//--------------------------------------------------------------- bool construct_tx_and_get_tx_key(const account_keys& sender_account_keys, const std::vector<tx_source_entry>& sources, const std::vector<tx_destination_entry>& destinations, std::vector<uint8_t> extra, transaction& tx, uint64_t unlock_time, crypto::secret_key &tx_key, bool rct) { std::vector<rct::key> amount_keys; tx.set_null(); amount_keys.clear(); tx.version = rct ? 2 : 1; tx.unlock_time = unlock_time; tx.extra = extra; keypair txkey = keypair::generate(); remove_field_from_tx_extra(tx.extra, typeid(tx_extra_pub_key)); add_tx_pub_key_to_extra(tx, txkey.pub); tx_key = txkey.sec; // if we have a stealth payment id, find it and encrypt it with the tx key now std::vector<tx_extra_field> tx_extra_fields; if (parse_tx_extra(tx.extra, tx_extra_fields)) { tx_extra_nonce extra_nonce; if (find_tx_extra_field_by_type(tx_extra_fields, extra_nonce)) { crypto::hash8 payment_id = null_hash8; if (get_encrypted_payment_id_from_tx_extra_nonce(extra_nonce.nonce, payment_id)) { LOG_PRINT_L2("Encrypting payment id " << payment_id); crypto::public_key view_key_pub = get_destination_view_key_pub(destinations, sender_account_keys); if (view_key_pub == null_pkey) { LOG_ERROR("Destinations have to have exactly one output to support encrypted payment ids"); return false; } if (!encrypt_payment_id(payment_id, view_key_pub, txkey.sec)) { LOG_ERROR("Failed to encrypt payment id"); return false; } std::string extra_nonce; set_encrypted_payment_id_to_tx_extra_nonce(extra_nonce, payment_id); remove_field_from_tx_extra(tx.extra, typeid(tx_extra_nonce)); if (!add_extra_nonce_to_tx_extra(tx.extra, extra_nonce)) { LOG_ERROR("Failed to add encrypted payment id to tx extra"); return false; } LOG_PRINT_L1("Encrypted payment ID: " << payment_id); } } } else { LOG_ERROR("Failed to parse tx extra"); return false; } struct input_generation_context_data { keypair in_ephemeral; }; std::vector<input_generation_context_data> in_contexts; uint64_t summary_inputs_money = 0; //fill inputs int idx = -1; for(const tx_source_entry& src_entr: sources) { ++idx; if(src_entr.real_output >= src_entr.outputs.size()) { LOG_ERROR("real_output index (" << src_entr.real_output << ")bigger than output_keys.size()=" << src_entr.outputs.size()); return false; } summary_inputs_money += src_entr.amount; //key_derivation recv_derivation; in_contexts.push_back(input_generation_context_data()); keypair& in_ephemeral = in_contexts.back().in_ephemeral; crypto::key_image img; if(!generate_key_image_helper(sender_account_keys, src_entr.real_out_tx_key, src_entr.real_output_in_tx_index, in_ephemeral, img)) return false; //check that derivated key is equal with real output key if( !(in_ephemeral.pub == src_entr.outputs[src_entr.real_output].second.dest) ) { LOG_ERROR("derived public key mismatch with output public key at index " << idx << ", real out " << src_entr.real_output << "! "<< ENDL << "derived_key:" << string_tools::pod_to_hex(in_ephemeral.pub) << ENDL << "real output_public_key:" << string_tools::pod_to_hex(src_entr.outputs[src_entr.real_output].second) ); LOG_ERROR("amount " << src_entr.amount << ", rct " << src_entr.rct); LOG_ERROR("tx pubkey " << src_entr.real_out_tx_key << ", real_output_in_tx_index " << src_entr.real_output_in_tx_index); return false; } //put key image into tx input txin_to_key input_to_key; input_to_key.amount = src_entr.amount; input_to_key.k_image = img; //fill outputs array and use relative offsets for(const tx_source_entry::output_entry& out_entry: src_entr.outputs) input_to_key.key_offsets.push_back(out_entry.first); input_to_key.key_offsets = absolute_output_offsets_to_relative(input_to_key.key_offsets); tx.vin.push_back(input_to_key); } // "Shuffle" outs std::vector<tx_destination_entry> shuffled_dsts(destinations); std::sort(shuffled_dsts.begin(), shuffled_dsts.end(), [](const tx_destination_entry& de1, const tx_destination_entry& de2) { return de1.amount < de2.amount; } ); uint64_t summary_outs_money = 0; //fill outputs size_t output_index = 0; for(const tx_destination_entry& dst_entr: shuffled_dsts) { CHECK_AND_ASSERT_MES(dst_entr.amount > 0 || tx.version > 1, false, "Destination with wrong amount: " << dst_entr.amount); crypto::key_derivation derivation; crypto::public_key out_eph_public_key; bool r = crypto::generate_key_derivation(dst_entr.addr.m_view_public_key, txkey.sec, derivation); CHECK_AND_ASSERT_MES(r, false, "at creation outs: failed to generate_key_derivation(" << dst_entr.addr.m_view_public_key << ", " << txkey.sec << ")"); if (tx.version > 1) { crypto::secret_key scalar1; crypto::derivation_to_scalar(derivation, output_index, scalar1); amount_keys.push_back(rct::sk2rct(scalar1)); } r = crypto::derive_public_key(derivation, output_index, dst_entr.addr.m_spend_public_key, out_eph_public_key); CHECK_AND_ASSERT_MES(r, false, "at creation outs: failed to derive_public_key(" << derivation << ", " << output_index << ", "<< dst_entr.addr.m_spend_public_key << ")"); tx_out out; out.amount = dst_entr.amount; txout_to_key tk; tk.key = out_eph_public_key; out.target = tk; tx.vout.push_back(out); output_index++; summary_outs_money += dst_entr.amount; } //check money if(summary_outs_money > summary_inputs_money ) { LOG_ERROR("Transaction inputs money ("<< summary_inputs_money << ") less than outputs money (" << summary_outs_money << ")"); return false; } // check for watch only wallet bool zero_secret_key = true; for (size_t i = 0; i < sizeof(sender_account_keys.m_spend_secret_key); ++i) zero_secret_key &= (sender_account_keys.m_spend_secret_key.data[i] == 0); if (zero_secret_key) { MDEBUG("Null secret key, skipping signatures"); } if (tx.version == 1) { //generate ring signatures crypto::hash tx_prefix_hash; get_transaction_prefix_hash(tx, tx_prefix_hash); std::stringstream ss_ring_s; size_t i = 0; for(const tx_source_entry& src_entr: sources) { ss_ring_s << "pub_keys:" << ENDL; std::vector<const crypto::public_key*> keys_ptrs; std::vector<crypto::public_key> keys(src_entr.outputs.size()); size_t ii = 0; for(const tx_source_entry::output_entry& o: src_entr.outputs) { keys[ii] = rct2pk(o.second.dest); keys_ptrs.push_back(&keys[ii]); ss_ring_s << o.second.dest << ENDL; ++ii; } tx.signatures.push_back(std::vector<crypto::signature>()); std::vector<crypto::signature>& sigs = tx.signatures.back(); sigs.resize(src_entr.outputs.size()); if (!zero_secret_key) crypto::generate_ring_signature(tx_prefix_hash, boost::get<txin_to_key>(tx.vin[i]).k_image, keys_ptrs, in_contexts[i].in_ephemeral.sec, src_entr.real_output, sigs.data()); ss_ring_s << "signatures:" << ENDL; std::for_each(sigs.begin(), sigs.end(), [&](const crypto::signature& s){ss_ring_s << s << ENDL;}); ss_ring_s << "prefix_hash:" << tx_prefix_hash << ENDL << "in_ephemeral_key: " << in_contexts[i].in_ephemeral.sec << ENDL << "real_output: " << src_entr.real_output << ENDL; i++; } MCINFO("construct_tx", "transaction_created: " << get_transaction_hash(tx) << ENDL << obj_to_json_str(tx) << ENDL << ss_ring_s.str()); } else { size_t n_total_outs = sources[0].outputs.size(); // only for non-simple rct // the non-simple version is slightly smaller, but assumes all real inputs // are on the same index, so can only be used if there just one ring. bool use_simple_rct = sources.size() > 1; if (!use_simple_rct) { // non simple ringct requires all real inputs to be at the same index for all inputs for(const tx_source_entry& src_entr: sources) { if(src_entr.real_output != sources.begin()->real_output) { LOG_ERROR("All inputs must have the same index for non-simple ringct"); return false; } } // enforce same mixin for all outputs for (size_t i = 1; i < sources.size(); ++i) { if (n_total_outs != sources[i].outputs.size()) { LOG_ERROR("Non-simple ringct transaction has varying mixin"); return false; } } } uint64_t amount_in = 0, amount_out = 0; rct::ctkeyV inSk; // mixRing indexing is done the other way round for simple rct::ctkeyM mixRing(use_simple_rct ? sources.size() : n_total_outs); rct::keyV destinations; std::vector<uint64_t> inamounts, outamounts; std::vector<unsigned int> index; for (size_t i = 0; i < sources.size(); ++i) { rct::ctkey ctkey; amount_in += sources[i].amount; inamounts.push_back(sources[i].amount); index.push_back(sources[i].real_output); // inSk: (secret key, mask) ctkey.dest = rct::sk2rct(in_contexts[i].in_ephemeral.sec); ctkey.mask = sources[i].mask; inSk.push_back(ctkey); // inPk: (public key, commitment) // will be done when filling in mixRing } for (size_t i = 0; i < tx.vout.size(); ++i) { destinations.push_back(rct::pk2rct(boost::get<txout_to_key>(tx.vout[i].target).key)); outamounts.push_back(tx.vout[i].amount); amount_out += tx.vout[i].amount; } if (use_simple_rct) { // mixRing indexing is done the other way round for simple for (size_t i = 0; i < sources.size(); ++i) { mixRing[i].resize(sources[i].outputs.size()); for (size_t n = 0; n < sources[i].outputs.size(); ++n) { mixRing[i][n] = sources[i].outputs[n].second; } } } else { for (size_t i = 0; i < n_total_outs; ++i) // same index assumption { mixRing[i].resize(sources.size()); for (size_t n = 0; n < sources.size(); ++n) { mixRing[i][n] = sources[n].outputs[i].second; } } } // fee if (!use_simple_rct && amount_in > amount_out) outamounts.push_back(amount_in - amount_out); // zero out all amounts to mask rct outputs, real amounts are now encrypted for (size_t i = 0; i < tx.vin.size(); ++i) { if (sources[i].rct) boost::get<txin_to_key>(tx.vin[i]).amount = 0; } for (size_t i = 0; i < tx.vout.size(); ++i) tx.vout[i].amount = 0; crypto::hash tx_prefix_hash; get_transaction_prefix_hash(tx, tx_prefix_hash); rct::ctkeyV outSk; if (use_simple_rct) tx.rct_signatures = rct::genRctSimple(rct::hash2rct(tx_prefix_hash), inSk, destinations, inamounts, outamounts, amount_in - amount_out, mixRing, amount_keys, index, outSk); else tx.rct_signatures = rct::genRct(rct::hash2rct(tx_prefix_hash), inSk, destinations, outamounts, mixRing, amount_keys, sources[0].real_output, outSk); // same index assumption CHECK_AND_ASSERT_MES(tx.vout.size() == outSk.size(), false, "outSk size does not match vout"); MCINFO("construct_tx", "transaction_created: " << get_transaction_hash(tx) << ENDL << obj_to_json_str(tx) << ENDL); } tx.invalidate_hashes(); return true; }
bool constructTransaction( const AccountKeys& sender_account_keys, const std::vector<TransactionSourceEntry>& sources, const std::vector<TransactionDestinationEntry>& destinations, std::vector<uint8_t> extra, Transaction& tx, uint64_t unlock_time, Logging::ILogger& log) { LoggerRef logger(log, "construct_tx"); tx.inputs.clear(); tx.outputs.clear(); tx.signatures.clear(); tx.version = CURRENT_TRANSACTION_VERSION; tx.unlockTime = unlock_time; tx.extra = extra; KeyPair txkey = generateKeyPair(); addTransactionPublicKeyToExtra(tx.extra, txkey.publicKey); struct input_generation_context_data { KeyPair in_ephemeral; }; std::vector<input_generation_context_data> in_contexts; uint64_t summary_inputs_money = 0; //fill inputs for (const TransactionSourceEntry& src_entr : sources) { if (src_entr.realOutput >= src_entr.outputs.size()) { logger(ERROR) << "real_output index (" << src_entr.realOutput << ")bigger than output_keys.size()=" << src_entr.outputs.size(); return false; } summary_inputs_money += src_entr.amount; //KeyDerivation recv_derivation; in_contexts.push_back(input_generation_context_data()); KeyPair& in_ephemeral = in_contexts.back().in_ephemeral; KeyImage img; if (!generate_key_image_helper(sender_account_keys, src_entr.realTransactionPublicKey, src_entr.realOutputIndexInTransaction, in_ephemeral, img)) return false; //check that derived key is equal with real output key if (!(in_ephemeral.publicKey == src_entr.outputs[src_entr.realOutput].second)) { logger(ERROR) << "derived public key mismatch with output public key! " << ENDL << "derived_key:" << Common::podToHex(in_ephemeral.publicKey) << ENDL << "real output_public_key:" << Common::podToHex(src_entr.outputs[src_entr.realOutput].second); return false; } //put key image into tx input KeyInput input_to_key; input_to_key.amount = src_entr.amount; input_to_key.keyImage = img; //fill outputs array and use relative offsets for (const TransactionSourceEntry::OutputEntry& out_entry : src_entr.outputs) { input_to_key.outputIndexes.push_back(out_entry.first); } input_to_key.outputIndexes = absolute_output_offsets_to_relative(input_to_key.outputIndexes); tx.inputs.push_back(input_to_key); } // "Shuffle" outs std::vector<TransactionDestinationEntry> shuffled_dsts(destinations); std::sort(shuffled_dsts.begin(), shuffled_dsts.end(), [](const TransactionDestinationEntry& de1, const TransactionDestinationEntry& de2) { return de1.amount < de2.amount; }); uint64_t summary_outs_money = 0; //fill outputs size_t output_index = 0; for (const TransactionDestinationEntry& dst_entr : shuffled_dsts) { if (!(dst_entr.amount > 0)) { logger(ERROR, BRIGHT_RED) << "Destination with wrong amount: " << dst_entr.amount; return false; } KeyDerivation derivation; PublicKey out_eph_public_key; bool r = generate_key_derivation(dst_entr.addr.viewPublicKey, txkey.secretKey, derivation); if (!(r)) { logger(ERROR, BRIGHT_RED) << "at creation outs: failed to generate_key_derivation(" << dst_entr.addr.viewPublicKey << ", " << txkey.secretKey << ")"; return false; } r = derive_public_key(derivation, output_index, dst_entr.addr.spendPublicKey, out_eph_public_key); if (!(r)) { logger(ERROR, BRIGHT_RED) << "at creation outs: failed to derive_public_key(" << derivation << ", " << output_index << ", " << dst_entr.addr.spendPublicKey << ")"; return false; } TransactionOutput out; out.amount = dst_entr.amount; KeyOutput tk; tk.key = out_eph_public_key; out.target = tk; tx.outputs.push_back(out); output_index++; summary_outs_money += dst_entr.amount; } //check money if (summary_outs_money > summary_inputs_money) { logger(ERROR) << "Transaction inputs money (" << summary_inputs_money << ") less than outputs money (" << summary_outs_money << ")"; return false; } //generate ring signatures Hash tx_prefix_hash; getObjectHash(*static_cast<TransactionPrefix*>(&tx), tx_prefix_hash); size_t i = 0; for (const TransactionSourceEntry& src_entr : sources) { std::vector<const PublicKey*> keys_ptrs; for (const TransactionSourceEntry::OutputEntry& o : src_entr.outputs) { keys_ptrs.push_back(&o.second); } tx.signatures.push_back(std::vector<Signature>()); std::vector<Signature>& sigs = tx.signatures.back(); sigs.resize(src_entr.outputs.size()); generate_ring_signature(tx_prefix_hash, boost::get<KeyInput>(tx.inputs[i]).keyImage, keys_ptrs, in_contexts[i].in_ephemeral.secretKey, src_entr.realOutput, sigs.data()); i++; } return true; }