemem_pt; vm_offset_t afterkern; vm_offset_t freemem_after; vm_offset_t lastaddr; uint32_t memsize; /* kernel text starts where we were loaded at boot */ #define KERNEL_TEXT_OFF (abp->abp_physaddr - PHYSADDR) #define KERNEL_TEXT_BASE (KERNBASE + KERNEL_TEXT_OFF) #define KERNEL_TEXT_PHYS (PHYSADDR + KERNEL_TEXT_OFF) lastaddr = parse_boot_param(abp); arm_physmem_kernaddr = abp->abp_physaddr; set_cpufuncs(); /* NB: sets cputype */ pcpu_init(pcpup, 0, sizeof(struct pcpu)); PCPU_SET(curthread, &thread0); init_static_kenv(NULL, 0); /* Do basic tuning, hz etc */ init_param1(); /* * We allocate memory downwards from where we were loaded * by RedBoot; first the L1 page table, then NUM_KERNEL_PTS * entries in the L2 page table. Past that we re-align the * allocation boundary so later data structures (stacks, etc) * can be mapped with different attributes (write-back vs * write-through). Note this leaves a gap for expansion * (or might be repurposed). */ freemempos = abp->abp_physaddr; /* macros to simplify initial memory allocation */ #define alloc_pages(var, np) do { \ freemempos -= (np * PAGE_SIZE); \ (var) = freemempos; \ /* NB: this works because locore maps PA=VA */ \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); \ } while (0) #define valloc_pages(var, np) do { \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = (var).pv_pa + (KERNVIRTADDR - abp->abp_physaddr); \ } while (0) /* force L1 page table alignment */ while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0) freemempos -= PAGE_SIZE; /* allocate contiguous L1 page table */ valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); /* now allocate L2 page tables; they are linked to L1 below */ for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) { valloc_pages(kernel_pt_table[loop], L2_TABLE_SIZE / PAGE_SIZE); } else { kernel_pt_table[loop].pv_pa = freemempos + (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) * L2_TABLE_SIZE_REAL; kernel_pt_table[loop].pv_va = kernel_pt_table[loop].pv_pa + (KERNVIRTADDR - abp->abp_physaddr); } } freemem_pt = freemempos; /* base of allocated pt's */ /* * Re-align allocation boundary so we can map the area * write-back instead of write-through for the stacks and * related structures allocated below. */ freemempos = PHYSADDR + 0x100000; /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ valloc_pages(systempage, 1); /* Allocate dynamic per-cpu area. */ valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE); dpcpu_init((void *)dpcpu.pv_va, 0); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, kstack_pages); alloc_pages(minidataclean.pv_pa, 1); valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE); /* * Now construct the L1 page table. First map the L2 * page tables into the L1 so we can replace L1 mappings * later on if necessary */ l1pagetable = kernel_l1pt.pv_va; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, rounddown2(ARM_VECTORS_HIGH, 0x00100000), &kernel_pt_table[KERNEL_PT_SYS]); pmap_link_l2pt(l1pagetable, IXP425_IO_VBASE, &kernel_pt_table[KERNEL_PT_IO]); pmap_link_l2pt(l1pagetable, IXP425_MCU_VBASE, &kernel_pt_table[KERNEL_PT_IO + 1]); pmap_link_l2pt(l1pagetable, IXP425_PCI_MEM_VBASE, &kernel_pt_table[KERNEL_PT_IO + 2]); pmap_link_l2pt(l1pagetable, KERNBASE, &kernel_pt_table[KERNEL_PT_BEFOREKERN]); pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR, 0x100000, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, KERNBASE + 0x100000, PHYSADDR + 0x100000, 0x100000, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE, KERNEL_TEXT_PHYS, next_chunk2(((uint32_t)lastaddr) - KERNEL_TEXT_BASE, L1_S_SIZE), VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); freemem_after = next_page((int)lastaddr); afterkern = round_page(next_chunk2((vm_offset_t)lastaddr, L1_S_SIZE)); for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) { pmap_link_l2pt(l1pagetable, afterkern + i * 0x00100000, &kernel_pt_table[KERNEL_PT_AFKERNEL + i]); } pmap_map_entry(l1pagetable, afterkern, minidataclean.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map the Mini-Data cache clean area. */ xscale_setup_minidata(l1pagetable, afterkern, minidataclean.pv_pa); /* Map the vector page. */ pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); if (cpu_is_ixp43x()) arm_devmap_bootstrap(l1pagetable, ixp435_devmap); else arm_devmap_bootstrap(l1pagetable, ixp425_devmap); /* * Give the XScale global cache clean code an appropriately * sized chunk of unmapped VA space starting at 0xff000000 * (our device mappings end before this address). */ xscale_cache_clean_addr = 0xff000000U; cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); cpu_setttb(kernel_l1pt.pv_pa); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ set_stackptrs(0); /* * We must now clean the cache again.... * Cleaning may be done by reading new data to displace any * dirty data in the cache. This will have happened in cpu_setttb() * but since we are boot strapping the addresses used for the read * may have just been remapped and thus the cache could be out * of sync. A re-clean after the switch will cure this. * After booting there are no gross relocations of the kernel thus * this problem will not occur after initarm(). */ cpu_idcache_wbinv_all(); cpu_setup(); /* ready to setup the console (XXX move earlier if possible) */ cninit(); /* * Fetch the RAM size from the MCU registers. The * expansion bus was mapped above so we can now read 'em. */ if (cpu_is_ixp43x()) memsize = ixp435_ddram_size(); else memsize = ixp425_sdram_size(); undefined_init(); init_proc0(kernelstack.pv_va); arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); pmap_curmaxkvaddr = afterkern + PAGE_SIZE; vm_max_kernel_address = 0xe0000000; pmap_bootstrap(pmap_curmaxkvaddr, &kernel_l1pt); msgbufp = (void*)msgbufpv.pv_va; msgbufinit(msgbufp, msgbufsize); mutex_init(); /* * Add the physical ram we have available. * * Exclude the kernel, and all the things we allocated which immediately * follow the kernel, from the VM allocation pool but not from crash * dumps. virtual_avail is a global variable which tracks the kva we've * "allocated" while setting up pmaps. * * Prepare the list of physical memory available to the vm subsystem. */ arm_physmem_hardware_region(PHYSADDR, memsize); arm_physmem_exclude_region(freemem_pt, abp->abp_physaddr - freemem_pt, EXFLAG_NOALLOC); arm_physmem_exclude_region(freemempos, abp->abp_physaddr - 0x100000 - freemempos, EXFLAG_NOALLOC); arm_physmem_exclude_region(abp->abp_physaddr, virtual_avail - KERNVIRTADDR, EXFLAG_NOALLOC); arm_physmem_init_kernel_globals(); init_param2(physmem); kdb_init(); return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP - sizeof(struct pcb))); #undef next_page #undef next_chunk2 }
/* * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { int loop; int loop1; u_int kerneldatasize, symbolsize; vaddr_t l1pagetable; vaddr_t freemempos; #if NKSYMS || defined(DDB) || defined(MODULAR) Elf_Shdr *sh; #endif cpu_reset_address = ixp12x0_reset; /* * Since we map v0xf0000000 == p0x90000000, it's possible for * us to initialize the console now. */ consinit(); #ifdef VERBOSE_INIT_ARM /* Talk to the user */ printf("\nNetBSD/evbarm (IXM1200) booting ...\n"); #endif /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("CPU not recognized!"); /* XXX overwrite bootconfig to hardcoded values */ bootconfig.dram[0].address = 0xc0000000; bootconfig.dram[0].pages = 0x10000000 / PAGE_SIZE; /* SDRAM 256MB */ bootconfig.dramblocks = 1; kerneldatasize = (uint32_t)&end - (uint32_t)KERNEL_TEXT_BASE; symbolsize = 0; #ifdef PMAP_DEBUG pmap_debug(-1); #endif #if NKSYMS || defined(DDB) || defined(MODULAR) if (! memcmp(&end, "\177ELF", 4)) { sh = (Elf_Shdr *)((char *)&end + ((Elf_Ehdr *)&end)->e_shoff); loop = ((Elf_Ehdr *)&end)->e_shnum; for(; loop; loop--, sh++) if (sh->sh_offset > 0 && (sh->sh_offset + sh->sh_size) > symbolsize) symbolsize = sh->sh_offset + sh->sh_size; } #endif #ifdef VERBOSE_INIT_ARM printf("kernsize=0x%x\n", kerneldatasize); #endif kerneldatasize += symbolsize; kerneldatasize = ((kerneldatasize - 1) & ~(PAGE_SIZE * 4 - 1)) + PAGE_SIZE * 8; /* * Set up the variables that define the availablilty of physcial * memory */ physical_start = bootconfig.dram[0].address; physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); physical_freestart = physical_start + (KERNEL_TEXT_BASE - KERNEL_BASE) + kerneldatasize; physical_freeend = physical_end; physmem = (physical_end - physical_start) / PAGE_SIZE; freemempos = 0xc0000000; #ifdef VERBOSE_INIT_ARM printf("Allocating page tables\n"); #endif free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM printf("CP15 Register1 = 0x%08x\n", cpu_get_control()); printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", physical_freestart, free_pages, free_pages); printf("physical_start = 0x%08lx, physical_end = 0x%08lx\n", physical_start, physical_end); #endif /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #define alloc_pages(var, np) \ (var) = freemempos; \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); \ freemempos += (np) * PAGE_SIZE; loop1 = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } #ifdef DIAGNOSTIC /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) panic("initarm: Failed to align the kernel page directory"); #endif /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ alloc_pages(systempage.pv_pa, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); #ifdef VERBOSE_INIT_ARM printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); #endif alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); #ifdef CPU_IXP12X0 /* * XXX totally stuffed hack to work round problems introduced * in recent versions of the pmap code. Due to the calls used there * we cannot allocate virtual memory during bootstrap. */ for(;;) { alloc_pages(ixp12x0_cc_base, 1); if (! (ixp12x0_cc_base & (CPU_IXP12X0_CACHE_CLEAN_SIZE - 1))) break; } { vaddr_t dummy; alloc_pages(dummy, CPU_IXP12X0_CACHE_CLEAN_SIZE / PAGE_SIZE - 1); } ixp12x0_cache_clean_addr = ixp12x0_cc_base; ixp12x0_cache_clean_size = CPU_IXP12X0_CACHE_CLEAN_SIZE / 2; #endif /* CPU_IXP12X0 */ #ifdef VERBOSE_INIT_ARM printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); #endif /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1), &kernel_pt_table[KERNEL_PT_SYS]); for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_KERNEL + loop]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); pmap_link_l2pt(l1pagetable, IXP12X0_IO_VBASE, &kernel_pt_table[KERNEL_PT_IO]); #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif #if XXX /* Now we fill in the L2 pagetable for the kernel code/data */ { extern char etext[], _end[]; size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; u_int logical; textsize = (textsize + PGOFSET) & ~PGOFSET; totalsize = (totalsize + PGOFSET) & ~PGOFSET; logical = 0x00200000; /* offset of kernel in RAM */ logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, totalsize - textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); } #else { pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE, KERNEL_TEXT_BASE, kerneldatasize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); } #endif #ifdef VERBOSE_INIT_ARM printf("Constructing L2 page tables\n"); #endif /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } /* Map the vector page. */ pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); #ifdef VERBOSE_INIT_ARM printf("systempage (vector page): p0x%08lx v0x%08lx\n", systempage.pv_pa, vector_page); #endif /* Map the statically mapped devices. */ pmap_devmap_bootstrap(l1pagetable, ixm1200_devmap); #ifdef VERBOSE_INIT_ARM printf("done.\n"); #endif /* * Map the Dcache Flush page. * Hw Ref Manual 3.2.4.5 Software Dcache Flush */ pmap_map_chunk(l1pagetable, ixp12x0_cache_clean_addr, 0xe0000000, CPU_IXP12X0_CACHE_CLEAN_SIZE, VM_PROT_READ, PTE_CACHE); /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* Switch tables */ cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); cpu_setttb(kernel_l1pt.pv_pa, true); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Moved here from cpu_startup() as data_abort_handler() references * this during init */ uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); /* * We must now clean the cache again.... * Cleaning may be done by reading new data to displace any * dirty data in the cache. This will have happened in cpu_setttb() * but since we are boot strapping the addresses used for the read * may have just been remapped and thus the cache could be out * of sync. A re-clean after the switch will cure this. * After booting there are no gross reloations of the kernel thus * this problem will not occur after initarm(). */ cpu_idcache_wbinv_all(); arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ #ifdef VERBOSE_INIT_ARM printf("init subsystems: stacks "); #endif set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); #ifdef PMAP_DEBUG if (pmap_debug_level >= 0) printf("kstack V%08lx P%08lx\n", kernelstack.pv_va, kernelstack.pv_pa); #endif /* PMAP_DEBUG */ /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. Until then we will use a handler that just panics but * tells us why. * Initialisation of the vetcors will just panic on a data abort. * This just fills in a slightly better one. */ #ifdef VERBOSE_INIT_ARM printf("vectors "); #endif data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; #ifdef VERBOSE_INIT_ARM printf("\ndata_abort_handler_address = %08x\n", data_abort_handler_address); printf("prefetch_abort_handler_address = %08x\n", prefetch_abort_handler_address); printf("undefined_handler_address = %08x\n", undefined_handler_address); #endif /* Initialise the undefined instruction handlers */ #ifdef VERBOSE_INIT_ARM printf("undefined "); #endif undefined_init(); /* Load memory into UVM. */ #ifdef VERBOSE_INIT_ARM printf("page "); #endif uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ uvm_page_physload(atop(physical_freestart), atop(physical_freeend), atop(physical_freestart), atop(physical_freeend), VM_FREELIST_DEFAULT); /* Boot strap pmap telling it where the kernel page table is */ #ifdef VERBOSE_INIT_ARM printf("pmap "); #endif pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); /* Setup the IRQ system */ #ifdef VERBOSE_INIT_ARM printf("irq "); #endif ixp12x0_intr_init(); #ifdef VERBOSE_INIT_ARM printf("done.\n"); #endif #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", physical_freestart, free_pages, free_pages); printf("freemempos=%08lx\n", freemempos); printf("switching to new L1 page table @%#lx... \n", kernel_l1pt.pv_pa); #endif consinit(); #ifdef VERBOSE_INIT_ARM printf("consinit \n"); #endif ixdp_ixp12x0_cc_setup(); #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif #if NKSYMS || defined(DDB) || defined(MODULAR) ksyms_addsyms_elf(symbolsize, ((int *)&end), ((char *)&end) + symbolsize); #endif #ifdef DDB db_machine_init(); if (boothowto & RB_KDB) Debugger(); #endif /* We return the new stack pointer address */ return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); }
void * initarm(struct arm_boot_params *abp) { struct pv_addr kernel_l1pt; struct pv_addr dpcpu; int loop, i; u_int l1pagetable; vm_offset_t freemempos; vm_offset_t freemem_pt; vm_offset_t afterkern; vm_offset_t freemem_after; vm_offset_t lastaddr; uint32_t memsize, memstart; lastaddr = parse_boot_param(abp); arm_physmem_kernaddr = abp->abp_physaddr; set_cpufuncs(); pcpu_init(pcpup, 0, sizeof(struct pcpu)); PCPU_SET(curthread, &thread0); /* Do basic tuning, hz etc */ init_param1(); freemempos = 0xa0200000; /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = (var).pv_pa + 0x20000000; #define alloc_pages(var, np) \ freemempos -= (np * PAGE_SIZE); \ (var) = freemempos; \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0) freemempos -= PAGE_SIZE; valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) { valloc_pages(kernel_pt_table[loop], L2_TABLE_SIZE / PAGE_SIZE); } else { kernel_pt_table[loop].pv_pa = freemempos + (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) * L2_TABLE_SIZE_REAL; kernel_pt_table[loop].pv_va = kernel_pt_table[loop].pv_pa + 0x20000000; } } freemem_pt = freemempos; freemempos = 0xa0100000; /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ valloc_pages(systempage, 1); /* Allocate dynamic per-cpu area. */ valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE); dpcpu_init((void *)dpcpu.pv_va, 0); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, KSTACK_PAGES); alloc_pages(minidataclean.pv_pa, 1); valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE); /* * Allocate memory for the l1 and l2 page tables. The scheme to avoid * wasting memory by allocating the l1pt on the first 16k memory was * taken from NetBSD rpc_machdep.c. NKPT should be greater than 12 for * this to work (which is supposed to be the case). */ /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_va; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00100000 - 1), &kernel_pt_table[KERNEL_PT_SYS]); pmap_link_l2pt(l1pagetable, IQ80321_IOPXS_VBASE, &kernel_pt_table[KERNEL_PT_IOPXS]); pmap_link_l2pt(l1pagetable, KERNBASE, &kernel_pt_table[KERNEL_PT_BEFOREKERN]); pmap_map_chunk(l1pagetable, KERNBASE, SDRAM_START, 0x100000, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, KERNBASE + 0x100000, SDRAM_START + 0x100000, 0x100000, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); pmap_map_chunk(l1pagetable, KERNBASE + 0x200000, SDRAM_START + 0x200000, (((uint32_t)(lastaddr) - KERNBASE - 0x200000) + L1_S_SIZE) & ~(L1_S_SIZE - 1), VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); freemem_after = ((int)lastaddr + PAGE_SIZE) & ~(PAGE_SIZE - 1); afterkern = round_page(((vm_offset_t)lastaddr + L1_S_SIZE) & ~(L1_S_SIZE - 1)); for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) { pmap_link_l2pt(l1pagetable, afterkern + i * 0x00100000, &kernel_pt_table[KERNEL_PT_AFKERNEL + i]); } pmap_map_entry(l1pagetable, afterkern, minidataclean.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map the Mini-Data cache clean area. */ xscale_setup_minidata(l1pagetable, afterkern, minidataclean.pv_pa); /* Map the vector page. */ pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); arm_devmap_bootstrap(l1pagetable, iq80321_devmap); /* * Give the XScale global cache clean code an appropriately * sized chunk of unmapped VA space starting at 0xff000000 * (our device mappings end before this address). */ xscale_cache_clean_addr = 0xff000000U; cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); setttb(kernel_l1pt.pv_pa); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ set_stackptrs(0); /* * We must now clean the cache again.... * Cleaning may be done by reading new data to displace any * dirty data in the cache. This will have happened in setttb() * but since we are boot strapping the addresses used for the read * may have just been remapped and thus the cache could be out * of sync. A re-clean after the switch will cure this. * After booting there are no gross relocations of the kernel thus * this problem will not occur after initarm(). */ cpu_idcache_wbinv_all(); cpu_setup(); /* * Fetch the SDRAM start/size from the i80321 SDRAM configration * registers. */ i80321_calibrate_delay(); i80321_sdram_bounds(obio_bs_tag, IQ80321_80321_VBASE + VERDE_MCU_BASE, &memstart, &memsize); physmem = memsize / PAGE_SIZE; cninit(); undefined_init(); init_proc0(kernelstack.pv_va); /* Enable MMU, I-cache, D-cache, write buffer. */ arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); pmap_curmaxkvaddr = afterkern + PAGE_SIZE; vm_max_kernel_address = 0xe0000000; pmap_bootstrap(pmap_curmaxkvaddr, &kernel_l1pt); msgbufp = (void*)msgbufpv.pv_va; msgbufinit(msgbufp, msgbufsize); mutex_init(); /* * Add the physical ram we have available. * * Exclude the kernel (and all the things we allocated which immediately * follow the kernel) from the VM allocation pool but not from crash * dumps. virtual_avail is a global variable which tracks the kva we've * "allocated" while setting up pmaps. * * Prepare the list of physical memory available to the vm subsystem. */ arm_physmem_hardware_region(SDRAM_START, memsize); arm_physmem_exclude_region(freemem_pt, KERNPHYSADDR - freemem_pt, EXFLAG_NOALLOC); arm_physmem_exclude_region(freemempos, KERNPHYSADDR - 0x100000 - freemempos, EXFLAG_NOALLOC); arm_physmem_exclude_region(abp->abp_physaddr, virtual_avail - KERNVIRTADDR, EXFLAG_NOALLOC); arm_physmem_init_kernel_globals(); init_param2(physmem); kdb_init(); return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP - sizeof(struct pcb))); }
/* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { pmap_devmap_register(devmap); awin_bootstrap(AWIN_CORE_VBASE, CONADDR_VA); /* Heads up ... Setup the CPU / MMU / TLB functions. */ if (set_cpufuncs()) panic("cpu not recognized!"); /* The console is going to try to map things. Give pmap a devmap. */ consinit(); #ifdef VERBOSE_INIT_ARM printf("\nuboot arg = %#"PRIxPTR", %#"PRIxPTR", %#"PRIxPTR", %#"PRIxPTR"\n", uboot_args[0], uboot_args[1], uboot_args[2], uboot_args[3]); #endif #ifdef KGDB kgdb_port_init(); #endif cpu_reset_address = awin_wdog_reset; #ifdef VERBOSE_INIT_ARM /* Talk to the user */ printf("\nNetBSD/evbarm (" BOARDTYPE ") booting ...\n"); #endif #ifdef BOOT_ARGS char mi_bootargs[] = BOOT_ARGS; parse_mi_bootargs(mi_bootargs); #endif #ifdef VERBOSE_INIT_ARM printf("initarm: Configuring system ...\n"); #if defined(CPU_CORTEXA7) || defined(CPU_CORTEXA9) || defined(CPU_CORTEXA15) if (!CPU_ID_CORTEX_A8_P(curcpu()->ci_arm_cpuid)) { printf("initarm: cbar=%#x\n", armreg_cbar_read()); } #endif #endif /* * Set up the variables that define the availability of physical * memory. */ psize_t ram_size = awin_memprobe(); #if AWIN_board == AWIN_cubieboard /* the cubietruck has 2GB whereas the cubieboards only has 1GB */ cubietruck_p = (ram_size == 0x80000000); #endif /* * If MEMSIZE specified less than what we really have, limit ourselves * to that. */ #ifdef MEMSIZE if (ram_size == 0 || ram_size > (unsigned)MEMSIZE * 1024 * 1024) ram_size = (unsigned)MEMSIZE * 1024 * 1024; #else KASSERTMSG(ram_size > 0, "RAM size unknown and MEMSIZE undefined"); #endif /* * Configure DMA tags */ awin_dma_bootstrap(ram_size); /* Fake bootconfig structure for the benefit of pmap.c. */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = AWIN_SDRAM_PBASE; bootconfig.dram[0].pages = ram_size / PAGE_SIZE; #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS const bool mapallmem_p = true; #ifndef PMAP_NEED_ALLOC_POOLPAGE if (ram_size > KERNEL_VM_BASE - KERNEL_BASE) { printf("%s: dropping RAM size from %luMB to %uMB\n", __func__, (unsigned long) (ram_size >> 20), (KERNEL_VM_BASE - KERNEL_BASE) >> 20); ram_size = KERNEL_VM_BASE - KERNEL_BASE; }
/* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { pmap_devmap_register(devmap); awin_bootstrap(AWIN_CORE_VBASE, CONADDR_VA); /* Heads up ... Setup the CPU / MMU / TLB functions. */ if (set_cpufuncs()) panic("cpu not recognized!"); /* The console is going to try to map things. Give pmap a devmap. */ consinit(); #ifdef VERBOSE_INIT_ARM printf("\nuboot arg = %#x, %#x, %#x, %#x\n", uboot_args[0], uboot_args[1], uboot_args[2], uboot_args[3]); #endif #ifdef KGDB kgdb_port_init(); #endif cpu_reset_address = awin_wdog_reset; #ifdef VERBOSE_INIT_ARM /* Talk to the user */ printf("\nNetBSD/evbarm (cubie) booting ...\n"); #endif #ifdef BOOT_ARGS char mi_bootargs[] = BOOT_ARGS; parse_mi_bootargs(mi_bootargs); #endif #ifdef VERBOSE_INIT_ARM printf("initarm: Configuring system ...\n"); #if defined(CPU_CORTEXA7) || defined(CPU_CORTEXA9) || defined(CPU_CORTEXA15) printf("initarm: cbar=%#x\n", armreg_cbar_read()); #endif #endif /* * Set up the variables that define the availability of physical * memory. */ psize_t ram_size = awin_memprobe(); /* * If MEMSIZE specified less than what we really have, limit ourselves * to that. */ #ifdef MEMSIZE if (ram_size == 0 || ram_size > (unsigned)MEMSIZE * 1024 * 1024) ram_size = (unsigned)MEMSIZE * 1024 * 1024; #else KASSERTMSG(ram_size > 0, "RAM size unknown and MEMSIZE undefined"); #endif /* Fake bootconfig structure for the benefit of pmap.c. */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = AWIN_SDRAM_PBASE; bootconfig.dram[0].pages = ram_size / PAGE_SIZE; #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS const bool mapallmem_p = true; KASSERT(ram_size <= KERNEL_VM_BASE - KERNEL_BASE); #else const bool mapallmem_p = false; #endif KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0); arm32_bootmem_init(bootconfig.dram[0].address, ram_size, KERNEL_BASE_PHYS); arm32_kernel_vm_init(KERNEL_VM_BASE, ARM_VECTORS_LOW, 0, devmap, mapallmem_p); if (mapallmem_p) { /* * "bootargs" env variable is passed as 4th argument * to kernel but it's using the physical address and * we to convert that to a virtual address. */ if (uboot_args[3] - AWIN_SDRAM_PBASE < ram_size) { const char * const args = (const char *) (uboot_args[3] + KERNEL_PHYS_VOFFSET); strlcpy(bootargs, args, sizeof(bootargs)); } } boot_args = bootargs; parse_mi_bootargs(boot_args); /* we've a specific device_register routine */ evbarm_device_register = cubie_device_register; #if NAWIN_FB > 0 char *ptr; if (get_bootconf_option(boot_args, "console", BOOTOPT_TYPE_STRING, &ptr) && strncmp(ptr, "fb", 2) == 0) { use_fb_console = true; } #endif return initarm_common(KERNEL_VM_BASE, KERNEL_VM_SIZE, NULL, 0); }
/* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Initialising interrupt controllers to a sane default state */ u_int initarm(void *arg) { int loop; int loop1; u_int l1pagetable; struct bootparam_tag *bootparam_p; unsigned long devcfg; /* * Since we map the on-board devices VA==PA, and the kernel * is running VA==PA, it's possible for us to initialize * the console now. */ consinit(); /* identify model */ devcfg = *((volatile unsigned long*)(EP93XX_APB_HWBASE + EP93XX_APB_SYSCON + EP93XX_SYSCON_DeviceCfg)); for (armadillo_model = &armadillo_model_table[0]; armadillo_model->devcfg; armadillo_model++) if (devcfg == armadillo_model->devcfg) break; /* Talk to the user */ printf("\nNetBSD/%s booting ...\n", armadillo_model->name); /* set some informations from bootloader */ bootparam_p = (struct bootparam_tag *)bootparam; bootconfig.dramblocks = 0; while (bootparam_p->hdr.tag != BOOTPARAM_TAG_NONE) { switch (bootparam_p->hdr.tag) { case BOOTPARAM_TAG_MEM: if (bootconfig.dramblocks < DRAM_BLOCKS) { #ifdef VERBOSE_INIT_ARM printf("dram[%d]: address=0x%08lx, size=0x%08lx\n", bootconfig.dramblocks, bootparam_p->u.mem.start, bootparam_p->u.mem.size); #endif bootconfig.dram[bootconfig.dramblocks].address = bootparam_p->u.mem.start; bootconfig.dram[bootconfig.dramblocks].pages = bootparam_p->u.mem.size / PAGE_SIZE; bootconfig.dramblocks++; } break; case BOOTPARAM_TAG_CMDLINE: #ifdef VERBOSE_INIT_ARM printf("cmdline: %s\n", bootparam_p->u.cmdline.cmdline); #endif parse_mi_bootargs(bootparam_p->u.cmdline.cmdline); break; } bootparam_p = bootparam_tag_next(bootparam_p); } /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("cpu not recognized!"); #ifdef VERBOSE_INIT_ARM printf("initarm: Configuring system ...\n"); #endif /* * Set up the variables that define the availablilty of * physical memory. For now, we're going to set * physical_freestart to 0xc0200000 (where the kernel * was loaded), and allocate the memory we need downwards. * If we get too close to the L1 table that we set up, we * will panic. We will update physical_freestart and * physical_freeend later to reflect what pmap_bootstrap() * wants to see. * * XXX pmap_bootstrap() needs an enema. */ physical_start = bootconfig.dram[0].address; physical_end = bootconfig.dram[0].address + (bootconfig.dram[0].pages * PAGE_SIZE); physical_freestart = 0xc0018000UL; physical_freeend = 0xc0200000UL; physmem = (physical_end - physical_start) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM /* Tell the user about the memory */ printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, physical_start, physical_end - 1); #endif /* * Okay, the kernel starts 2MB in from the bottom of physical * memory. We are going to allocate our bootstrap pages downwards * from there. * * We need to allocate some fixed page tables to get the kernel * going. We allocate one page directory and a number of page * tables and store the physical addresses in the kernel_pt_table * array. * * The kernel page directory must be on a 16K boundary. The page * tables must be on 4K bounaries. What we do is allocate the * page directory on the first 16K boundary that we encounter, and * the page tables on 4K boundaries otherwise. Since we allocate * at least 3 L2 page tables, we are guaranteed to encounter at * least one 16K aligned region. */ #ifdef VERBOSE_INIT_ARM printf("Allocating page tables\n"); #endif free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", physical_freestart, free_pages, free_pages); #endif /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #define alloc_pages(var, np) \ physical_freeend -= ((np) * PAGE_SIZE); \ if (physical_freeend < physical_freestart) \ panic("initarm: out of memory"); \ (var) = physical_freeend; \ free_pages -= (np); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); loop1 = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) panic("initarm: Failed to align the kernel page directory"); /* * Allocate a page for the system vectors page */ alloc_pages(systempage.pv_pa, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); #ifdef VERBOSE_INIT_ARM printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); #endif alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); /* * Ok we have allocated physical pages for the primary kernel * page tables. Save physical_freeend for when we give whats left * of memory below 2Mbyte to UVM. */ physical_freeend_low = physical_freeend; #ifdef VERBOSE_INIT_ARM printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); #endif /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1), &kernel_pt_table[KERNEL_PT_SYS]); for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_KERNEL + loop]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif /* Now we fill in the L2 pagetable for the kernel static code/data */ { extern char etext[], _end[]; size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; u_int logical; textsize = (textsize + PGOFSET) & ~PGOFSET; totalsize = (totalsize + PGOFSET) & ~PGOFSET; logical = 0x00200000; /* offset of kernel in RAM */ logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, totalsize - textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); } #ifdef VERBOSE_INIT_ARM printf("Constructing L2 page tables\n"); #endif /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } /* Map the vector page. */ pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map the statically mapped devices. */ pmap_devmap_bootstrap(l1pagetable, armadillo9_devmap); /* * Update the physical_freestart/physical_freeend/free_pages * variables. */ { extern char _end[]; physical_freestart = physical_start + (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE); physical_freeend = physical_end; free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; } /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* Switch tables */ #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", physical_freestart, free_pages, free_pages); printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); #endif cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); cpu_setttb(kernel_l1pt.pv_pa, true); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init */ uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); #ifdef VERBOSE_INIT_ARM printf("done!\n"); #endif #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ #ifdef VERBOSE_INIT_ARM printf("init subsystems: stacks "); #endif set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. * Until then we will use a handler that just panics but tells us * why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slightly better one. */ #ifdef VERBOSE_INIT_ARM printf("vectors "); #endif data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ #ifdef VERBOSE_INIT_ARM printf("undefined "); #endif undefined_init(); /* Load memory into UVM. */ #ifdef VERBOSE_INIT_ARM printf("page "); #endif uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ uvm_page_physload(atop(physical_freestart), atop(physical_freeend), atop(physical_freestart), atop(physical_freeend), VM_FREELIST_DEFAULT); uvm_page_physload(atop(0xc0000000), atop(physical_freeend_low), atop(0xc0000000), atop(physical_freeend_low), VM_FREELIST_DEFAULT); physmem = bootconfig.dram[0].pages; for (loop = 1; loop < bootconfig.dramblocks; ++loop) { size_t start = bootconfig.dram[loop].address; size_t size = bootconfig.dram[loop].pages * PAGE_SIZE; uvm_page_physload(atop(start), atop(start + size), atop(start), atop(start + size), VM_FREELIST_DEFAULT); physmem += bootconfig.dram[loop].pages; } /* Boot strap pmap telling it where the kernel page table is */ #ifdef VERBOSE_INIT_ARM printf("pmap "); #endif pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); /* Setup the IRQ system */ #ifdef VERBOSE_INIT_ARM printf("irq "); #endif ep93xx_intr_init(); #if NISA > 0 isa_intr_init(); #ifdef VERBOSE_INIT_ARM printf("isa "); #endif isa_armadillo9_init(ARMADILLO9_IO16_VBASE + ARMADILLO9_ISAIO, ARMADILLO9_IO16_VBASE + ARMADILLO9_ISAMEM); #endif #ifdef VERBOSE_INIT_ARM printf("done.\n"); #endif #ifdef BOOTHOWTO boothowto = BOOTHOWTO; #endif #ifdef DDB db_machine_init(); if (boothowto & RB_KDB) Debugger(); #endif /* We have our own device_register() */ evbarm_device_register = armadillo9_device_register; /* We return the new stack pointer address */ return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); }