static int safexcel_handle_req_result(struct safexcel_crypto_priv *priv, int ring, struct crypto_async_request *async, struct scatterlist *src, struct scatterlist *dst, unsigned int cryptlen, struct safexcel_cipher_req *sreq, bool *should_complete, int *ret) { struct safexcel_result_desc *rdesc; int ndesc = 0; *ret = 0; spin_lock_bh(&priv->ring[ring].egress_lock); do { rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr); if (IS_ERR(rdesc)) { dev_err(priv->dev, "cipher: result: could not retrieve the result descriptor\n"); *ret = PTR_ERR(rdesc); break; } if (likely(!*ret)) *ret = safexcel_rdesc_check_errors(priv, rdesc); ndesc++; } while (!rdesc->last_seg); safexcel_complete(priv, ring); spin_unlock_bh(&priv->ring[ring].egress_lock); if (src == dst) { dma_unmap_sg(priv->dev, src, sg_nents_for_len(src, cryptlen), DMA_BIDIRECTIONAL); } else { dma_unmap_sg(priv->dev, src, sg_nents_for_len(src, cryptlen), DMA_TO_DEVICE); dma_unmap_sg(priv->dev, dst, sg_nents_for_len(dst, cryptlen), DMA_FROM_DEVICE); } *should_complete = true; return ndesc; }
static int pkcs1pad_verify_complete(struct akcipher_request *req, int err) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); const struct rsa_asn1_template *digest_info; unsigned int pos; if (err == -EOVERFLOW) /* Decrypted value had no leading 0 byte */ err = -EINVAL; if (err) goto done; if (req_ctx->child_req.dst_len != ctx->key_size - 1) { err = -EINVAL; goto done; } err = -EBADMSG; if (req_ctx->out_buf[0] != 0x01) goto done; for (pos = 1; pos < req_ctx->child_req.dst_len; pos++) if (req_ctx->out_buf[pos] != 0xff) break; if (pos < 9 || pos == req_ctx->child_req.dst_len || req_ctx->out_buf[pos] != 0x00) goto done; pos++; if (ctx->hash_name) { digest_info = rsa_lookup_asn1(ctx->hash_name); if (!digest_info) goto done; if (memcmp(req_ctx->out_buf + pos, digest_info->data, digest_info->size)) goto done; pos += digest_info->size; } err = 0; if (req->dst_len < req_ctx->child_req.dst_len - pos) err = -EOVERFLOW; req->dst_len = req_ctx->child_req.dst_len - pos; if (!err) sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst, req->dst_len), req_ctx->out_buf + pos, req->dst_len); done: kzfree(req_ctx->out_buf); return err; }
static int qce_ahash_async_req_handle(struct crypto_async_request *async_req) { struct ahash_request *req = ahash_request_cast(async_req); struct qce_sha_reqctx *rctx = ahash_request_ctx(req); struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm); struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm); struct qce_device *qce = tmpl->qce; unsigned long flags = rctx->flags; int ret; if (IS_SHA_HMAC(flags)) { rctx->authkey = ctx->authkey; rctx->authklen = QCE_SHA_HMAC_KEY_SIZE; } else if (IS_CMAC(flags)) { rctx->authkey = ctx->authkey; rctx->authklen = AES_KEYSIZE_128; } rctx->src_nents = sg_nents_for_len(req->src, req->nbytes); if (rctx->src_nents < 0) { dev_err(qce->dev, "Invalid numbers of src SG.\n"); return rctx->src_nents; } ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE); if (ret < 0) return ret; sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ); ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE); if (ret < 0) goto error_unmap_src; ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents, &rctx->result_sg, 1, qce_ahash_done, async_req); if (ret) goto error_unmap_dst; qce_dma_issue_pending(&qce->dma); ret = qce_start(async_req, tmpl->crypto_alg_type, 0, 0); if (ret) goto error_terminate; return 0; error_terminate: qce_dma_terminate_all(&qce->dma); error_unmap_dst: dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE); error_unmap_src: dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE); return ret; }
static int pkcs1pad_decrypt_complete(struct akcipher_request *req, int err) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); unsigned int dst_len; unsigned int pos; u8 *out_buf; if (err) goto done; err = -EINVAL; dst_len = req_ctx->child_req.dst_len; if (dst_len < ctx->key_size - 1) goto done; out_buf = req_ctx->out_buf; if (dst_len == ctx->key_size) { if (out_buf[0] != 0x00) /* Decrypted value had no leading 0 byte */ goto done; dst_len--; out_buf++; } if (out_buf[0] != 0x02) goto done; for (pos = 1; pos < dst_len; pos++) if (out_buf[pos] == 0x00) break; if (pos < 9 || pos == dst_len) goto done; pos++; err = 0; if (req->dst_len < dst_len - pos) err = -EOVERFLOW; req->dst_len = dst_len - pos; if (!err) sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst, req->dst_len), out_buf + pos, req->dst_len); done: kzfree(req_ctx->out_buf); return err; }
static int pkcs1pad_encrypt_sign_complete(struct akcipher_request *req, int err) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); size_t pad_len = ctx->key_size - req_ctx->child_req.dst_len; size_t chunk_len, pad_left; struct sg_mapping_iter miter; if (!err) { if (pad_len) { sg_miter_start(&miter, req->dst, sg_nents_for_len(req->dst, pad_len), SG_MITER_ATOMIC | SG_MITER_TO_SG); pad_left = pad_len; while (pad_left) { sg_miter_next(&miter); chunk_len = min(miter.length, pad_left); memset(miter.addr, 0, chunk_len); pad_left -= chunk_len; } sg_miter_stop(&miter); } sg_pcopy_from_buffer(req->dst, sg_nents_for_len(req->dst, ctx->key_size), req_ctx->out_buf, req_ctx->child_req.dst_len, pad_len); } req->dst_len = ctx->key_size; kfree(req_ctx->in_buf); kzfree(req_ctx->out_buf); return err; }
static int pkcs1pad_encrypt_sign_complete(struct akcipher_request *req, int err) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); unsigned int pad_len; unsigned int len; u8 *out_buf; if (err) goto out; len = req_ctx->child_req.dst_len; pad_len = ctx->key_size - len; /* Four billion to one */ if (likely(!pad_len)) goto out; out_buf = kzalloc(ctx->key_size, GFP_KERNEL); err = -ENOMEM; if (!out_buf) goto out; sg_copy_to_buffer(req->dst, sg_nents_for_len(req->dst, len), out_buf + pad_len, len); sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst, ctx->key_size), out_buf, ctx->key_size); kzfree(out_buf); out: req->dst_len = ctx->key_size; kfree(req_ctx->in_buf); return err; }
static int caam_rsa_count_leading_zeros(struct scatterlist *sgl, unsigned int nbytes, unsigned int flags) { struct sg_mapping_iter miter; int lzeros, ents; unsigned int len; unsigned int tbytes = nbytes; const u8 *buff; ents = sg_nents_for_len(sgl, nbytes); if (ents < 0) return ents; sg_miter_start(&miter, sgl, ents, SG_MITER_FROM_SG | flags); lzeros = 0; len = 0; while (nbytes > 0) { while (len && !*buff) { lzeros++; len--; buff++; } if (len && *buff) break; sg_miter_next(&miter); buff = miter.addr; len = miter.length; nbytes -= lzeros; lzeros = 0; } miter.consumed = lzeros; sg_miter_stop(&miter); nbytes -= lzeros; return tbytes - nbytes; }
static int alloc_src_sglist(struct nitrox_kcrypt_request *nkreq, struct scatterlist *src, char *iv, int ivsize, int buflen) { int nents = sg_nents_for_len(src, buflen); int ret; if (nents < 0) return nents; /* IV entry */ nents += 1; /* Allocate buffer to hold IV and input scatterlist array */ ret = alloc_src_req_buf(nkreq, nents, ivsize); if (ret) return ret; nitrox_creq_copy_iv(nkreq->src, iv, ivsize); nitrox_creq_set_src_sg(nkreq, nents, ivsize, src, buflen); return 0; }
static int mv_cesa_ahash_req_init(struct ahash_request *req, bool *cached) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); int ret; creq->src_nents = sg_nents_for_len(req->src, req->nbytes); if (creq->src_nents < 0) { dev_err(cesa_dev->dev, "Invalid number of src SG"); return creq->src_nents; } ret = mv_cesa_ahash_cache_req(req, cached); if (ret) return ret; if (*cached) return 0; if (cesa_dev->caps->has_tdma) ret = mv_cesa_ahash_dma_req_init(req); return ret; }
static int alloc_dst_sglist(struct nitrox_kcrypt_request *nkreq, struct scatterlist *dst, int ivsize, int buflen) { int nents = sg_nents_for_len(dst, buflen); int ret; if (nents < 0) return nents; /* IV, ORH, COMPLETION entries */ nents += 3; /* Allocate buffer to hold ORH, COMPLETION and output scatterlist * array */ ret = alloc_dst_req_buf(nkreq, nents); if (ret) return ret; nitrox_creq_set_orh(nkreq); nitrox_creq_set_comp(nkreq); nitrox_creq_set_dst_sg(nkreq, nents, ivsize, dst, buflen); return 0; }
static int __virtio_crypto_ablkcipher_do_req(struct virtio_crypto_request *vc_req, struct ablkcipher_request *req, struct data_queue *data_vq, __u8 op) { struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); unsigned int ivsize = crypto_ablkcipher_ivsize(tfm); struct virtio_crypto_ablkcipher_ctx *ctx = vc_req->ablkcipher_ctx; struct virtio_crypto *vcrypto = ctx->vcrypto; struct virtio_crypto_op_data_req *req_data; int src_nents, dst_nents; int err; unsigned long flags; struct scatterlist outhdr, iv_sg, status_sg, **sgs; int i; u64 dst_len; unsigned int num_out = 0, num_in = 0; int sg_total; uint8_t *iv; src_nents = sg_nents_for_len(req->src, req->nbytes); dst_nents = sg_nents(req->dst); pr_debug("virtio_crypto: Number of sgs (src_nents: %d, dst_nents: %d)\n", src_nents, dst_nents); /* Why 3? outhdr + iv + inhdr */ sg_total = src_nents + dst_nents + 3; sgs = kzalloc_node(sg_total * sizeof(*sgs), GFP_ATOMIC, dev_to_node(&vcrypto->vdev->dev)); if (!sgs) return -ENOMEM; req_data = kzalloc_node(sizeof(*req_data), GFP_ATOMIC, dev_to_node(&vcrypto->vdev->dev)); if (!req_data) { kfree(sgs); return -ENOMEM; } vc_req->req_data = req_data; vc_req->type = VIRTIO_CRYPTO_SYM_OP_CIPHER; /* Head of operation */ if (op) { req_data->header.session_id = cpu_to_le64(ctx->enc_sess_info.session_id); req_data->header.opcode = cpu_to_le32(VIRTIO_CRYPTO_CIPHER_ENCRYPT); } else { req_data->header.session_id = cpu_to_le64(ctx->dec_sess_info.session_id); req_data->header.opcode = cpu_to_le32(VIRTIO_CRYPTO_CIPHER_DECRYPT); } req_data->u.sym_req.op_type = cpu_to_le32(VIRTIO_CRYPTO_SYM_OP_CIPHER); req_data->u.sym_req.u.cipher.para.iv_len = cpu_to_le32(ivsize); req_data->u.sym_req.u.cipher.para.src_data_len = cpu_to_le32(req->nbytes); dst_len = virtio_crypto_alg_sg_nents_length(req->dst); if (unlikely(dst_len > U32_MAX)) { pr_err("virtio_crypto: The dst_len is beyond U32_MAX\n"); err = -EINVAL; goto free; } pr_debug("virtio_crypto: src_len: %u, dst_len: %llu\n", req->nbytes, dst_len); if (unlikely(req->nbytes + dst_len + ivsize + sizeof(vc_req->status) > vcrypto->max_size)) { pr_err("virtio_crypto: The length is too big\n"); err = -EINVAL; goto free; } req_data->u.sym_req.u.cipher.para.dst_data_len = cpu_to_le32((uint32_t)dst_len); /* Outhdr */ sg_init_one(&outhdr, req_data, sizeof(*req_data)); sgs[num_out++] = &outhdr; /* IV */ /* * Avoid to do DMA from the stack, switch to using * dynamically-allocated for the IV */ iv = kzalloc_node(ivsize, GFP_ATOMIC, dev_to_node(&vcrypto->vdev->dev)); if (!iv) { err = -ENOMEM; goto free; } memcpy(iv, req->info, ivsize); sg_init_one(&iv_sg, iv, ivsize); sgs[num_out++] = &iv_sg; vc_req->iv = iv; /* Source data */ for (i = 0; i < src_nents; i++) sgs[num_out++] = &req->src[i]; /* Destination data */ for (i = 0; i < dst_nents; i++) sgs[num_out + num_in++] = &req->dst[i]; /* Status */ sg_init_one(&status_sg, &vc_req->status, sizeof(vc_req->status)); sgs[num_out + num_in++] = &status_sg; vc_req->sgs = sgs; spin_lock_irqsave(&data_vq->lock, flags); err = virtqueue_add_sgs(data_vq->vq, sgs, num_out, num_in, vc_req, GFP_ATOMIC); virtqueue_kick(data_vq->vq); spin_unlock_irqrestore(&data_vq->lock, flags); if (unlikely(err < 0)) goto free_iv; return 0; free_iv: kzfree(iv); free: kzfree(req_data); kfree(sgs); return err; }
static int qce_ablkcipher_async_req_handle(struct crypto_async_request *async_req) { struct ablkcipher_request *req = ablkcipher_request_cast(async_req); struct qce_cipher_reqctx *rctx = ablkcipher_request_ctx(req); struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req); struct qce_alg_template *tmpl = to_cipher_tmpl(async_req->tfm); struct qce_device *qce = tmpl->qce; enum dma_data_direction dir_src, dir_dst; struct scatterlist *sg; bool diff_dst; gfp_t gfp; int ret; rctx->iv = req->info; rctx->ivsize = crypto_ablkcipher_ivsize(ablkcipher); rctx->cryptlen = req->nbytes; diff_dst = (req->src != req->dst) ? true : false; dir_src = diff_dst ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL; dir_dst = diff_dst ? DMA_FROM_DEVICE : DMA_BIDIRECTIONAL; rctx->src_nents = sg_nents_for_len(req->src, req->nbytes); if (diff_dst) rctx->dst_nents = sg_nents_for_len(req->dst, req->nbytes); else rctx->dst_nents = rctx->src_nents; if (rctx->src_nents < 0) { dev_err(qce->dev, "Invalid numbers of src SG.\n"); return rctx->src_nents; } if (rctx->dst_nents < 0) { dev_err(qce->dev, "Invalid numbers of dst SG.\n"); return -rctx->dst_nents; } rctx->dst_nents += 1; gfp = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; ret = sg_alloc_table(&rctx->dst_tbl, rctx->dst_nents, gfp); if (ret) return ret; sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ); sg = qce_sgtable_add(&rctx->dst_tbl, req->dst); if (IS_ERR(sg)) { ret = PTR_ERR(sg); goto error_free; } sg = qce_sgtable_add(&rctx->dst_tbl, &rctx->result_sg); if (IS_ERR(sg)) { ret = PTR_ERR(sg); goto error_free; } sg_mark_end(sg); rctx->dst_sg = rctx->dst_tbl.sgl; ret = dma_map_sg(qce->dev, rctx->dst_sg, rctx->dst_nents, dir_dst); if (ret < 0) goto error_free; if (diff_dst) { ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, dir_src); if (ret < 0) goto error_unmap_dst; rctx->src_sg = req->src; } else { rctx->src_sg = rctx->dst_sg; } ret = qce_dma_prep_sgs(&qce->dma, rctx->src_sg, rctx->src_nents, rctx->dst_sg, rctx->dst_nents, qce_ablkcipher_done, async_req); if (ret) goto error_unmap_src; qce_dma_issue_pending(&qce->dma); ret = qce_start(async_req, tmpl->crypto_alg_type, req->nbytes, 0); if (ret) goto error_terminate; return 0; error_terminate: qce_dma_terminate_all(&qce->dma); error_unmap_src: if (diff_dst) dma_unmap_sg(qce->dev, req->src, rctx->src_nents, dir_src); error_unmap_dst: dma_unmap_sg(qce->dev, rctx->dst_sg, rctx->dst_nents, dir_dst); error_free: sg_free_table(&rctx->dst_tbl); return ret; }
static int safexcel_aes_send(struct crypto_async_request *base, int ring, struct safexcel_request *request, struct safexcel_cipher_req *sreq, struct scatterlist *src, struct scatterlist *dst, unsigned int cryptlen, unsigned int assoclen, unsigned int digestsize, u8 *iv, int *commands, int *results) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm); struct safexcel_crypto_priv *priv = ctx->priv; struct safexcel_command_desc *cdesc; struct safexcel_result_desc *rdesc; struct scatterlist *sg; unsigned int totlen = cryptlen + assoclen; int nr_src, nr_dst, n_cdesc = 0, n_rdesc = 0, queued = totlen; int i, ret = 0; if (src == dst) { nr_src = dma_map_sg(priv->dev, src, sg_nents_for_len(src, totlen), DMA_BIDIRECTIONAL); nr_dst = nr_src; if (!nr_src) return -EINVAL; } else { nr_src = dma_map_sg(priv->dev, src, sg_nents_for_len(src, totlen), DMA_TO_DEVICE); if (!nr_src) return -EINVAL; nr_dst = dma_map_sg(priv->dev, dst, sg_nents_for_len(dst, totlen), DMA_FROM_DEVICE); if (!nr_dst) { dma_unmap_sg(priv->dev, src, sg_nents_for_len(src, totlen), DMA_TO_DEVICE); return -EINVAL; } } memcpy(ctx->base.ctxr->data, ctx->key, ctx->key_len); if (ctx->aead) { memcpy(ctx->base.ctxr->data + ctx->key_len / sizeof(u32), ctx->ipad, ctx->state_sz); memcpy(ctx->base.ctxr->data + (ctx->key_len + ctx->state_sz) / sizeof(u32), ctx->opad, ctx->state_sz); } spin_lock_bh(&priv->ring[ring].egress_lock); /* command descriptors */ for_each_sg(src, sg, nr_src, i) { int len = sg_dma_len(sg); /* Do not overflow the request */ if (queued - len < 0) len = queued; cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc, !(queued - len), sg_dma_address(sg), len, totlen, ctx->base.ctxr_dma); if (IS_ERR(cdesc)) { /* No space left in the command descriptor ring */ ret = PTR_ERR(cdesc); goto cdesc_rollback; } n_cdesc++; if (n_cdesc == 1) { safexcel_context_control(ctx, base, sreq, cdesc); if (ctx->aead) safexcel_aead_token(ctx, iv, cdesc, sreq->direction, cryptlen, assoclen, digestsize); else safexcel_skcipher_token(ctx, iv, cdesc, cryptlen); } queued -= len; if (!queued) break; }
static int pkcs1pad_verify_complete(struct akcipher_request *req, int err) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); struct akcipher_instance *inst = akcipher_alg_instance(tfm); struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst); const struct rsa_asn1_template *digest_info = ictx->digest_info; unsigned int dst_len; unsigned int pos; u8 *out_buf; if (err) goto done; err = -EINVAL; dst_len = req_ctx->child_req.dst_len; if (dst_len < ctx->key_size - 1) goto done; out_buf = req_ctx->out_buf; if (dst_len == ctx->key_size) { if (out_buf[0] != 0x00) /* Decrypted value had no leading 0 byte */ goto done; dst_len--; out_buf++; } err = -EBADMSG; if (out_buf[0] != 0x01) goto done; for (pos = 1; pos < dst_len; pos++) if (out_buf[pos] != 0xff) break; if (pos < 9 || pos == dst_len || out_buf[pos] != 0x00) goto done; pos++; if (digest_info) { if (crypto_memneq(out_buf + pos, digest_info->data, digest_info->size)) goto done; pos += digest_info->size; } err = 0; if (req->dst_len < dst_len - pos) err = -EOVERFLOW; req->dst_len = dst_len - pos; if (!err) sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst, req->dst_len), out_buf + pos, req->dst_len); done: kzfree(req_ctx->out_buf); return err; }
static struct rsa_edesc *rsa_edesc_alloc(struct akcipher_request *req, size_t desclen) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); struct device *dev = ctx->dev; struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); struct rsa_edesc *edesc; gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; int sg_flags = (flags == GFP_ATOMIC) ? SG_MITER_ATOMIC : 0; int sgc; int sec4_sg_index, sec4_sg_len = 0, sec4_sg_bytes; int src_nents, dst_nents; int lzeros; lzeros = caam_rsa_count_leading_zeros(req->src, req->src_len, sg_flags); if (lzeros < 0) return ERR_PTR(lzeros); req->src_len -= lzeros; req->src = scatterwalk_ffwd(req_ctx->src, req->src, lzeros); src_nents = sg_nents_for_len(req->src, req->src_len); dst_nents = sg_nents_for_len(req->dst, req->dst_len); if (src_nents > 1) sec4_sg_len = src_nents; if (dst_nents > 1) sec4_sg_len += dst_nents; sec4_sg_bytes = sec4_sg_len * sizeof(struct sec4_sg_entry); /* allocate space for base edesc, hw desc commands and link tables */ edesc = kzalloc(sizeof(*edesc) + desclen + sec4_sg_bytes, GFP_DMA | flags); if (!edesc) return ERR_PTR(-ENOMEM); sgc = dma_map_sg(dev, req->src, src_nents, DMA_TO_DEVICE); if (unlikely(!sgc)) { dev_err(dev, "unable to map source\n"); goto src_fail; } sgc = dma_map_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE); if (unlikely(!sgc)) { dev_err(dev, "unable to map destination\n"); goto dst_fail; } edesc->sec4_sg = (void *)edesc + sizeof(*edesc) + desclen; sec4_sg_index = 0; if (src_nents > 1) { sg_to_sec4_sg_last(req->src, src_nents, edesc->sec4_sg, 0); sec4_sg_index += src_nents; } if (dst_nents > 1) sg_to_sec4_sg_last(req->dst, dst_nents, edesc->sec4_sg + sec4_sg_index, 0); /* Save nents for later use in Job Descriptor */ edesc->src_nents = src_nents; edesc->dst_nents = dst_nents; if (!sec4_sg_bytes) return edesc; edesc->sec4_sg_dma = dma_map_single(dev, edesc->sec4_sg, sec4_sg_bytes, DMA_TO_DEVICE); if (dma_mapping_error(dev, edesc->sec4_sg_dma)) { dev_err(dev, "unable to map S/G table\n"); goto sec4_sg_fail; } edesc->sec4_sg_bytes = sec4_sg_bytes; return edesc; sec4_sg_fail: dma_unmap_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE); dst_fail: dma_unmap_sg(dev, req->src, src_nents, DMA_TO_DEVICE); src_fail: kfree(edesc); return ERR_PTR(-ENOMEM); }
static int ecdh_compute_value(struct kpp_request *req) { struct crypto_kpp *tfm = crypto_kpp_reqtfm(req); struct ecdh_ctx *ctx = ecdh_get_ctx(tfm); u64 *public_key; u64 *shared_secret = NULL; void *buf; size_t copied, nbytes, public_key_sz; int ret = -ENOMEM; nbytes = ctx->ndigits << ECC_DIGITS_TO_BYTES_SHIFT; /* Public part is a point thus it has both coordinates */ public_key_sz = 2 * nbytes; public_key = kmalloc(public_key_sz, GFP_KERNEL); if (!public_key) return -ENOMEM; if (req->src) { shared_secret = kmalloc(nbytes, GFP_KERNEL); if (!shared_secret) goto free_pubkey; /* from here on it's invalid parameters */ ret = -EINVAL; /* must have exactly two points to be on the curve */ if (public_key_sz != req->src_len) goto free_all; copied = sg_copy_to_buffer(req->src, sg_nents_for_len(req->src, public_key_sz), public_key, public_key_sz); if (copied != public_key_sz) goto free_all; ret = crypto_ecdh_shared_secret(ctx->curve_id, ctx->ndigits, ctx->private_key, public_key, shared_secret); buf = shared_secret; } else { ret = ecc_make_pub_key(ctx->curve_id, ctx->ndigits, ctx->private_key, public_key); buf = public_key; nbytes = public_key_sz; } if (ret < 0) goto free_all; /* might want less than we've got */ nbytes = min_t(size_t, nbytes, req->dst_len); copied = sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst, nbytes), buf, nbytes); if (copied != nbytes) ret = -EINVAL; /* fall through */ free_all: kzfree(shared_secret); free_pubkey: kfree(public_key); return ret; }
static int omap_aes_gcm_copy_buffers(struct omap_aes_dev *dd, struct aead_request *req) { int alen, clen, cryptlen, assoclen, ret; struct crypto_aead *aead = crypto_aead_reqtfm(req); unsigned int authlen = crypto_aead_authsize(aead); struct scatterlist *tmp, sg_arr[2]; int nsg; u16 flags; assoclen = req->assoclen; cryptlen = req->cryptlen; if (dd->flags & FLAGS_RFC4106_GCM) assoclen -= 8; if (!(dd->flags & FLAGS_ENCRYPT)) cryptlen -= authlen; alen = ALIGN(assoclen, AES_BLOCK_SIZE); clen = ALIGN(cryptlen, AES_BLOCK_SIZE); nsg = !!(assoclen && cryptlen); omap_aes_clear_copy_flags(dd); sg_init_table(dd->in_sgl, nsg + 1); if (assoclen) { tmp = req->src; ret = omap_crypto_align_sg(&tmp, assoclen, AES_BLOCK_SIZE, dd->in_sgl, OMAP_CRYPTO_COPY_DATA | OMAP_CRYPTO_ZERO_BUF | OMAP_CRYPTO_FORCE_SINGLE_ENTRY, FLAGS_ASSOC_DATA_ST_SHIFT, &dd->flags); } if (cryptlen) { tmp = scatterwalk_ffwd(sg_arr, req->src, req->assoclen); ret = omap_crypto_align_sg(&tmp, cryptlen, AES_BLOCK_SIZE, &dd->in_sgl[nsg], OMAP_CRYPTO_COPY_DATA | OMAP_CRYPTO_ZERO_BUF | OMAP_CRYPTO_FORCE_SINGLE_ENTRY, FLAGS_IN_DATA_ST_SHIFT, &dd->flags); } dd->in_sg = dd->in_sgl; dd->total = cryptlen; dd->assoc_len = assoclen; dd->authsize = authlen; dd->out_sg = req->dst; dd->orig_out = req->dst; dd->out_sg = scatterwalk_ffwd(sg_arr, req->dst, assoclen); flags = 0; if (req->src == req->dst || dd->out_sg == sg_arr) flags |= OMAP_CRYPTO_FORCE_COPY; ret = omap_crypto_align_sg(&dd->out_sg, cryptlen, AES_BLOCK_SIZE, &dd->out_sgl, flags, FLAGS_OUT_DATA_ST_SHIFT, &dd->flags); if (ret) return ret; dd->in_sg_len = sg_nents_for_len(dd->in_sg, alen + clen); dd->out_sg_len = sg_nents_for_len(dd->out_sg, clen); return 0; }