/* of preceding samples */ void silk_residual_energy_FLP( silk_float nrgs[MAX_NB_SUBFR], /* O Residual energy per subframe */ const silk_float x[], /* I Input signal */ silk_float a[2][MAX_LPC_ORDER], /* I AR coefs for each frame half */ const silk_float gains[], /* I Quantization gains */ const opus_int subfr_length, /* I Subframe length */ const opus_int nb_subfr, /* I number of subframes */ const opus_int LPC_order /* I LPC order */ ) { opus_int shift; silk_float *LPC_res_ptr, LPC_res[(MAX_FRAME_LENGTH + MAX_NB_SUBFR * MAX_LPC_ORDER) / 2]; LPC_res_ptr = LPC_res + LPC_order; shift = LPC_order + subfr_length; /* Filter input to create the LPC residual for each frame half, and measure subframe energies */ silk_LPC_analysis_filter_FLP(LPC_res, a[0], x + 0 * shift, 2 * shift, LPC_order); nrgs[0] = (silk_float)( gains[0] * gains[0] * silk_energy_FLP(LPC_res_ptr + 0 * shift, subfr_length)); nrgs[1] = (silk_float)( gains[1] * gains[1] * silk_energy_FLP(LPC_res_ptr + 1 * shift, subfr_length)); if (nb_subfr == MAX_NB_SUBFR) { silk_LPC_analysis_filter_FLP(LPC_res, a[1], x + 2 * shift, 2 * shift, LPC_order); nrgs[2] = (silk_float)( gains[2] * gains[2] * silk_energy_FLP(LPC_res_ptr + 0 * shift, subfr_length)); nrgs[3] = (silk_float)( gains[3] * gains[3] * silk_energy_FLP(LPC_res_ptr + 1 * shift, subfr_length)); } }
/* Calculates correlation matrix X'*X */ void silk_corrMatrix_FLP(const silk_float * x, /* I x vector [ L+order-1 ] used to create X */ const int L, /* I Length of vectors */ const int Order, /* I Max lag for correlation */ silk_float * XX /* O X'*X correlation matrix [order x order] */ ) { int j, lag; double energy; const silk_float *ptr1, *ptr2; ptr1 = &x[Order - 1]; /* First sample of column 0 of X */ energy = silk_energy_FLP(ptr1, L); /* X[:,0]'*X[:,0] */ matrix_ptr(XX, 0, 0, Order) = (silk_float) energy; for (j = 1; j < Order; j++) { /* Calculate X[:,j]'*X[:,j] */ energy += ptr1[-j] * ptr1[-j] - ptr1[L - j] * ptr1[L - j]; matrix_ptr(XX, j, j, Order) = (silk_float) energy; } ptr2 = &x[Order - 2]; /* First sample of column 1 of X */ for (lag = 1; lag < Order; lag++) { /* Calculate X[:,0]'*X[:,lag] */ energy = silk_inner_product_FLP(ptr1, ptr2, L); matrix_ptr(XX, lag, 0, Order) = (silk_float) energy; matrix_ptr(XX, 0, lag, Order) = (silk_float) energy; /* Calculate X[:,j]'*X[:,j + lag] */ for (j = 1; j < (Order - lag); j++) { energy += ptr1[-j] * ptr2[-j] - ptr1[L - j] * ptr2[L - j]; matrix_ptr(XX, lag + j, j, Order) = (silk_float) energy; matrix_ptr(XX, j, lag + j, Order) = (silk_float) energy; } ptr2--; /* Next column of X */ } }
/* Compute reflection coefficients from input signal */ silk_float silk_burg_modified_FLP( /* O returns residual energy */ silk_float A[], /* O prediction coefficients (length order) */ const silk_float x[], /* I input signal, length: nb_subfr*(D+L_sub) */ const silk_float minInvGain, /* I minimum inverse prediction gain */ const opus_int subfr_length, /* I input signal subframe length (incl. D preceding samples) */ const opus_int nb_subfr, /* I number of subframes stacked in x */ const opus_int D /* I order */ ) { opus_int k, n, s, reached_max_gain; double C0, invGain, num, nrg_f, nrg_b, rc, Atmp, tmp1, tmp2; const silk_float *x_ptr; double C_first_row[ SILK_MAX_ORDER_LPC ], C_last_row[ SILK_MAX_ORDER_LPC ]; double CAf[ SILK_MAX_ORDER_LPC + 1 ], CAb[ SILK_MAX_ORDER_LPC + 1 ]; double Af[ SILK_MAX_ORDER_LPC ]; silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE ); /* Compute autocorrelations, added over subframes */ C0 = silk_energy_FLP( x, nb_subfr * subfr_length ); silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( double ) ); for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; for( n = 1; n < D + 1; n++ ) { C_first_row[ n - 1 ] += silk_inner_product_FLP( x_ptr, x_ptr + n, subfr_length - n ); } } silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( double ) ); /* Initialize */ CAb[ 0 ] = CAf[ 0 ] = C0 + FIND_LPC_COND_FAC * C0 + 1e-9f; invGain = 1.0f; reached_max_gain = 0; for( n = 0; n < D; n++ ) { /* Update first row of correlation matrix (without first element) */ /* Update last row of correlation matrix (without last element, stored in reversed order) */ /* Update C * Af */ /* Update C * flipud(Af) (stored in reversed order) */ for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; tmp1 = x_ptr[ n ]; tmp2 = x_ptr[ subfr_length - n - 1 ]; for( k = 0; k < n; k++ ) { C_first_row[ k ] -= x_ptr[ n ] * x_ptr[ n - k - 1 ]; C_last_row[ k ] -= x_ptr[ subfr_length - n - 1 ] * x_ptr[ subfr_length - n + k ]; Atmp = Af[ k ]; tmp1 += x_ptr[ n - k - 1 ] * Atmp; tmp2 += x_ptr[ subfr_length - n + k ] * Atmp; } for( k = 0; k <= n; k++ ) { CAf[ k ] -= tmp1 * x_ptr[ n - k ]; CAb[ k ] -= tmp2 * x_ptr[ subfr_length - n + k - 1 ]; } } tmp1 = C_first_row[ n ]; tmp2 = C_last_row[ n ]; for( k = 0; k < n; k++ ) { Atmp = Af[ k ]; tmp1 += C_last_row[ n - k - 1 ] * Atmp; tmp2 += C_first_row[ n - k - 1 ] * Atmp; } CAf[ n + 1 ] = tmp1; CAb[ n + 1 ] = tmp2; /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */ num = CAb[ n + 1 ]; nrg_b = CAb[ 0 ]; nrg_f = CAf[ 0 ]; for( k = 0; k < n; k++ ) { Atmp = Af[ k ]; num += CAb[ n - k ] * Atmp; nrg_b += CAb[ k + 1 ] * Atmp; nrg_f += CAf[ k + 1 ] * Atmp; } silk_assert( nrg_f > 0.0 ); silk_assert( nrg_b > 0.0 ); /* Calculate the next order reflection (parcor) coefficient */ rc = -2.0 * num / ( nrg_f + nrg_b ); silk_assert( rc > -1.0 && rc < 1.0 ); /* Update inverse prediction gain */ tmp1 = invGain * ( 1.0 - rc * rc ); if( tmp1 <= minInvGain ) { /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */ rc = sqrt( 1.0 - minInvGain / invGain ); if( num > 0 ) { /* Ensure adjusted reflection coefficients has the original sign */ rc = -rc; } invGain = minInvGain; reached_max_gain = 1; } else { invGain = tmp1; } /* Update the AR coefficients */ for( k = 0; k < (n + 1) >> 1; k++ ) { tmp1 = Af[ k ]; tmp2 = Af[ n - k - 1 ]; Af[ k ] = tmp1 + rc * tmp2; Af[ n - k - 1 ] = tmp2 + rc * tmp1; } Af[ n ] = rc; if( reached_max_gain ) { /* Reached max prediction gain; set remaining coefficients to zero and exit loop */ for( k = n + 1; k < D; k++ ) { Af[ k ] = 0.0; } break; } /* Update C * Af and C * Ab */ for( k = 0; k <= n + 1; k++ ) { tmp1 = CAf[ k ]; CAf[ k ] += rc * CAb[ n - k + 1 ]; CAb[ n - k + 1 ] += rc * tmp1; } } if( reached_max_gain ) { /* Convert to silk_float */ for( k = 0; k < D; k++ ) { A[ k ] = (silk_float)( -Af[ k ] ); } /* Subtract energy of preceding samples from C0 */ for( s = 0; s < nb_subfr; s++ ) { C0 -= silk_energy_FLP( x + s * subfr_length, D ); } /* Approximate residual energy */ nrg_f = C0 * invGain; } else { /* Compute residual energy and store coefficients as silk_float */ nrg_f = CAf[ 0 ]; tmp1 = 1.0; for( k = 0; k < D; k++ ) { Atmp = Af[ k ]; nrg_f += CAf[ k + 1 ] * Atmp; tmp1 += Atmp * Atmp; A[ k ] = (silk_float)(-Atmp); } nrg_f -= FIND_LPC_COND_FAC * C0 * tmp1; } /* Return residual energy */ return (silk_float)nrg_f; }
/* Compute noise shaping coefficients and initial gain values */ void silk_noise_shape_analysis_FLP( silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */ silk_encoder_control_FLP *psEncCtrl, /* I/O Encoder control FLP */ const silk_float *pitch_res, /* I LPC residual from pitch analysis */ const silk_float *x /* I Input signal [frame_length + la_shape] */ ) { silk_shape_state_FLP *psShapeSt = &psEnc->sShape; opus_int k, nSamples; silk_float SNR_adj_dB, HarmBoost, HarmShapeGain, Tilt; silk_float nrg, pre_nrg, log_energy, log_energy_prev, energy_variation; silk_float delta, BWExp1, BWExp2, gain_mult, gain_add, strength, b, warping; silk_float x_windowed[ SHAPE_LPC_WIN_MAX ]; silk_float auto_corr[ MAX_SHAPE_LPC_ORDER + 1 ]; const silk_float *x_ptr, *pitch_res_ptr; /* Point to start of first LPC analysis block */ x_ptr = x - psEnc->sCmn.la_shape; /****************/ /* GAIN CONTROL */ /****************/ SNR_adj_dB = psEnc->sCmn.SNR_dB_Q7 * ( 1 / 128.0f ); /* Input quality is the average of the quality in the lowest two VAD bands */ psEncCtrl->input_quality = 0.5f * ( psEnc->sCmn.input_quality_bands_Q15[ 0 ] + psEnc->sCmn.input_quality_bands_Q15[ 1 ] ) * ( 1.0f / 32768.0f ); /* Coding quality level, between 0.0 and 1.0 */ psEncCtrl->coding_quality = silk_sigmoid( 0.25f * ( SNR_adj_dB - 20.0f ) ); if( psEnc->sCmn.useCBR == 0 ) { /* Reduce coding SNR during low speech activity */ b = 1.0f - psEnc->sCmn.speech_activity_Q8 * ( 1.0f / 256.0f ); SNR_adj_dB -= BG_SNR_DECR_dB * psEncCtrl->coding_quality * ( 0.5f + 0.5f * psEncCtrl->input_quality ) * b * b; } if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { /* Reduce gains for periodic signals */ SNR_adj_dB += HARM_SNR_INCR_dB * psEnc->LTPCorr; } else { /* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */ SNR_adj_dB += ( -0.4f * psEnc->sCmn.SNR_dB_Q7 * ( 1 / 128.0f ) + 6.0f ) * ( 1.0f - psEncCtrl->input_quality ); } /*************************/ /* SPARSENESS PROCESSING */ /*************************/ /* Set quantizer offset */ if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { /* Initially set to 0; may be overruled in process_gains(..) */ psEnc->sCmn.indices.quantOffsetType = 0; psEncCtrl->sparseness = 0.0f; } else { /* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */ nSamples = 2 * psEnc->sCmn.fs_kHz; energy_variation = 0.0f; log_energy_prev = 0.0f; pitch_res_ptr = pitch_res; for( k = 0; k < silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; k++ ) { nrg = ( silk_float )nSamples + ( silk_float )silk_energy_FLP( pitch_res_ptr, nSamples ); log_energy = silk_log2( nrg ); if( k > 0 ) { energy_variation += silk_abs_float( log_energy - log_energy_prev ); } log_energy_prev = log_energy; pitch_res_ptr += nSamples; } psEncCtrl->sparseness = silk_sigmoid( 0.4f * ( energy_variation - 5.0f ) ); /* Set quantization offset depending on sparseness measure */ if( psEncCtrl->sparseness > SPARSENESS_THRESHOLD_QNT_OFFSET ) { psEnc->sCmn.indices.quantOffsetType = 0; } else { psEnc->sCmn.indices.quantOffsetType = 1; } /* Increase coding SNR for sparse signals */ SNR_adj_dB += SPARSE_SNR_INCR_dB * ( psEncCtrl->sparseness - 0.5f ); } /*******************************/ /* Control bandwidth expansion */ /*******************************/ /* More BWE for signals with high prediction gain */ strength = FIND_PITCH_WHITE_NOISE_FRACTION * psEncCtrl->predGain; /* between 0.0 and 1.0 */ BWExp1 = BWExp2 = BANDWIDTH_EXPANSION / ( 1.0f + strength * strength ); delta = LOW_RATE_BANDWIDTH_EXPANSION_DELTA * ( 1.0f - 0.75f * psEncCtrl->coding_quality ); BWExp1 -= delta; BWExp2 += delta; /* BWExp1 will be applied after BWExp2, so make it relative */ BWExp1 /= BWExp2; if( psEnc->sCmn.warping_Q16 > 0 ) { /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */ warping = (silk_float)psEnc->sCmn.warping_Q16 / 65536.0f + 0.01f * psEncCtrl->coding_quality; } else { warping = 0.0f; } /********************************************/ /* Compute noise shaping AR coefs and gains */ /********************************************/ for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { /* Apply window: sine slope followed by flat part followed by cosine slope */ opus_int shift, slope_part, flat_part; flat_part = psEnc->sCmn.fs_kHz * 3; slope_part = ( psEnc->sCmn.shapeWinLength - flat_part ) / 2; silk_apply_sine_window_FLP( x_windowed, x_ptr, 1, slope_part ); shift = slope_part; silk_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(silk_float) ); shift += flat_part; silk_apply_sine_window_FLP( x_windowed + shift, x_ptr + shift, 2, slope_part ); /* Update pointer: next LPC analysis block */ x_ptr += psEnc->sCmn.subfr_length; if( psEnc->sCmn.warping_Q16 > 0 ) { /* Calculate warped auto correlation */ silk_warped_autocorrelation_FLP( auto_corr, x_windowed, warping, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder ); } else { /* Calculate regular auto correlation */ silk_autocorrelation_FLP( auto_corr, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1 ); } /* Add white noise, as a fraction of energy */ auto_corr[ 0 ] += auto_corr[ 0 ] * SHAPE_WHITE_NOISE_FRACTION; /* Convert correlations to prediction coefficients, and compute residual energy */ nrg = silk_levinsondurbin_FLP( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], auto_corr, psEnc->sCmn.shapingLPCOrder ); psEncCtrl->Gains[ k ] = ( silk_float )sqrt( nrg ); if( psEnc->sCmn.warping_Q16 > 0 ) { /* Adjust gain for warping */ psEncCtrl->Gains[ k ] *= warped_gain( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], warping, psEnc->sCmn.shapingLPCOrder ); } /* Bandwidth expansion for synthesis filter shaping */ silk_bwexpander_FLP( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder, BWExp2 ); /* Compute noise shaping filter coefficients */ silk_memcpy( &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ], &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder * sizeof( silk_float ) ); /* Bandwidth expansion for analysis filter shaping */ silk_bwexpander_FLP( &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder, BWExp1 ); /* Ratio of prediction gains, in energy domain */ pre_nrg = silk_LPC_inverse_pred_gain_FLP( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder ); nrg = silk_LPC_inverse_pred_gain_FLP( &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder ); psEncCtrl->GainsPre[ k ] = 1.0f - 0.7f * ( 1.0f - pre_nrg / nrg ); /* Convert to monic warped prediction coefficients and limit absolute values */ warped_true2monic_coefs( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ], warping, 3.999f, psEnc->sCmn.shapingLPCOrder ); } /*****************/ /* Gain tweaking */ /*****************/ /* Increase gains during low speech activity */ gain_mult = (silk_float)pow( 2.0f, -0.16f * SNR_adj_dB ); gain_add = (silk_float)pow( 2.0f, 0.16f * MIN_QGAIN_DB ); for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { psEncCtrl->Gains[ k ] *= gain_mult; psEncCtrl->Gains[ k ] += gain_add; } gain_mult = 1.0f + INPUT_TILT + psEncCtrl->coding_quality * HIGH_RATE_INPUT_TILT; for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { psEncCtrl->GainsPre[ k ] *= gain_mult; } /************************************************/ /* Control low-frequency shaping and noise tilt */ /************************************************/ /* Less low frequency shaping for noisy inputs */ strength = LOW_FREQ_SHAPING * ( 1.0f + LOW_QUALITY_LOW_FREQ_SHAPING_DECR * ( psEnc->sCmn.input_quality_bands_Q15[ 0 ] * ( 1.0f / 32768.0f ) - 1.0f ) ); strength *= psEnc->sCmn.speech_activity_Q8 * ( 1.0f / 256.0f ); if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { /* Reduce low frequencies quantization noise for periodic signals, depending on pitch lag */ /*f = 400; freqz([1, -0.98 + 2e-4 * f], [1, -0.97 + 7e-4 * f], 2^12, Fs); axis([0, 1000, -10, 1])*/ for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { b = 0.2f / psEnc->sCmn.fs_kHz + 3.0f / psEncCtrl->pitchL[ k ]; psEncCtrl->LF_MA_shp[ k ] = -1.0f + b; psEncCtrl->LF_AR_shp[ k ] = 1.0f - b - b * strength; } Tilt = - HP_NOISE_COEF - (1 - HP_NOISE_COEF) * HARM_HP_NOISE_COEF * psEnc->sCmn.speech_activity_Q8 * ( 1.0f / 256.0f ); } else { b = 1.3f / psEnc->sCmn.fs_kHz; psEncCtrl->LF_MA_shp[ 0 ] = -1.0f + b; psEncCtrl->LF_AR_shp[ 0 ] = 1.0f - b - b * strength * 0.6f; for( k = 1; k < psEnc->sCmn.nb_subfr; k++ ) { psEncCtrl->LF_MA_shp[ k ] = psEncCtrl->LF_MA_shp[ 0 ]; psEncCtrl->LF_AR_shp[ k ] = psEncCtrl->LF_AR_shp[ 0 ]; } Tilt = -HP_NOISE_COEF; } /****************************/ /* HARMONIC SHAPING CONTROL */ /****************************/ /* Control boosting of harmonic frequencies */ HarmBoost = LOW_RATE_HARMONIC_BOOST * ( 1.0f - psEncCtrl->coding_quality ) * psEnc->LTPCorr; /* More harmonic boost for noisy input signals */ HarmBoost += LOW_INPUT_QUALITY_HARMONIC_BOOST * ( 1.0f - psEncCtrl->input_quality ); if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) { /* Harmonic noise shaping */ HarmShapeGain = HARMONIC_SHAPING; /* More harmonic noise shaping for high bitrates or noisy input */ HarmShapeGain += HIGH_RATE_OR_LOW_QUALITY_HARMONIC_SHAPING * ( 1.0f - ( 1.0f - psEncCtrl->coding_quality ) * psEncCtrl->input_quality ); /* Less harmonic noise shaping for less periodic signals */ HarmShapeGain *= ( silk_float )sqrt( psEnc->LTPCorr ); } else { HarmShapeGain = 0.0f; } /*************************/ /* Smooth over subframes */ /*************************/ for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { psShapeSt->HarmBoost_smth += SUBFR_SMTH_COEF * ( HarmBoost - psShapeSt->HarmBoost_smth ); psEncCtrl->HarmBoost[ k ] = psShapeSt->HarmBoost_smth; psShapeSt->HarmShapeGain_smth += SUBFR_SMTH_COEF * ( HarmShapeGain - psShapeSt->HarmShapeGain_smth ); psEncCtrl->HarmShapeGain[ k ] = psShapeSt->HarmShapeGain_smth; psShapeSt->Tilt_smth += SUBFR_SMTH_COEF * ( Tilt - psShapeSt->Tilt_smth ); psEncCtrl->Tilt[ k ] = psShapeSt->Tilt_smth; } }
void silk_find_LTP_FLP( silk_float b[ MAX_NB_SUBFR * LTP_ORDER ], /* O LTP coefs */ silk_float WLTP[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* O Weight for LTP quantization */ silk_float *LTPredCodGain, /* O LTP coding gain */ const silk_float r_lpc[], /* I LPC residual */ const opus_int lag[ MAX_NB_SUBFR ], /* I LTP lags */ const silk_float Wght[ MAX_NB_SUBFR ], /* I Weights */ const opus_int subfr_length, /* I Subframe length */ const opus_int nb_subfr, /* I number of subframes */ const opus_int mem_offset /* I Number of samples in LTP memory */ ) { opus_int i, k; silk_float *b_ptr, temp, *WLTP_ptr; silk_float LPC_res_nrg, LPC_LTP_res_nrg; silk_float d[ MAX_NB_SUBFR ], m, g, delta_b[ LTP_ORDER ]; silk_float w[ MAX_NB_SUBFR ], nrg[ MAX_NB_SUBFR ], regu; silk_float Rr[ LTP_ORDER ], rr[ MAX_NB_SUBFR ]; const silk_float *r_ptr, *lag_ptr; b_ptr = b; WLTP_ptr = WLTP; r_ptr = &r_lpc[ mem_offset ]; for( k = 0; k < nb_subfr; k++ ) { lag_ptr = r_ptr - ( lag[ k ] + LTP_ORDER / 2 ); silk_corrMatrix_FLP( lag_ptr, subfr_length, LTP_ORDER, WLTP_ptr ); silk_corrVector_FLP( lag_ptr, r_ptr, subfr_length, LTP_ORDER, Rr ); rr[ k ] = ( silk_float )silk_energy_FLP( r_ptr, subfr_length ); regu = 1.0f + rr[ k ] + matrix_ptr( WLTP_ptr, 0, 0, LTP_ORDER ) + matrix_ptr( WLTP_ptr, LTP_ORDER-1, LTP_ORDER-1, LTP_ORDER ); regu *= LTP_DAMPING / 3; silk_regularize_correlations_FLP( WLTP_ptr, &rr[ k ], regu, LTP_ORDER ); silk_solve_LDL_FLP( WLTP_ptr, LTP_ORDER, Rr, b_ptr ); /* Calculate residual energy */ nrg[ k ] = silk_residual_energy_covar_FLP( b_ptr, WLTP_ptr, Rr, rr[ k ], LTP_ORDER ); temp = Wght[ k ] / ( nrg[ k ] * Wght[ k ] + 0.01f * subfr_length ); silk_scale_vector_FLP( WLTP_ptr, temp, LTP_ORDER * LTP_ORDER ); w[ k ] = matrix_ptr( WLTP_ptr, LTP_ORDER / 2, LTP_ORDER / 2, LTP_ORDER ); r_ptr += subfr_length; b_ptr += LTP_ORDER; WLTP_ptr += LTP_ORDER * LTP_ORDER; } /* Compute LTP coding gain */ if( LTPredCodGain != NULL ) { LPC_LTP_res_nrg = 1e-6f; LPC_res_nrg = 0.0f; for( k = 0; k < nb_subfr; k++ ) { LPC_res_nrg += rr[ k ] * Wght[ k ]; LPC_LTP_res_nrg += nrg[ k ] * Wght[ k ]; } silk_assert( LPC_LTP_res_nrg > 0 ); *LTPredCodGain = 3.0f * silk_log2( LPC_res_nrg / LPC_LTP_res_nrg ); } /* Smoothing */ /* d = sum( B, 1 ); */ b_ptr = b; for( k = 0; k < nb_subfr; k++ ) { d[ k ] = 0; for( i = 0; i < LTP_ORDER; i++ ) { d[ k ] += b_ptr[ i ]; } b_ptr += LTP_ORDER; } /* m = ( w * d' ) / ( sum( w ) + 1e-3 ); */ temp = 1e-3f; for( k = 0; k < nb_subfr; k++ ) { temp += w[ k ]; } m = 0; for( k = 0; k < nb_subfr; k++ ) { m += d[ k ] * w[ k ]; } m = m / temp; b_ptr = b; for( k = 0; k < nb_subfr; k++ ) { g = LTP_SMOOTHING / ( LTP_SMOOTHING + w[ k ] ) * ( m - d[ k ] ); temp = 0; for( i = 0; i < LTP_ORDER; i++ ) { delta_b[ i ] = silk_max_float( b_ptr[ i ], 0.1f ); temp += delta_b[ i ]; } temp = g / temp; for( i = 0; i < LTP_ORDER; i++ ) { b_ptr[ i ] = b_ptr[ i ] + delta_b[ i ] * temp; } b_ptr += LTP_ORDER; } }
/* LPC analysis */ void silk_find_LPC_FLP( silk_encoder_state *psEncC, /* I/O Encoder state */ opus_int16 NLSF_Q15[], /* O NLSFs */ const silk_float x[], /* I Input signal */ const silk_float minInvGain /* I Inverse of max prediction gain */ ) { opus_int k, subfr_length; silk_float a[ MAX_LPC_ORDER ]; /* Used only for NLSF interpolation */ silk_float res_nrg, res_nrg_2nd, res_nrg_interp; opus_int16 NLSF0_Q15[ MAX_LPC_ORDER ]; silk_float a_tmp[ MAX_LPC_ORDER ]; silk_float LPC_res[ MAX_FRAME_LENGTH + MAX_NB_SUBFR * MAX_LPC_ORDER ]; subfr_length = psEncC->subfr_length + psEncC->predictLPCOrder; /* Default: No interpolation */ psEncC->indices.NLSFInterpCoef_Q2 = 4; /* Burg AR analysis for the full frame */ res_nrg = silk_burg_modified_FLP( a, x, minInvGain, subfr_length, psEncC->nb_subfr, psEncC->predictLPCOrder ); if( psEncC->useInterpolatedNLSFs && !psEncC->first_frame_after_reset && psEncC->nb_subfr == MAX_NB_SUBFR ) { /* Optimal solution for last 10 ms; subtract residual energy here, as that's easier than */ /* adding it to the residual energy of the first 10 ms in each iteration of the search below */ res_nrg -= silk_burg_modified_FLP( a_tmp, x + ( MAX_NB_SUBFR / 2 ) * subfr_length, minInvGain, subfr_length, MAX_NB_SUBFR / 2, psEncC->predictLPCOrder ); /* Convert to NLSFs */ silk_A2NLSF_FLP( NLSF_Q15, a_tmp, psEncC->predictLPCOrder ); /* Search over interpolation indices to find the one with lowest residual energy */ res_nrg_2nd = silk_float_MAX; for( k = 3; k >= 0; k-- ) { /* Interpolate NLSFs for first half */ silk_interpolate( NLSF0_Q15, psEncC->prev_NLSFq_Q15, NLSF_Q15, k, psEncC->predictLPCOrder ); /* Convert to LPC for residual energy evaluation */ silk_NLSF2A_FLP( a_tmp, NLSF0_Q15, psEncC->predictLPCOrder ); /* Calculate residual energy with LSF interpolation */ silk_LPC_analysis_filter_FLP( LPC_res, a_tmp, x, 2 * subfr_length, psEncC->predictLPCOrder ); res_nrg_interp = (silk_float)( silk_energy_FLP( LPC_res + psEncC->predictLPCOrder, subfr_length - psEncC->predictLPCOrder ) + silk_energy_FLP( LPC_res + psEncC->predictLPCOrder + subfr_length, subfr_length - psEncC->predictLPCOrder ) ); /* Determine whether current interpolated NLSFs are best so far */ if( res_nrg_interp < res_nrg ) { /* Interpolation has lower residual energy */ res_nrg = res_nrg_interp; psEncC->indices.NLSFInterpCoef_Q2 = (opus_int8)k; } else if( res_nrg_interp > res_nrg_2nd ) { /* No reason to continue iterating - residual energies will continue to climb */ break; } res_nrg_2nd = res_nrg_interp; } } if( psEncC->indices.NLSFInterpCoef_Q2 == 4 ) { /* NLSF interpolation is currently inactive, calculate NLSFs from full frame AR coefficients */ silk_A2NLSF_FLP( NLSF_Q15, a, psEncC->predictLPCOrder ); } silk_assert( psEncC->indices.NLSFInterpCoef_Q2 == 4 || ( psEncC->useInterpolatedNLSFs && !psEncC->first_frame_after_reset && psEncC->nb_subfr == MAX_NB_SUBFR ) ); }
/* Compute reflection coefficients from input signal */ silk_float silk_burg_modified_FLP( /* O returns residual energy */ silk_float A[], /* O prediction coefficients (length order) */ const silk_float x[], /* I input signal, length: nb_subfr*(D+L_sub) */ const opus_int subfr_length, /* I input signal subframe length (incl. D preceeding samples) */ const opus_int nb_subfr, /* I number of subframes stacked in x */ const silk_float WhiteNoiseFrac, /* I fraction added to zero-lag autocorrelation */ const opus_int D /* I order */ ) { opus_int k, n, s; double C0, num, nrg_f, nrg_b, rc, Atmp, tmp1, tmp2; const silk_float *x_ptr; double C_first_row[ SILK_MAX_ORDER_LPC ], C_last_row[ SILK_MAX_ORDER_LPC ]; double CAf[ SILK_MAX_ORDER_LPC + 1 ], CAb[ SILK_MAX_ORDER_LPC + 1 ]; double Af[ SILK_MAX_ORDER_LPC ]; silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE ); silk_assert( nb_subfr <= MAX_NB_SUBFR ); /* Compute autocorrelations, added over subframes */ C0 = silk_energy_FLP( x, nb_subfr * subfr_length ); silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( double ) ); for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; for( n = 1; n < D + 1; n++ ) { C_first_row[ n - 1 ] += silk_inner_product_FLP( x_ptr, x_ptr + n, subfr_length - n ); } } silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( double ) ); /* Initialize */ CAb[ 0 ] = CAf[ 0 ] = C0 + WhiteNoiseFrac * C0 + 1e-9f; for( n = 0; n < D; n++ ) { /* Update first row of correlation matrix (without first element) */ /* Update last row of correlation matrix (without last element, stored in reversed order) */ /* Update C * Af */ /* Update C * flipud(Af) (stored in reversed order) */ for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; tmp1 = x_ptr[ n ]; tmp2 = x_ptr[ subfr_length - n - 1 ]; for( k = 0; k < n; k++ ) { C_first_row[ k ] -= x_ptr[ n ] * x_ptr[ n - k - 1 ]; C_last_row[ k ] -= x_ptr[ subfr_length - n - 1 ] * x_ptr[ subfr_length - n + k ]; Atmp = Af[ k ]; tmp1 += x_ptr[ n - k - 1 ] * Atmp; tmp2 += x_ptr[ subfr_length - n + k ] * Atmp; } for( k = 0; k <= n; k++ ) { CAf[ k ] -= tmp1 * x_ptr[ n - k ]; CAb[ k ] -= tmp2 * x_ptr[ subfr_length - n + k - 1 ]; } } tmp1 = C_first_row[ n ]; tmp2 = C_last_row[ n ]; for( k = 0; k < n; k++ ) { Atmp = Af[ k ]; tmp1 += C_last_row[ n - k - 1 ] * Atmp; tmp2 += C_first_row[ n - k - 1 ] * Atmp; } CAf[ n + 1 ] = tmp1; CAb[ n + 1 ] = tmp2; /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */ num = CAb[ n + 1 ]; nrg_b = CAb[ 0 ]; nrg_f = CAf[ 0 ]; for( k = 0; k < n; k++ ) { Atmp = Af[ k ]; num += CAb[ n - k ] * Atmp; nrg_b += CAb[ k + 1 ] * Atmp; nrg_f += CAf[ k + 1 ] * Atmp; } silk_assert( nrg_f > 0.0 ); silk_assert( nrg_b > 0.0 ); /* Calculate the next order reflection (parcor) coefficient */ rc = -2.0 * num / ( nrg_f + nrg_b ); silk_assert( rc > -1.0 && rc < 1.0 ); /* Update the AR coefficients */ for( k = 0; k < (n + 1) >> 1; k++ ) { tmp1 = Af[ k ]; tmp2 = Af[ n - k - 1 ]; Af[ k ] = tmp1 + rc * tmp2; Af[ n - k - 1 ] = tmp2 + rc * tmp1; } Af[ n ] = rc; /* Update C * Af and C * Ab */ for( k = 0; k <= n + 1; k++ ) { tmp1 = CAf[ k ]; CAf[ k ] += rc * CAb[ n - k + 1 ]; CAb[ n - k + 1 ] += rc * tmp1; } } /* Return residual energy */ nrg_f = CAf[ 0 ]; tmp1 = 1.0; for( k = 0; k < D; k++ ) { Atmp = Af[ k ]; nrg_f += CAf[ k + 1 ] * Atmp; tmp1 += Atmp * Atmp; A[ k ] = (silk_float)(-Atmp); } nrg_f -= WhiteNoiseFrac * C0 * tmp1; return (silk_float)nrg_f; }