/* Subroutine */ int cchkq3_(logical *dotype, integer *nm, integer *mval, integer *nn, integer *nval, integer *nnb, integer *nbval, integer * nxval, real *thresh, complex *a, complex *copya, real *s, real *copys, complex *tau, complex *work, real *rwork, integer *iwork, integer * nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; /* Format strings */ static char fmt_9999[] = "(1x,a6,\002 M =\002,i5,\002, N =\002,i5,\002, " "NB =\002,i4,\002, type \002,i2,\002, test \002,i2,\002, ratio " "=\002,g12.5)"; /* System generated locals */ integer i__1, i__2, i__3, i__4; real r__1; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ integer i__, k, m, n, nb, im, in, lw, nx, lda, inb; real eps; integer mode, info; char path[3]; integer ilow, nrun; extern /* Subroutine */ int alahd_(integer *, char *); integer ihigh, nfail, iseed[4], imode; extern doublereal cqpt01_(integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, integer *), cqrt11_(integer *, integer *, complex *, integer *, complex *, complex *, integer *), cqrt12_(integer *, integer *, complex *, integer *, real *, complex *, integer *, real *); integer mnmin; extern /* Subroutine */ int icopy_(integer *, integer *, integer *, integer *, integer *); integer istep, nerrs, lwork; extern /* Subroutine */ int cgeqp3_(integer *, integer *, complex *, integer *, integer *, complex *, complex *, integer *, real *, integer *); extern doublereal slamch_(char *); extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *), alasum_(char *, integer *, integer *, integer *, integer *), clatms_(integer *, integer *, char *, integer *, char *, real *, integer *, real *, real *, integer *, integer *, char * , complex *, integer *, complex *, integer *), slaord_(char *, integer *, real *, integer *), xlaenv_(integer *, integer *); real result[3]; /* Fortran I/O blocks */ static cilist io___28 = { 0, 0, 0, fmt_9999, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CCHKQ3 tests CGEQP3. */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NM (input) INTEGER */ /* The number of values of M contained in the vector MVAL. */ /* MVAL (input) INTEGER array, dimension (NM) */ /* The values of the matrix row dimension M. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix column dimension N. */ /* NNB (input) INTEGER */ /* The number of values of NB and NX contained in the */ /* vectors NBVAL and NXVAL. The blocking parameters are used */ /* in pairs (NB,NX). */ /* NBVAL (input) INTEGER array, dimension (NNB) */ /* The values of the blocksize NB. */ /* NXVAL (input) INTEGER array, dimension (NNB) */ /* The values of the crossover point NX. */ /* THRESH (input) REAL */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* A (workspace) COMPLEX array, dimension (MMAX*NMAX) */ /* where MMAX is the maximum value of M in MVAL and NMAX is the */ /* maximum value of N in NVAL. */ /* COPYA (workspace) COMPLEX array, dimension (MMAX*NMAX) */ /* S (workspace) REAL array, dimension */ /* (min(MMAX,NMAX)) */ /* COPYS (workspace) REAL array, dimension */ /* (min(MMAX,NMAX)) */ /* TAU (workspace) COMPLEX array, dimension (MMAX) */ /* WORK (workspace) COMPLEX array, dimension */ /* (max(M*max(M,N) + 4*min(M,N) + max(M,N))) */ /* RWORK (workspace) REAL array, dimension (4*NMAX) */ /* IWORK (workspace) INTEGER array, dimension (2*NMAX) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --iwork; --rwork; --work; --tau; --copys; --s; --copya; --a; --nxval; --nbval; --nval; --mval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "Q3", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } eps = slamch_("Epsilon"); infoc_1.infot = 0; i__1 = *nm; for (im = 1; im <= i__1; ++im) { /* Do for each value of M in MVAL. */ m = mval[im]; lda = max(1,m); i__2 = *nn; for (in = 1; in <= i__2; ++in) { /* Do for each value of N in NVAL. */ n = nval[in]; mnmin = min(m,n); /* Computing MAX */ i__3 = 1, i__4 = m * max(m,n) + (mnmin << 2) + max(m,n); lwork = max(i__3,i__4); for (imode = 1; imode <= 6; ++imode) { if (! dotype[imode]) { goto L70; } /* Do for each type of matrix */ /* 1: zero matrix */ /* 2: one small singular value */ /* 3: geometric distribution of singular values */ /* 4: first n/2 columns fixed */ /* 5: last n/2 columns fixed */ /* 6: every second column fixed */ mode = imode; if (imode > 3) { mode = 1; } /* Generate test matrix of size m by n using */ /* singular value distribution indicated by `mode'. */ i__3 = n; for (i__ = 1; i__ <= i__3; ++i__) { iwork[i__] = 0; /* L20: */ } if (imode == 1) { claset_("Full", &m, &n, &c_b1, &c_b1, ©a[1], &lda); i__3 = mnmin; for (i__ = 1; i__ <= i__3; ++i__) { copys[i__] = 0.f; /* L30: */ } } else { r__1 = 1.f / eps; clatms_(&m, &n, "Uniform", iseed, "Nonsymm", ©s[1], & mode, &r__1, &c_b15, &m, &n, "No packing", ©a[ 1], &lda, &work[1], &info); if (imode >= 4) { if (imode == 4) { ilow = 1; istep = 1; /* Computing MAX */ i__3 = 1, i__4 = n / 2; ihigh = max(i__3,i__4); } else if (imode == 5) { /* Computing MAX */ i__3 = 1, i__4 = n / 2; ilow = max(i__3,i__4); istep = 1; ihigh = n; } else if (imode == 6) { ilow = 1; istep = 2; ihigh = n; } i__3 = ihigh; i__4 = istep; for (i__ = ilow; i__4 < 0 ? i__ >= i__3 : i__ <= i__3; i__ += i__4) { iwork[i__] = 1; /* L40: */ } } slaord_("Decreasing", &mnmin, ©s[1], &c__1); } i__4 = *nnb; for (inb = 1; inb <= i__4; ++inb) { /* Do for each pair of values (NB,NX) in NBVAL and NXVAL. */ nb = nbval[inb]; xlaenv_(&c__1, &nb); nx = nxval[inb]; xlaenv_(&c__3, &nx); /* Save A and its singular values and a copy of */ /* vector IWORK. */ clacpy_("All", &m, &n, ©a[1], &lda, &a[1], &lda); icopy_(&n, &iwork[1], &c__1, &iwork[n + 1], &c__1); /* Workspace needed. */ lw = nb * (n + 1); s_copy(srnamc_1.srnamt, "CGEQP3", (ftnlen)6, (ftnlen)6); cgeqp3_(&m, &n, &a[1], &lda, &iwork[n + 1], &tau[1], & work[1], &lw, &rwork[1], &info); /* Compute norm(svd(a) - svd(r)) */ result[0] = cqrt12_(&m, &n, &a[1], &lda, ©s[1], &work[ 1], &lwork, &rwork[1]); /* Compute norm( A*P - Q*R ) */ result[1] = cqpt01_(&m, &n, &mnmin, ©a[1], &a[1], & lda, &tau[1], &iwork[n + 1], &work[1], &lwork); /* Compute Q'*Q */ result[2] = cqrt11_(&m, &mnmin, &a[1], &lda, &tau[1], & work[1], &lwork); /* Print information about the tests that did not pass */ /* the threshold. */ for (k = 1; k <= 3; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___28.ciunit = *nout; s_wsfe(&io___28); do_fio(&c__1, "CGEQP3", (ftnlen)6); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(integer) ); do_fio(&c__1, (char *)&imode, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(real)); e_wsfe(); ++nfail; } /* L50: */ } nrun += 3; /* L60: */ } L70: ; } /* L80: */ } /* L90: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); /* End of CCHKQ3 */ return 0; } /* cchkq3_ */
/* Subroutine */ int sqrt15_(integer *scale, integer *rksel, integer *m, integer *n, integer *nrhs, real *a, integer *lda, real *b, integer * ldb, real *s, integer *rank, real *norma, real *normb, integer *iseed, real *work, integer *lwork) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2; real r__1; /* Local variables */ static integer info; static real temp; extern doublereal snrm2_(integer *, real *, integer *); static integer j; extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *), slarf_(char *, integer *, integer *, real *, integer *, real *, real *, integer *, real *), sgemm_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real * , integer *, real *, real *, integer *); extern doublereal sasum_(integer *, real *, integer *); static real dummy[1]; static integer mn; extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); extern /* Subroutine */ int xerbla_(char *, integer *); static real bignum; extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *); extern doublereal slarnd_(integer *, integer *); extern /* Subroutine */ int slaord_(char *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *), slaror_(char *, char *, integer *, integer *, real *, integer *, integer *, real *, integer *), slarnv_(integer *, integer *, integer *, real *); static real smlnum, eps; #define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= SQRT15 generates a matrix with full or deficient rank and of various norms. Arguments ========= SCALE (input) INTEGER SCALE = 1: normally scaled matrix SCALE = 2: matrix scaled up SCALE = 3: matrix scaled down RKSEL (input) INTEGER RKSEL = 1: full rank matrix RKSEL = 2: rank-deficient matrix M (input) INTEGER The number of rows of the matrix A. N (input) INTEGER The number of columns of A. NRHS (input) INTEGER The number of columns of B. A (output) REAL array, dimension (LDA,N) The M-by-N matrix A. LDA (input) INTEGER The leading dimension of the array A. B (output) REAL array, dimension (LDB, NRHS) A matrix that is in the range space of matrix A. LDB (input) INTEGER The leading dimension of the array B. S (output) REAL array, dimension MIN(M,N) Singular values of A. RANK (output) INTEGER number of nonzero singular values of A. NORMA (output) REAL one-norm of A. NORMB (output) REAL one-norm of B. ISEED (input/output) integer array, dimension (4) seed for random number generator. WORK (workspace) REAL array, dimension (LWORK) LWORK (input) INTEGER length of work space required. LWORK >= MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M) ===================================================================== Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --s; --iseed; --work; /* Function Body */ mn = min(*m,*n); /* Computing MAX */ i__1 = *m + mn, i__2 = mn * *nrhs, i__1 = max(i__1,i__2), i__2 = (*n << 1) + *m; if (*lwork < max(i__1,i__2)) { xerbla_("SQRT15", &c__16); return 0; } smlnum = slamch_("Safe minimum"); bignum = 1.f / smlnum; eps = slamch_("Epsilon"); smlnum = smlnum / eps / eps; bignum = 1.f / smlnum; /* Determine rank and (unscaled) singular values */ if (*rksel == 1) { *rank = mn; } else if (*rksel == 2) { *rank = mn * 3 / 4; i__1 = mn; for (j = *rank + 1; j <= i__1; ++j) { s[j] = 0.f; /* L10: */ } } else { xerbla_("SQRT15", &c__2); } if (*rank > 0) { /* Nontrivial case */ s[1] = 1.f; i__1 = *rank; for (j = 2; j <= i__1; ++j) { L20: temp = slarnd_(&c__1, &iseed[1]); if (temp > .1f) { s[j] = dabs(temp); } else { goto L20; } /* L30: */ } slaord_("Decreasing", rank, &s[1], &c__1); /* Generate 'rank' columns of a random orthogonal matrix in A */ slarnv_(&c__2, &iseed[1], m, &work[1]); r__1 = 1.f / snrm2_(m, &work[1], &c__1); sscal_(m, &r__1, &work[1], &c__1); slaset_("Full", m, rank, &c_b18, &c_b19, &a[a_offset], lda) ; slarf_("Left", m, rank, &work[1], &c__1, &c_b22, &a[a_offset], lda, & work[*m + 1]); /* workspace used: m+mn Generate consistent rhs in the range space of A */ i__1 = *rank * *nrhs; slarnv_(&c__2, &iseed[1], &i__1, &work[1]); sgemm_("No transpose", "No transpose", m, nrhs, rank, &c_b19, &a[ a_offset], lda, &work[1], rank, &c_b18, &b[b_offset], ldb); /* work space used: <= mn *nrhs generate (unscaled) matrix A */ i__1 = *rank; for (j = 1; j <= i__1; ++j) { sscal_(m, &s[j], &a_ref(1, j), &c__1); /* L40: */ } if (*rank < *n) { i__1 = *n - *rank; slaset_("Full", m, &i__1, &c_b18, &c_b18, &a_ref(1, *rank + 1), lda); } slaror_("Right", "No initialization", m, n, &a[a_offset], lda, &iseed[ 1], &work[1], &info); } else { /* work space used 2*n+m Generate null matrix and rhs */ i__1 = mn; for (j = 1; j <= i__1; ++j) { s[j] = 0.f; /* L50: */ } slaset_("Full", m, n, &c_b18, &c_b18, &a[a_offset], lda); slaset_("Full", m, nrhs, &c_b18, &c_b18, &b[b_offset], ldb) ; } /* Scale the matrix */ if (*scale != 1) { *norma = slange_("Max", m, n, &a[a_offset], lda, dummy); if (*norma != 0.f) { if (*scale == 2) { /* matrix scaled up */ slascl_("General", &c__0, &c__0, norma, &bignum, m, n, &a[ a_offset], lda, &info); slascl_("General", &c__0, &c__0, norma, &bignum, &mn, &c__1, & s[1], &mn, &info); slascl_("General", &c__0, &c__0, norma, &bignum, m, nrhs, &b[ b_offset], ldb, &info); } else if (*scale == 3) { /* matrix scaled down */ slascl_("General", &c__0, &c__0, norma, &smlnum, m, n, &a[ a_offset], lda, &info); slascl_("General", &c__0, &c__0, norma, &smlnum, &mn, &c__1, & s[1], &mn, &info); slascl_("General", &c__0, &c__0, norma, &smlnum, m, nrhs, &b[ b_offset], ldb, &info); } else { xerbla_("SQRT15", &c__1); return 0; } } } *norma = sasum_(&mn, &s[1], &c__1); *normb = slange_("One-norm", m, nrhs, &b[b_offset], ldb, dummy) ; return 0; /* End of SQRT15 */ } /* sqrt15_ */
/* Subroutine */ int schktz_(logical *dotype, integer *nm, integer *mval, integer *nn, integer *nval, real *thresh, logical *tsterr, real *a, real *copya, real *s, real *copys, real *tau, real *work, integer * nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; /* Format strings */ static char fmt_9999[] = "(\002 M =\002,i5,\002, N =\002,i5,\002, type" " \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)"; /* System generated locals */ integer i__1, i__2, i__3, i__4; real r__1; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ integer i__, k, m, n, im, in, lda; real eps; integer mode, info; char path[3]; integer nrun; extern /* Subroutine */ int alahd_(integer *, char *); integer nfail, iseed[4], imode, mnmin, nerrs; extern doublereal sqrt12_(integer *, integer *, real *, integer *, real *, real *, integer *); integer lwork; extern doublereal srzt01_(integer *, integer *, real *, real *, integer *, real *, real *, integer *), srzt02_(integer *, integer *, real *, integer *, real *, real *, integer *), stzt01_(integer *, integer *, real *, real *, integer *, real *, real *, integer *), stzt02_(integer *, integer *, real *, integer *, real *, real *, integer *); extern /* Subroutine */ int sgeqr2_(integer *, integer *, real *, integer *, real *, real *, integer *); extern doublereal slamch_(char *); extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer *, integer *), slaord_(char *, integer *, real *, integer *), slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *), slatms_(integer *, integer *, char *, integer *, char *, real *, integer *, real *, real *, integer *, integer *, char *, real *, integer *, real *, integer *); real result[6]; extern /* Subroutine */ int serrtz_(char *, integer *), stzrqf_( integer *, integer *, real *, integer *, real *, integer *), stzrzf_(integer *, integer *, real *, integer *, real *, real *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___21 = { 0, 0, 0, fmt_9999, 0 }; /* -- LAPACK test routine (version 3.1.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* January 2007 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SCHKTZ tests STZRQF and STZRZF. */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NM (input) INTEGER */ /* The number of values of M contained in the vector MVAL. */ /* MVAL (input) INTEGER array, dimension (NM) */ /* The values of the matrix row dimension M. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix column dimension N. */ /* THRESH (input) REAL */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* A (workspace) REAL array, dimension (MMAX*NMAX) */ /* where MMAX is the maximum value of M in MVAL and NMAX is the */ /* maximum value of N in NVAL. */ /* COPYA (workspace) REAL array, dimension (MMAX*NMAX) */ /* S (workspace) REAL array, dimension */ /* (min(MMAX,NMAX)) */ /* COPYS (workspace) REAL array, dimension */ /* (min(MMAX,NMAX)) */ /* TAU (workspace) REAL array, dimension (MMAX) */ /* WORK (workspace) REAL array, dimension */ /* (MMAX*NMAX + 4*NMAX + MMAX) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --work; --tau; --copys; --s; --copya; --a; --nval; --mval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "TZ", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } eps = slamch_("Epsilon"); /* Test the error exits */ if (*tsterr) { serrtz_(path, nout); } infoc_1.infot = 0; i__1 = *nm; for (im = 1; im <= i__1; ++im) { /* Do for each value of M in MVAL. */ m = mval[im]; lda = max(1,m); i__2 = *nn; for (in = 1; in <= i__2; ++in) { /* Do for each value of N in NVAL for which M .LE. N. */ n = nval[in]; mnmin = min(m,n); /* Computing MAX */ i__3 = 1, i__4 = n * n + (m << 2) + n, i__3 = max(i__3,i__4), i__4 = m * n + (mnmin << 1) + (n << 2); lwork = max(i__3,i__4); if (m <= n) { for (imode = 1; imode <= 3; ++imode) { if (! dotype[imode]) { goto L50; } /* Do for each type of singular value distribution. */ /* 0: zero matrix */ /* 1: one small singular value */ /* 2: exponential distribution */ mode = imode - 1; /* Test STZRQF */ /* Generate test matrix of size m by n using */ /* singular value distribution indicated by `mode'. */ if (mode == 0) { slaset_("Full", &m, &n, &c_b10, &c_b10, &a[1], &lda); i__3 = mnmin; for (i__ = 1; i__ <= i__3; ++i__) { copys[i__] = 0.f; /* L20: */ } } else { r__1 = 1.f / eps; slatms_(&m, &n, "Uniform", iseed, "Nonsymmetric", & copys[1], &imode, &r__1, &c_b15, &m, &n, "No packing", &a[1], &lda, &work[1], &info); sgeqr2_(&m, &n, &a[1], &lda, &work[1], &work[mnmin + 1], &info); i__3 = m - 1; slaset_("Lower", &i__3, &n, &c_b10, &c_b10, &a[2], & lda); slaord_("Decreasing", &mnmin, ©s[1], &c__1); } /* Save A and its singular values */ slacpy_("All", &m, &n, &a[1], &lda, ©a[1], &lda); /* Call STZRQF to reduce the upper trapezoidal matrix to */ /* upper triangular form. */ s_copy(srnamc_1.srnamt, "STZRQF", (ftnlen)32, (ftnlen)6); stzrqf_(&m, &n, &a[1], &lda, &tau[1], &info); /* Compute norm(svd(a) - svd(r)) */ result[0] = sqrt12_(&m, &m, &a[1], &lda, ©s[1], &work[ 1], &lwork); /* Compute norm( A - R*Q ) */ result[1] = stzt01_(&m, &n, ©a[1], &a[1], &lda, &tau[ 1], &work[1], &lwork); /* Compute norm(Q'*Q - I). */ result[2] = stzt02_(&m, &n, &a[1], &lda, &tau[1], &work[1] , &lwork); /* Test STZRZF */ /* Generate test matrix of size m by n using */ /* singular value distribution indicated by `mode'. */ if (mode == 0) { slaset_("Full", &m, &n, &c_b10, &c_b10, &a[1], &lda); i__3 = mnmin; for (i__ = 1; i__ <= i__3; ++i__) { copys[i__] = 0.f; /* L30: */ } } else { r__1 = 1.f / eps; slatms_(&m, &n, "Uniform", iseed, "Nonsymmetric", & copys[1], &imode, &r__1, &c_b15, &m, &n, "No packing", &a[1], &lda, &work[1], &info); sgeqr2_(&m, &n, &a[1], &lda, &work[1], &work[mnmin + 1], &info); i__3 = m - 1; slaset_("Lower", &i__3, &n, &c_b10, &c_b10, &a[2], & lda); slaord_("Decreasing", &mnmin, ©s[1], &c__1); } /* Save A and its singular values */ slacpy_("All", &m, &n, &a[1], &lda, ©a[1], &lda); /* Call STZRZF to reduce the upper trapezoidal matrix to */ /* upper triangular form. */ s_copy(srnamc_1.srnamt, "STZRZF", (ftnlen)32, (ftnlen)6); stzrzf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lwork, & info); /* Compute norm(svd(a) - svd(r)) */ result[3] = sqrt12_(&m, &m, &a[1], &lda, ©s[1], &work[ 1], &lwork); /* Compute norm( A - R*Q ) */ result[4] = srzt01_(&m, &n, ©a[1], &a[1], &lda, &tau[ 1], &work[1], &lwork); /* Compute norm(Q'*Q - I). */ result[5] = srzt02_(&m, &n, &a[1], &lda, &tau[1], &work[1] , &lwork); /* Print information about the tests that did not pass */ /* the threshold. */ for (k = 1; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___21.ciunit = *nout; s_wsfe(&io___21); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&imode, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(real)); e_wsfe(); ++nfail; } /* L40: */ } nrun += 6; L50: ; } } /* L60: */ } /* L70: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); /* End if SCHKTZ */ return 0; } /* schktz_ */
/* Subroutine */ int cqrt15_(integer *scale, integer *rksel, integer *m, integer *n, integer *nrhs, complex *a, integer *lda, complex *b, integer *ldb, real *s, integer *rank, real *norma, real *normb, integer *iseed, complex *work, integer *lwork) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2; real r__1; /* Local variables */ integer j, mn; real eps; integer info; real temp; extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *), clarf_(char *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *); extern doublereal sasum_(integer *, real *, integer *); real dummy[1]; extern doublereal scnrm2_(integer *, complex *, integer *); extern /* Subroutine */ int slabad_(real *, real *); extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *); extern /* Subroutine */ int clascl_(char *, integer *, integer *, real *, real *, integer *, integer *, complex *, integer *, integer *); extern doublereal slamch_(char *); extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *), xerbla_(char *, integer *); real bignum; extern /* Subroutine */ int claror_(char *, char *, integer *, integer *, complex *, integer *, integer *, complex *, integer *); extern doublereal slarnd_(integer *, integer *); extern /* Subroutine */ int slaord_(char *, integer *, real *, integer *), clarnv_(integer *, integer *, integer *, complex *), slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *); real smlnum; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CQRT15 generates a matrix with full or deficient rank and of various */ /* norms. */ /* Arguments */ /* ========= */ /* SCALE (input) INTEGER */ /* SCALE = 1: normally scaled matrix */ /* SCALE = 2: matrix scaled up */ /* SCALE = 3: matrix scaled down */ /* RKSEL (input) INTEGER */ /* RKSEL = 1: full rank matrix */ /* RKSEL = 2: rank-deficient matrix */ /* M (input) INTEGER */ /* The number of rows of the matrix A. */ /* N (input) INTEGER */ /* The number of columns of A. */ /* NRHS (input) INTEGER */ /* The number of columns of B. */ /* A (output) COMPLEX array, dimension (LDA,N) */ /* The M-by-N matrix A. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. */ /* B (output) COMPLEX array, dimension (LDB, NRHS) */ /* A matrix that is in the range space of matrix A. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. */ /* S (output) REAL array, dimension MIN(M,N) */ /* Singular values of A. */ /* RANK (output) INTEGER */ /* number of nonzero singular values of A. */ /* NORMA (output) REAL */ /* one-norm norm of A. */ /* NORMB (output) REAL */ /* one-norm norm of B. */ /* ISEED (input/output) integer array, dimension (4) */ /* seed for random number generator. */ /* WORK (workspace) COMPLEX array, dimension (LWORK) */ /* LWORK (input) INTEGER */ /* length of work space required. */ /* LWORK >= MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --s; --iseed; --work; /* Function Body */ mn = min(*m,*n); /* Computing MAX */ i__1 = *m + mn, i__2 = mn * *nrhs, i__1 = max(i__1,i__2), i__2 = (*n << 1) + *m; if (*lwork < max(i__1,i__2)) { xerbla_("CQRT15", &c__16); return 0; } smlnum = slamch_("Safe minimum"); bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); eps = slamch_("Epsilon"); smlnum = smlnum / eps / eps; bignum = 1.f / smlnum; /* Determine rank and (unscaled) singular values */ if (*rksel == 1) { *rank = mn; } else if (*rksel == 2) { *rank = mn * 3 / 4; i__1 = mn; for (j = *rank + 1; j <= i__1; ++j) { s[j] = 0.f; /* L10: */ } } else { xerbla_("CQRT15", &c__2); } if (*rank > 0) { /* Nontrivial case */ s[1] = 1.f; i__1 = *rank; for (j = 2; j <= i__1; ++j) { L20: temp = slarnd_(&c__1, &iseed[1]); if (temp > .1f) { s[j] = dabs(temp); } else { goto L20; } /* L30: */ } slaord_("Decreasing", rank, &s[1], &c__1); /* Generate 'rank' columns of a random orthogonal matrix in A */ clarnv_(&c__2, &iseed[1], m, &work[1]); r__1 = 1.f / scnrm2_(m, &work[1], &c__1); csscal_(m, &r__1, &work[1], &c__1); claset_("Full", m, rank, &c_b1, &c_b2, &a[a_offset], lda); clarf_("Left", m, rank, &work[1], &c__1, &c_b22, &a[a_offset], lda, & work[*m + 1]); /* workspace used: m+mn */ /* Generate consistent rhs in the range space of A */ i__1 = *rank * *nrhs; clarnv_(&c__2, &iseed[1], &i__1, &work[1]); cgemm_("No transpose", "No transpose", m, nrhs, rank, &c_b2, &a[ a_offset], lda, &work[1], rank, &c_b1, &b[b_offset], ldb); /* work space used: <= mn *nrhs */ /* generate (unscaled) matrix A */ i__1 = *rank; for (j = 1; j <= i__1; ++j) { csscal_(m, &s[j], &a[j * a_dim1 + 1], &c__1); /* L40: */ } if (*rank < *n) { i__1 = *n - *rank; claset_("Full", m, &i__1, &c_b1, &c_b1, &a[(*rank + 1) * a_dim1 + 1], lda); } claror_("Right", "No initialization", m, n, &a[a_offset], lda, &iseed[ 1], &work[1], &info); } else { /* work space used 2*n+m */ /* Generate null matrix and rhs */ i__1 = mn; for (j = 1; j <= i__1; ++j) { s[j] = 0.f; /* L50: */ } claset_("Full", m, n, &c_b1, &c_b1, &a[a_offset], lda); claset_("Full", m, nrhs, &c_b1, &c_b1, &b[b_offset], ldb); } /* Scale the matrix */ if (*scale != 1) { *norma = clange_("Max", m, n, &a[a_offset], lda, dummy); if (*norma != 0.f) { if (*scale == 2) { /* matrix scaled up */ clascl_("General", &c__0, &c__0, norma, &bignum, m, n, &a[ a_offset], lda, &info); slascl_("General", &c__0, &c__0, norma, &bignum, &mn, &c__1, & s[1], &mn, &info); clascl_("General", &c__0, &c__0, norma, &bignum, m, nrhs, &b[ b_offset], ldb, &info); } else if (*scale == 3) { /* matrix scaled down */ clascl_("General", &c__0, &c__0, norma, &smlnum, m, n, &a[ a_offset], lda, &info); slascl_("General", &c__0, &c__0, norma, &smlnum, &mn, &c__1, & s[1], &mn, &info); clascl_("General", &c__0, &c__0, norma, &smlnum, m, nrhs, &b[ b_offset], ldb, &info); } else { xerbla_("CQRT15", &c__1); return 0; } } } *norma = sasum_(&mn, &s[1], &c__1); *normb = clange_("One-norm", m, nrhs, &b[b_offset], ldb, dummy) ; return 0; /* End of CQRT15 */ } /* cqrt15_ */