예제 #1
0
파일: stimtd.c 프로젝트: zangel/uquad
/* Subroutine */ int stimtd_(char *line, integer *nm, integer *mval, integer *
	nn, integer *nval, integer *nnb, integer *nbval, integer *nxval, 
	integer *nlda, integer *ldaval, real *timmin, real *a, real *b, real *
	d__, real *tau, real *work, real *reslts, integer *ldr1, integer *
	ldr2, integer *ldr3, integer *nout, ftnlen line_len)
{
    /* Initialized data */

    static char subnam[6*4] = "SSYTRD" "TRED1 " "SORGTR" "SORMTR";
    static char sides[1*2] = "L" "R";
    static char transs[1*2] = "N" "T";
    static char uplos[1*2] = "U" "L";
    static integer iseed[4] = { 0,0,0,1 };

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002 timing run not attempted\002,/)";
    static char fmt_9998[] = "(/\002 *** Speed of \002,a6,\002 in megaflops "
	    "*** \002)";
    static char fmt_9997[] = "(5x,\002line \002,i2,\002 with LDA = \002,i5)";
    static char fmt_9996[] = "(/5x,a6,\002 with UPLO = '\002,a1,\002'\002,/)";
    static char fmt_9995[] = "(/5x,a6,\002 with SIDE = '\002,a1,\002', UPLO "
	    "= '\002,a1,\002', TRANS = '\002,a1,\002', \002,a1,\002 =\002,i6,"
	    "/)";

    /* System generated locals */
    integer reslts_dim1, reslts_dim2, reslts_dim3, reslts_offset, i__1, i__2, 
	    i__3, i__4, i__5, i__6;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void),
	     s_wsle(cilist *), e_wsle(void);

    /* Local variables */
    static integer ilda;
    static char side[1];
    static integer info;
    static char path[3];
    static real time;
    static integer isub;
    static char uplo[1];
    extern /* Subroutine */ int tred1_(integer *, integer *, real *, real *, 
	    real *, real *);
    static integer i__, m, n;
    static char cname[6];
    static integer iside, itoff, itran;
    extern doublereal sopla_(char *, integer *, integer *, integer *, integer 
	    *, integer *);
    extern /* Subroutine */ int icopy_(integer *, integer *, integer *, 
	    integer *, integer *);
    static char trans[1];
    static integer iuplo, i3, i4, m1, n1;
    static real s1, s2;
    static integer ic;
    extern /* Subroutine */ int sprtb3_(char *, char *, integer *, integer *, 
	    integer *, integer *, integer *, integer *, real *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    static integer nb, im, in, lw, nx, reseed[4];
    extern /* Subroutine */ int atimck_(integer *, char *, integer *, integer 
	    *, integer *, integer *, integer *, integer *, ftnlen);
    extern doublereal second_(void);
    extern /* Subroutine */ int atimin_(char *, char *, integer *, char *, 
	    logical *, integer *, integer *, ftnlen, ftnlen, ftnlen), slacpy_(
	    char *, integer *, integer *, real *, integer *, real *, integer *
	    ), xlaenv_(integer *, integer *);
    extern doublereal smflop_(real *, real *, integer *);
    static real untime;
    extern /* Subroutine */ int stimmg_(integer *, integer *, integer *, real 
	    *, integer *, integer *, integer *);
    static logical timsub[4];
    extern /* Subroutine */ int slatms_(integer *, integer *, char *, integer 
	    *, char *, real *, integer *, real *, real *, integer *, integer *
	    , char *, real *, integer *, real *, integer *), sprtbl_(char *, char *, integer *, integer *, integer *, 
	    integer *, integer *, real *, integer *, integer *, integer *, 
	    ftnlen, ftnlen), sorgtr_(char *, integer *, real *, integer *, 
	    real *, real *, integer *, integer *), sormtr_(char *, 
	    char *, char *, integer *, integer *, real *, integer *, real *, 
	    real *, integer *, real *, integer *, integer *), ssytrd_(char *, integer *, real *, integer *, real *, 
	    real *, real *, real *, integer *, integer *);
    static integer lda, icl, inb;
    static real ops;
    static char lab1[1], lab2[1];

    /* Fortran I/O blocks */
    static cilist io___10 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___11 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___42 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___44 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___45 = { 0, 0, 0, 0, 0 };
    static cilist io___46 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___49 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___50 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___51 = { 0, 0, 0, fmt_9995, 0 };



#define subnam_ref(a_0,a_1) &subnam[(a_1)*6 + a_0 - 6]
#define reslts_ref(a_1,a_2,a_3,a_4) reslts[(((a_4)*reslts_dim3 + (a_3))*\
reslts_dim2 + (a_2))*reslts_dim1 + a_1]


/*  -- LAPACK timing routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    STIMTD times the LAPACK routines SSYTRD, SORGTR, and SORMTR and the   
    EISPACK routine TRED1.   

    Arguments   
    =========   

    LINE    (input) CHARACTER*80   
            The input line that requested this routine.  The first six   
            characters contain either the name of a subroutine or a   
            generic path name.  The remaining characters may be used to   
            specify the individual routines to be timed.  See ATIMIN for   
            a full description of the format of the input line.   

    NM      (input) INTEGER   
            The number of values of M contained in the vector MVAL.   

    MVAL    (input) INTEGER array, dimension (NM)   
            The values of the matrix size M.   

    NN      (input) INTEGER   
            The number of values of N contained in the vector NVAL.   

    NVAL    (input) INTEGER array, dimension (NN)   
            The values of the matrix column dimension N.   

    NNB     (input) INTEGER   
            The number of values of NB and NX contained in the   
            vectors NBVAL and NXVAL.  The blocking parameters are used   
            in pairs (NB,NX).   

    NBVAL   (input) INTEGER array, dimension (NNB)   
            The values of the blocksize NB.   

    NXVAL   (input) INTEGER array, dimension (NNB)   
            The values of the crossover point NX.   

    NLDA    (input) INTEGER   
            The number of values of LDA contained in the vector LDAVAL.   

    LDAVAL  (input) INTEGER array, dimension (NLDA)   
            The values of the leading dimension of the array A.   

    TIMMIN  (input) REAL   
            The minimum time a subroutine will be timed.   

    A       (workspace) REAL array, dimension (LDAMAX*NMAX)   
            where LDAMAX and NMAX are the maximum values of LDA and N.   

    B       (workspace) REAL array, dimension (LDAMAX*NMAX)   

    D       (workspace) REAL array, dimension (2*NMAX-1)   

    TAU     (workspace) REAL array, dimension (NMAX)   

    WORK    (workspace) REAL array, dimension (NMAX*NBMAX)   
            where NBMAX is the maximum value of NB.   

    RESLTS  (workspace) REAL array, dimension   
                        (LDR1,LDR2,LDR3,4*NN+3)   
            The timing results for each subroutine over the relevant   
            values of M, (NB,NX), LDA, and N.   

    LDR1    (input) INTEGER   
            The first dimension of RESLTS.  LDR1 >= max(1,NNB).   

    LDR2    (input) INTEGER   
            The second dimension of RESLTS.  LDR2 >= max(1,NM).   

    LDR3    (input) INTEGER   
            The third dimension of RESLTS.  LDR3 >= max(1,2*NLDA).   

    NOUT    (input) INTEGER   
            The unit number for output.   

    Internal Parameters   
    ===================   

    MODE    INTEGER   
            The matrix type.  MODE = 3 is a geometric distribution of   
            eigenvalues.  See SLATMS for further details.   

    COND    REAL   
            The condition number of the matrix.  The singular values are   
            set to values from DMAX to DMAX/COND.   

    DMAX    REAL   
            The magnitude of the largest singular value.   

    =====================================================================   

       Parameter adjustments */
    --mval;
    --nval;
    --nbval;
    --nxval;
    --ldaval;
    --a;
    --b;
    --d__;
    --tau;
    --work;
    reslts_dim1 = *ldr1;
    reslts_dim2 = *ldr2;
    reslts_dim3 = *ldr3;
    reslts_offset = 1 + reslts_dim1 * (1 + reslts_dim2 * (1 + reslts_dim3 * 1)
	    );
    reslts -= reslts_offset;

    /* Function Body   

       Extract the timing request from the input line. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "TD", (ftnlen)2, (ftnlen)2);
    atimin_(path, line, &c__4, subnam, timsub, nout, &info, (ftnlen)3, (
	    ftnlen)80, (ftnlen)6);
    if (info != 0) {
	goto L240;
    }

/*     Check that M <= LDA for the input values. */

    s_copy(cname, line, (ftnlen)6, (ftnlen)6);
    atimck_(&c__2, cname, nm, &mval[1], nlda, &ldaval[1], nout, &info, (
	    ftnlen)6);
    if (info > 0) {
	io___10.ciunit = *nout;
	s_wsfe(&io___10);
	do_fio(&c__1, cname, (ftnlen)6);
	e_wsfe();
	goto L240;
    }

/*     Check that K <= LDA for SORMTR */

    if (timsub[3]) {
	atimck_(&c__3, cname, nn, &nval[1], nlda, &ldaval[1], nout, &info, (
		ftnlen)6);
	if (info > 0) {
	    io___11.ciunit = *nout;
	    s_wsfe(&io___11);
	    do_fio(&c__1, subnam_ref(0, 4), (ftnlen)6);
	    e_wsfe();
	    timsub[3] = FALSE_;
	}
    }

/*     Do first for UPLO = 'U', then for UPLO = 'L' */

    for (iuplo = 1; iuplo <= 2; ++iuplo) {
	*(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1];

/*        Do for each value of M: */

	i__1 = *nm;
	for (im = 1; im <= i__1; ++im) {
	    m = mval[im];
	    icopy_(&c__4, iseed, &c__1, reseed, &c__1);

/*           Do for each value of LDA: */

	    i__2 = *nlda;
	    for (ilda = 1; ilda <= i__2; ++ilda) {
		lda = ldaval[ilda];
		i3 = (iuplo - 1) * *nlda + ilda;

/*              Do for each pair of values (NB, NX) in NBVAL and NXVAL. */

		i__3 = *nnb;
		for (inb = 1; inb <= i__3; ++inb) {
		    nb = nbval[inb];
		    xlaenv_(&c__1, &nb);
		    nx = nxval[inb];
		    xlaenv_(&c__3, &nx);
/* Computing MAX */
		    i__4 = 1, i__5 = m * max(1,nb);
		    lw = max(i__4,i__5);

/*                 Generate a test matrix of order M. */

		    icopy_(&c__4, reseed, &c__1, iseed, &c__1);
		    slatms_(&m, &m, "Uniform", iseed, "Symmetric", &tau[1], &
			    c__3, &c_b27, &c_b28, &m, &m, "No packing", &b[1],
			     &lda, &work[1], &info);

		    if (timsub[1] && inb == 1 && iuplo == 2) {

/*                    TRED1:  Eispack reduction using orthogonal   
                      transformations. */

			slacpy_(uplo, &m, &m, &b[1], &lda, &a[1], &lda);
			ic = 0;
			s1 = second_();
L10:
			tred1_(&lda, &m, &a[1], &d__[1], &d__[m + 1], &d__[m 
				+ 1]);
			s2 = second_();
			time = s2 - s1;
			++ic;
			if (time < *timmin) {
			    slacpy_(uplo, &m, &m, &b[1], &lda, &a[1], &lda);
			    goto L10;
			}

/*                    Subtract the time used in SLACPY. */

			icl = 1;
			s1 = second_();
L20:
			s2 = second_();
			untime = s2 - s1;
			++icl;
			if (icl <= ic) {
			    slacpy_(uplo, &m, &m, &b[1], &lda, &a[1], &lda);
			    goto L20;
			}

			time = (time - untime) / (real) ic;
			ops = sopla_("SSYTRD", &m, &m, &c_n1, &c_n1, &nb);
			reslts_ref(inb, im, ilda, 2) = smflop_(&ops, &time, &
				info);
		    }

		    if (timsub[0]) {

/*                    SSYTRD:  Reduction to tridiagonal form */

			slacpy_(uplo, &m, &m, &b[1], &lda, &a[1], &lda);
			ic = 0;
			s1 = second_();
L30:
			ssytrd_(uplo, &m, &a[1], &lda, &d__[1], &d__[m + 1], &
				tau[1], &work[1], &lw, &info);
			s2 = second_();
			time = s2 - s1;
			++ic;
			if (time < *timmin) {
			    slacpy_(uplo, &m, &m, &b[1], &lda, &a[1], &lda);
			    goto L30;
			}

/*                    Subtract the time used in SLACPY. */

			icl = 1;
			s1 = second_();
L40:
			s2 = second_();
			untime = s2 - s1;
			++icl;
			if (icl <= ic) {
			    slacpy_(uplo, &m, &m, &a[1], &lda, &b[1], &lda);
			    goto L40;
			}

			time = (time - untime) / (real) ic;
			ops = sopla_("SSYTRD", &m, &m, &c_n1, &c_n1, &nb);
			reslts_ref(inb, im, i3, 1) = smflop_(&ops, &time, &
				info);
		    } else {

/*                    If SSYTRD was not timed, generate a matrix and   
                      factor it using SSYTRD anyway so that the factored   
                      form of the matrix can be used in timing the other   
                      routines. */

			slacpy_(uplo, &m, &m, &b[1], &lda, &a[1], &lda);
			ssytrd_(uplo, &m, &a[1], &lda, &d__[1], &d__[m + 1], &
				tau[1], &work[1], &lw, &info);
		    }

		    if (timsub[2]) {

/*                    SORGTR:  Generate the orthogonal matrix Q from the   
                      reduction to Hessenberg form A = Q*H*Q' */

			slacpy_(uplo, &m, &m, &a[1], &lda, &b[1], &lda);
			ic = 0;
			s1 = second_();
L50:
			sorgtr_(uplo, &m, &b[1], &lda, &tau[1], &work[1], &lw,
				 &info);
			s2 = second_();
			time = s2 - s1;
			++ic;
			if (time < *timmin) {
			    slacpy_(uplo, &m, &m, &a[1], &lda, &b[1], &lda);
			    goto L50;
			}

/*                    Subtract the time used in SLACPY. */

			icl = 1;
			s1 = second_();
L60:
			s2 = second_();
			untime = s2 - s1;
			++icl;
			if (icl <= ic) {
			    slacpy_(uplo, &m, &m, &a[1], &lda, &b[1], &lda);
			    goto L60;
			}

			time = (time - untime) / (real) ic;

/*                    Op count for SORGTR:  same as   
                         SORGQR( N-1, N-1, N-1, ... ) */

			i__4 = m - 1;
			i__5 = m - 1;
			i__6 = m - 1;
			ops = sopla_("SORGQR", &i__4, &i__5, &i__6, &c_n1, &
				nb);
			reslts_ref(inb, im, i3, 3) = smflop_(&ops, &time, &
				info);
		    }

		    if (timsub[3]) {

/*                    SORMTR:  Multiply by Q stored as a product of   
                      elementary transformations */

			i4 = 3;
			for (iside = 1; iside <= 2; ++iside) {
			    *(unsigned char *)side = *(unsigned char *)&sides[
				    iside - 1];
			    i__4 = *nn;
			    for (in = 1; in <= i__4; ++in) {
				n = nval[in];
/* Computing MAX */
				i__5 = 1, i__6 = max(1,nb) * n;
				lw = max(i__5,i__6);
				if (iside == 1) {
				    m1 = m;
				    n1 = n;
				} else {
				    m1 = n;
				    n1 = m;
				}
				itoff = 0;
				for (itran = 1; itran <= 2; ++itran) {
				    *(unsigned char *)trans = *(unsigned char 
					    *)&transs[itran - 1];
				    stimmg_(&c__0, &m1, &n1, &b[1], &lda, &
					    c__0, &c__0);
				    ic = 0;
				    s1 = second_();
L70:
				    sormtr_(side, uplo, trans, &m1, &n1, &a[1]
					    , &lda, &tau[1], &b[1], &lda, &
					    work[1], &lw, &info);
				    s2 = second_();
				    time = s2 - s1;
				    ++ic;
				    if (time < *timmin) {
					stimmg_(&c__0, &m1, &n1, &b[1], &lda, 
						&c__0, &c__0);
					goto L70;
				    }

/*                             Subtract the time used in STIMMG. */

				    icl = 1;
				    s1 = second_();
L80:
				    s2 = second_();
				    untime = s2 - s1;
				    ++icl;
				    if (icl <= ic) {
					stimmg_(&c__0, &m1, &n1, &b[1], &lda, 
						&c__0, &c__0);
					goto L80;
				    }

				    time = (time - untime) / (real) ic;

/*                             Op count for SORMTR, SIDE='L':  same as   
                                  SORMQR( 'L', TRANS, M-1, N, M-1, ...)   

                               Op count for SORMTR, SIDE='R':  same as   
                                  SORMQR( 'R', TRANS, M, N-1, N-1, ...) */

				    if (iside == 1) {
					i__5 = m1 - 1;
					i__6 = m1 - 1;
					ops = sopla_("SORMQR", &i__5, &n1, &
						i__6, &c_n1, &nb);
				    } else {
					i__5 = n1 - 1;
					i__6 = n1 - 1;
					ops = sopla_("SORMQR", &m1, &i__5, &
						i__6, &c__1, &nb);
				    }

				    reslts_ref(inb, im, i3, i4 + itoff + in) =
					     smflop_(&ops, &time, &info);
				    itoff = *nn;
/* L90: */
				}
/* L100: */
			    }
			    i4 += *nn << 1;
/* L110: */
			}
		    }

/* L120: */
		}
/* L130: */
	    }
/* L140: */
	}
/* L150: */
    }

/*     Print tables of results for SSYTRD, TRED1, and SORGTR */

    for (isub = 1; isub <= 3; ++isub) {
	if (! timsub[isub - 1]) {
	    goto L180;
	}
	io___42.ciunit = *nout;
	s_wsfe(&io___42);
	do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
	e_wsfe();
	if (*nlda > 1) {
	    i__1 = *nlda;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		io___44.ciunit = *nout;
		s_wsfe(&io___44);
		do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)sizeof(integer));
		e_wsfe();
/* L160: */
	    }
	}
	if (isub == 2) {
	    io___45.ciunit = *nout;
	    s_wsle(&io___45);
	    e_wsle();
	    sprtb3_(" ", "N", &c__1, &nbval[1], &nxval[1], nm, &mval[1], nlda,
		     &reslts_ref(1, 1, 1, isub), ldr1, ldr2, nout, (ftnlen)1, 
		    (ftnlen)1);
	} else {
	    i3 = 1;
	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		io___46.ciunit = *nout;
		s_wsfe(&io___46);
		do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
		do_fio(&c__1, uplos + (iuplo - 1), (ftnlen)1);
		e_wsfe();
		sprtb3_("(  NB,  NX)", "N", nnb, &nbval[1], &nxval[1], nm, &
			mval[1], nlda, &reslts_ref(1, 1, i3, isub), ldr1, 
			ldr2, nout, (ftnlen)11, (ftnlen)1);
		i3 += *nlda;
/* L170: */
	    }
	}
L180:
	;
    }

/*     Print tables of results for SORMTR */

    isub = 4;
    if (timsub[isub - 1]) {
	i4 = 3;
	for (iside = 1; iside <= 2; ++iside) {
	    if (iside == 1) {
		*(unsigned char *)lab1 = 'M';
		*(unsigned char *)lab2 = 'N';
		if (*nlda > 1) {
		    io___49.ciunit = *nout;
		    s_wsfe(&io___49);
		    do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
		    e_wsfe();
		    i__1 = *nlda;
		    for (i__ = 1; i__ <= i__1; ++i__) {
			io___50.ciunit = *nout;
			s_wsfe(&io___50);
			do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)sizeof(
				integer));
			e_wsfe();
/* L190: */
		    }
		}
	    } else {
		*(unsigned char *)lab1 = 'N';
		*(unsigned char *)lab2 = 'M';
	    }
	    for (itran = 1; itran <= 2; ++itran) {
		i__1 = *nn;
		for (in = 1; in <= i__1; ++in) {
		    i3 = 1;
		    for (iuplo = 1; iuplo <= 2; ++iuplo) {
			io___51.ciunit = *nout;
			s_wsfe(&io___51);
			do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
			do_fio(&c__1, sides + (iside - 1), (ftnlen)1);
			do_fio(&c__1, uplos + (iuplo - 1), (ftnlen)1);
			do_fio(&c__1, transs + (itran - 1), (ftnlen)1);
			do_fio(&c__1, lab2, (ftnlen)1);
			do_fio(&c__1, (char *)&nval[in], (ftnlen)sizeof(
				integer));
			e_wsfe();
			sprtbl_("NB", lab1, nnb, &nbval[1], nm, &mval[1], 
				nlda, &reslts_ref(1, 1, i3, i4 + in), ldr1, 
				ldr2, nout, (ftnlen)2, (ftnlen)1);
			i3 += *nlda;
/* L200: */
		    }
/* L210: */
		}
		i4 += *nn;
/* L220: */
	    }
/* L230: */
	}
    }
L240:

/*     Print a table of results for each timed routine. */

    return 0;

/*     End of STIMTD */

} /* stimtd_ */
예제 #2
0
파일: sdrvge.c 프로젝트: kstraube/hysim
/* Subroutine */ int sdrvge_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, real *thresh, logical *tsterr, integer *nmax, real *a, 
	real *afac, real *asav, real *b, real *bsav, real *x, real *xact, 
	real *s, real *work, real *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char transs[1*3] = "N" "T" "C";
    static char facts[1*3] = "F" "N" "E";
    static char equeds[1*4] = "N" "R" "C" "B";

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002, N =\002,i5,\002, type \002,i2,"
	    "\002, test(\002,i2,\002) =\002,g12.5)";
    static char fmt_9997[] = "(1x,a6,\002, FACT='\002,a1,\002', TRANS='\002,"
	    "a1,\002', N=\002,i5,\002, EQUED='\002,a1,\002', type \002,i2,"
	    "\002, test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9998[] = "(1x,a6,\002, FACT='\002,a1,\002', TRANS='\002,"
	    "a1,\002', N=\002,i5,\002, type \002,i2,\002, test(\002,i1,\002)"
	    "=\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5[2];
    real r__1;
    char ch__1[2];

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    integer i__, k, n, k1, nb, in, kl, ku, nt, lda;
    char fact[1];
    integer ioff, mode;
    real amax;
    char path[3];
    integer imat, info;
    char dist[1], type__[1];
    integer nrun, ifact, nfail, iseed[4], nfact;
    extern logical lsame_(char *, char *);
    char equed[1];
    integer nbmin;
    real rcond, roldc;
    extern /* Subroutine */ int sget01_(integer *, integer *, real *, integer 
	    *, real *, integer *, integer *, real *, real *);
    integer nimat;
    real roldi;
    extern doublereal sget06_(real *, real *);
    extern /* Subroutine */ int sget02_(char *, integer *, integer *, integer 
	    *, real *, integer *, real *, integer *, real *, integer *, real *
, real *);
    real anorm;
    integer itran;
    extern /* Subroutine */ int sget04_(integer *, integer *, real *, integer 
	    *, real *, integer *, real *, real *);
    logical equil;
    real roldo;
    extern /* Subroutine */ int sget07_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *, real *, integer *, real *, integer *
, real *, real *, real *);
    char trans[1];
    integer izero, nerrs;
    extern /* Subroutine */ int sgesv_(integer *, integer *, real *, integer *
, integer *, real *, integer *, integer *);
    integer lwork;
    logical zerot;
    char xtype[1];
    extern /* Subroutine */ int slatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, real *, integer *, real *, char *
), aladhd_(integer *, char *), 
	    alaerh_(char *, char *, integer *, integer *, char *, integer *, 
	    integer *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *);
    logical prefac;
    real colcnd;
    extern doublereal slamch_(char *);
    real rcondc;
    extern doublereal slange_(char *, integer *, integer *, real *, integer *, 
	     real *);
    logical nofact;
    integer iequed;
    extern /* Subroutine */ int slaqge_(integer *, integer *, real *, integer 
	    *, real *, real *, real *, real *, real *, char *);
    real rcondi;
    extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer 
	    *, integer *);
    real cndnum, anormi, rcondo, ainvnm;
    extern /* Subroutine */ int sgeequ_(integer *, integer *, real *, integer 
	    *, real *, real *, real *, real *, real *, integer *);
    logical trfcon;
    real anormo, rowcnd;
    extern /* Subroutine */ int sgetrf_(integer *, integer *, real *, integer 
	    *, integer *, integer *), sgetri_(integer *, real *, integer *, 
	    integer *, real *, integer *, integer *), slacpy_(char *, integer 
	    *, integer *, real *, integer *, real *, integer *), 
	    slarhs_(char *, char *, char *, char *, integer *, integer *, 
	    integer *, integer *, integer *, real *, integer *, real *, 
	    integer *, real *, integer *, integer *, integer *);
    extern doublereal slantr_(char *, char *, char *, integer *, integer *, 
	    real *, integer *, real *);
    extern /* Subroutine */ int slaset_(char *, integer *, integer *, real *, 
	    real *, real *, integer *), slatms_(integer *, integer *, 
	    char *, integer *, char *, real *, integer *, real *, real *, 
	    integer *, integer *, char *, real *, integer *, real *, integer *
), xlaenv_(integer *, integer *);
    real result[7];
    extern /* Subroutine */ int sgesvx_(char *, char *, integer *, integer *, 
	    real *, integer *, real *, integer *, integer *, char *, real *, 
	    real *, real *, integer *, real *, integer *, real *, real *, 
	    real *, real *, integer *, integer *);
    real rpvgrw;
    extern /* Subroutine */ int serrvx_(char *, integer *);

    /* Fortran I/O blocks */
    static cilist io___55 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___61 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___62 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___63 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___64 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___65 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___66 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___67 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___68 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SDRVGE tests the driver routines SGESV and -SVX. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix column dimension N. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors to be generated for */
/*          each linear system. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for N, used in dimensioning the */
/*          work arrays. */

/*  A       (workspace) REAL array, dimension (NMAX*NMAX) */

/*  AFAC    (workspace) REAL array, dimension (NMAX*NMAX) */

/*  ASAV    (workspace) REAL array, dimension (NMAX*NMAX) */

/*  B       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  BSAV    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  X       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  S       (workspace) REAL array, dimension (2*NMAX) */

/*  WORK    (workspace) REAL array, dimension */
/*                      (NMAX*max(3,NRHS)) */

/*  RWORK   (workspace) REAL array, dimension (2*NRHS+NMAX) */

/*  IWORK   (workspace) INTEGER array, dimension (2*NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --s;
    --xact;
    --x;
    --bsav;
    --b;
    --asav;
    --afac;
    --a;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "GE", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	serrvx_(path, nout);
    }
    infoc_1.infot = 0;

/*     Set the block size and minimum block size for testing. */

    nb = 1;
    nbmin = 2;
    xlaenv_(&c__1, &nb);
    xlaenv_(&c__2, &nbmin);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';
	nimat = 11;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L80;
	    }

/*           Skip types 5, 6, or 7 if the matrix size is too small. */

	    zerot = imat >= 5 && imat <= 7;
	    if (zerot && n < imat - 4) {
		goto L80;
	    }

/*           Set up parameters with SLATB4 and generate a test matrix */
/*           with SLATMS. */

	    slatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &
		    cndnum, dist);
	    rcondc = 1.f / cndnum;

	    s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)6, (ftnlen)6);
	    slatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cndnum, &
		    anorm, &kl, &ku, "No packing", &a[1], &lda, &work[1], &
		    info);

/*           Check error code from SLATMS. */

	    if (info != 0) {
		alaerh_(path, "SLATMS", &info, &c__0, " ", &n, &n, &c_n1, &
			c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		goto L80;
	    }

/*           For types 5-7, zero one or more columns of the matrix to */
/*           test that INFO is returned correctly. */

	    if (zerot) {
		if (imat == 5) {
		    izero = 1;
		} else if (imat == 6) {
		    izero = n;
		} else {
		    izero = n / 2 + 1;
		}
		ioff = (izero - 1) * lda;
		if (imat < 7) {
		    i__3 = n;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			a[ioff + i__] = 0.f;
/* L20: */
		    }
		} else {
		    i__3 = n - izero + 1;
		    slaset_("Full", &n, &i__3, &c_b20, &c_b20, &a[ioff + 1], &
			    lda);
		}
	    } else {
		izero = 0;
	    }

/*           Save a copy of the matrix A in ASAV. */

	    slacpy_("Full", &n, &n, &a[1], &lda, &asav[1], &lda);

	    for (iequed = 1; iequed <= 4; ++iequed) {
		*(unsigned char *)equed = *(unsigned char *)&equeds[iequed - 
			1];
		if (iequed == 1) {
		    nfact = 3;
		} else {
		    nfact = 1;
		}

		i__3 = nfact;
		for (ifact = 1; ifact <= i__3; ++ifact) {
		    *(unsigned char *)fact = *(unsigned char *)&facts[ifact - 
			    1];
		    prefac = lsame_(fact, "F");
		    nofact = lsame_(fact, "N");
		    equil = lsame_(fact, "E");

		    if (zerot) {
			if (prefac) {
			    goto L60;
			}
			rcondo = 0.f;
			rcondi = 0.f;

		    } else if (! nofact) {

/*                    Compute the condition number for comparison with */
/*                    the value returned by SGESVX (FACT = 'N' reuses */
/*                    the condition number from the previous iteration */
/*                    with FACT = 'F'). */

			slacpy_("Full", &n, &n, &asav[1], &lda, &afac[1], &
				lda);
			if (equil || iequed > 1) {

/*                       Compute row and column scale factors to */
/*                       equilibrate the matrix A. */

			    sgeequ_(&n, &n, &afac[1], &lda, &s[1], &s[n + 1], 
				    &rowcnd, &colcnd, &amax, &info);
			    if (info == 0 && n > 0) {
				if (lsame_(equed, "R")) 
					{
				    rowcnd = 0.f;
				    colcnd = 1.f;
				} else if (lsame_(equed, "C")) {
				    rowcnd = 1.f;
				    colcnd = 0.f;
				} else if (lsame_(equed, "B")) {
				    rowcnd = 0.f;
				    colcnd = 0.f;
				}

/*                          Equilibrate the matrix. */

				slaqge_(&n, &n, &afac[1], &lda, &s[1], &s[n + 
					1], &rowcnd, &colcnd, &amax, equed);
			    }
			}

/*                    Save the condition number of the non-equilibrated */
/*                    system for use in SGET04. */

			if (equil) {
			    roldo = rcondo;
			    roldi = rcondi;
			}

/*                    Compute the 1-norm and infinity-norm of A. */

			anormo = slange_("1", &n, &n, &afac[1], &lda, &rwork[
				1]);
			anormi = slange_("I", &n, &n, &afac[1], &lda, &rwork[
				1]);

/*                    Factor the matrix A. */

			sgetrf_(&n, &n, &afac[1], &lda, &iwork[1], &info);

/*                    Form the inverse of A. */

			slacpy_("Full", &n, &n, &afac[1], &lda, &a[1], &lda);
			lwork = *nmax * max(3,*nrhs);
			sgetri_(&n, &a[1], &lda, &iwork[1], &work[1], &lwork, 
				&info);

/*                    Compute the 1-norm condition number of A. */

			ainvnm = slange_("1", &n, &n, &a[1], &lda, &rwork[1]);
			if (anormo <= 0.f || ainvnm <= 0.f) {
			    rcondo = 1.f;
			} else {
			    rcondo = 1.f / anormo / ainvnm;
			}

/*                    Compute the infinity-norm condition number of A. */

			ainvnm = slange_("I", &n, &n, &a[1], &lda, &rwork[1]);
			if (anormi <= 0.f || ainvnm <= 0.f) {
			    rcondi = 1.f;
			} else {
			    rcondi = 1.f / anormi / ainvnm;
			}
		    }

		    for (itran = 1; itran <= 3; ++itran) {

/*                    Do for each value of TRANS. */

			*(unsigned char *)trans = *(unsigned char *)&transs[
				itran - 1];
			if (itran == 1) {
			    rcondc = rcondo;
			} else {
			    rcondc = rcondi;
			}

/*                    Restore the matrix A. */

			slacpy_("Full", &n, &n, &asav[1], &lda, &a[1], &lda);

/*                    Form an exact solution and set the right hand side. */

			s_copy(srnamc_1.srnamt, "SLARHS", (ftnlen)6, (ftnlen)
				6);
			slarhs_(path, xtype, "Full", trans, &n, &n, &kl, &ku, 
				nrhs, &a[1], &lda, &xact[1], &lda, &b[1], &
				lda, iseed, &info);
			*(unsigned char *)xtype = 'C';
			slacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], &lda);

			if (nofact && itran == 1) {

/*                       --- Test SGESV  --- */

/*                       Compute the LU factorization of the matrix and */
/*                       solve the system. */

			    slacpy_("Full", &n, &n, &a[1], &lda, &afac[1], &
				    lda);
			    slacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &
				    lda);

			    s_copy(srnamc_1.srnamt, "SGESV ", (ftnlen)6, (
				    ftnlen)6);
			    sgesv_(&n, nrhs, &afac[1], &lda, &iwork[1], &x[1], 
				     &lda, &info);

/*                       Check error code from SGESV . */

			    if (info != izero) {
				alaerh_(path, "SGESV ", &info, &izero, " ", &
					n, &n, &c_n1, &c_n1, nrhs, &imat, &
					nfail, &nerrs, nout);
			    }

/*                       Reconstruct matrix from factors and compute */
/*                       residual. */

			    sget01_(&n, &n, &a[1], &lda, &afac[1], &lda, &
				    iwork[1], &rwork[1], result);
			    nt = 1;
			    if (izero == 0) {

/*                          Compute residual of the computed solution. */

				slacpy_("Full", &n, nrhs, &b[1], &lda, &work[
					1], &lda);
				sget02_("No transpose", &n, &n, nrhs, &a[1], &
					lda, &x[1], &lda, &work[1], &lda, &
					rwork[1], &result[1]);

/*                          Check solution from generated exact solution. */

				sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &rcondc, &result[2]);
				nt = 3;
			    }

/*                       Print information about the tests that did not */
/*                       pass the threshold. */

			    i__4 = nt;
			    for (k = 1; k <= i__4; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					aladhd_(nout, path);
				    }
				    io___55.ciunit = *nout;
				    s_wsfe(&io___55);
				    do_fio(&c__1, "SGESV ", (ftnlen)6);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(real));
				    e_wsfe();
				    ++nfail;
				}
/* L30: */
			    }
			    nrun += nt;
			}

/*                    --- Test SGESVX --- */

			if (! prefac) {
			    slaset_("Full", &n, &n, &c_b20, &c_b20, &afac[1], 
				    &lda);
			}
			slaset_("Full", &n, nrhs, &c_b20, &c_b20, &x[1], &lda);
			if (iequed > 1 && n > 0) {

/*                       Equilibrate the matrix if FACT = 'F' and */
/*                       EQUED = 'R', 'C', or 'B'. */

			    slaqge_(&n, &n, &a[1], &lda, &s[1], &s[n + 1], &
				    rowcnd, &colcnd, &amax, equed);
			}

/*                    Solve the system and compute the condition number */
/*                    and error bounds using SGESVX. */

			s_copy(srnamc_1.srnamt, "SGESVX", (ftnlen)6, (ftnlen)
				6);
			sgesvx_(fact, trans, &n, nrhs, &a[1], &lda, &afac[1], 
				&lda, &iwork[1], equed, &s[1], &s[n + 1], &b[
				1], &lda, &x[1], &lda, &rcond, &rwork[1], &
				rwork[*nrhs + 1], &work[1], &iwork[n + 1], &
				info);

/*                    Check the error code from SGESVX. */

			if (info != izero) {
/* Writing concatenation */
			    i__5[0] = 1, a__1[0] = fact;
			    i__5[1] = 1, a__1[1] = trans;
			    s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2);
			    alaerh_(path, "SGESVX", &info, &izero, ch__1, &n, 
				    &n, &c_n1, &c_n1, nrhs, &imat, &nfail, &
				    nerrs, nout);
			}

/*                    Compare WORK(1) from SGESVX with the computed */
/*                    reciprocal pivot growth factor RPVGRW */

			if (info != 0) {
			    rpvgrw = slantr_("M", "U", "N", &info, &info, &
				    afac[1], &lda, &work[1]);
			    if (rpvgrw == 0.f) {
				rpvgrw = 1.f;
			    } else {
				rpvgrw = slange_("M", &n, &info, &a[1], &lda, 
					&work[1]) / rpvgrw;
			    }
			} else {
			    rpvgrw = slantr_("M", "U", "N", &n, &n, &afac[1], 
				    &lda, &work[1]);
			    if (rpvgrw == 0.f) {
				rpvgrw = 1.f;
			    } else {
				rpvgrw = slange_("M", &n, &n, &a[1], &lda, &
					work[1]) / rpvgrw;
			    }
			}
			result[6] = (r__1 = rpvgrw - work[1], dabs(r__1)) / 
				dmax(work[1],rpvgrw) / slamch_("E")
				;

			if (! prefac) {

/*                       Reconstruct matrix from factors and compute */
/*                       residual. */

			    sget01_(&n, &n, &a[1], &lda, &afac[1], &lda, &
				    iwork[1], &rwork[(*nrhs << 1) + 1], 
				    result);
			    k1 = 1;
			} else {
			    k1 = 2;
			}

			if (info == 0) {
			    trfcon = FALSE_;

/*                       Compute residual of the computed solution. */

			    slacpy_("Full", &n, nrhs, &bsav[1], &lda, &work[1]
, &lda);
			    sget02_(trans, &n, &n, nrhs, &asav[1], &lda, &x[1]
, &lda, &work[1], &lda, &rwork[(*nrhs << 
				    1) + 1], &result[1]);

/*                       Check solution from generated exact solution. */

			    if (nofact || prefac && lsame_(equed, "N")) {
				sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &rcondc, &result[2]);
			    } else {
				if (itran == 1) {
				    roldc = roldo;
				} else {
				    roldc = roldi;
				}
				sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &roldc, &result[2]);
			    }

/*                       Check the error bounds from iterative */
/*                       refinement. */

			    sget07_(trans, &n, nrhs, &asav[1], &lda, &b[1], &
				    lda, &x[1], &lda, &xact[1], &lda, &rwork[
				    1], &rwork[*nrhs + 1], &result[3]);
			} else {
			    trfcon = TRUE_;
			}

/*                    Compare RCOND from SGESVX with the computed value */
/*                    in RCONDC. */

			result[5] = sget06_(&rcond, &rcondc);

/*                    Print information about the tests that did not pass */
/*                    the threshold. */

			if (! trfcon) {
			    for (k = k1; k <= 7; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					aladhd_(nout, path);
				    }
				    if (prefac) {
					io___61.ciunit = *nout;
					s_wsfe(&io___61);
					do_fio(&c__1, "SGESVX", (ftnlen)6);
					do_fio(&c__1, fact, (ftnlen)1);
					do_fio(&c__1, trans, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, equed, (ftnlen)1);
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(real));
					e_wsfe();
				    } else {
					io___62.ciunit = *nout;
					s_wsfe(&io___62);
					do_fio(&c__1, "SGESVX", (ftnlen)6);
					do_fio(&c__1, fact, (ftnlen)1);
					do_fio(&c__1, trans, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(real));
					e_wsfe();
				    }
				    ++nfail;
				}
/* L40: */
			    }
			    nrun = nrun + 7 - k1;
			} else {
			    if (result[0] >= *thresh && ! prefac) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___63.ciunit = *nout;
				    s_wsfe(&io___63);
				    do_fio(&c__1, "SGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__1, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[0], (ftnlen)
					    sizeof(real));
				    e_wsfe();
				} else {
				    io___64.ciunit = *nout;
				    s_wsfe(&io___64);
				    do_fio(&c__1, "SGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__1, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[0], (ftnlen)
					    sizeof(real));
				    e_wsfe();
				}
				++nfail;
				++nrun;
			    }
			    if (result[5] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___65.ciunit = *nout;
				    s_wsfe(&io___65);
				    do_fio(&c__1, "SGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__6, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[5], (ftnlen)
					    sizeof(real));
				    e_wsfe();
				} else {
				    io___66.ciunit = *nout;
				    s_wsfe(&io___66);
				    do_fio(&c__1, "SGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__6, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[5], (ftnlen)
					    sizeof(real));
				    e_wsfe();
				}
				++nfail;
				++nrun;
			    }
			    if (result[6] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___67.ciunit = *nout;
				    s_wsfe(&io___67);
				    do_fio(&c__1, "SGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__7, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[6], (ftnlen)
					    sizeof(real));
				    e_wsfe();
				} else {
				    io___68.ciunit = *nout;
				    s_wsfe(&io___68);
				    do_fio(&c__1, "SGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__7, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[6], (ftnlen)
					    sizeof(real));
				    e_wsfe();
				}
				++nfail;
				++nrun;
			    }

			}

/* L50: */
		    }
L60:
		    ;
		}
/* L70: */
	    }
L80:
	    ;
	}
/* L90: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of SDRVGE */

} /* sdrvge_ */
예제 #3
0
파일: schksp.c 프로젝트: kstraube/hysim
/* Subroutine */ int schksp_(logical *dotype, integer *nn, integer *nval, 
	integer *nns, integer *nsval, real *thresh, logical *tsterr, integer *
	nmax, real *a, real *afac, real *ainv, real *b, real *x, real *xact, 
	real *work, real *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char uplos[1*2] = "U" "L";

    /* Format strings */
    static char fmt_9999[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, "
	    "type \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)";
    static char fmt_9998[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, "
	    "NRHS=\002,i3,\002, type \002,i2,\002, test(\002,i2,\002) =\002,g"
	    "12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, j, k, n, i1, i2, in, kl, ku, nt, lda, npp, ioff, mode, imat, 
	    info;
    char path[3], dist[1];
    integer irhs, nrhs;
    char uplo[1], type__[1];
    integer nrun;
    extern /* Subroutine */ int alahd_(integer *, char *);
    integer nfail, iseed[4];
    extern logical lsame_(char *, char *);
    real rcond;
    extern /* Subroutine */ int sget04_(integer *, integer *, real *, integer 
	    *, real *, integer *, real *, real *);
    integer nimat;
    extern doublereal sget06_(real *, real *);
    real anorm;
    integer iuplo, izero, nerrs;
    extern /* Subroutine */ int sppt02_(char *, integer *, integer *, real *, 
	    real *, integer *, real *, integer *, real *, real *), 
	    scopy_(integer *, real *, integer *, real *, integer *), sppt03_(
	    char *, integer *, real *, real *, real *, integer *, real *, 
	    real *, real *), sppt05_(char *, integer *, integer *, 
	    real *, real *, integer *, real *, integer *, real *, integer *, 
	    real *, real *, real *), sspt01_(char *, integer *, real *
, real *, integer *, real *, integer *, real *, real *);
    logical zerot;
    char xtype[1];
    extern /* Subroutine */ int slatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, real *, integer *, real *, char *
), alaerh_(char *, char *, integer *, 
	    integer *, char *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *, integer *);
    real rcondc;
    char packit[1];
    extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer 
	    *, integer *);
    real cndnum;
    logical trfcon;
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *), slarhs_(char *, char *, 
	    char *, char *, integer *, integer *, integer *, integer *, 
	    integer *, real *, integer *, real *, integer *, real *, integer *
, integer *, integer *);
    extern doublereal slansp_(char *, char *, integer *, real *, real *);
    extern /* Subroutine */ int slatms_(integer *, integer *, char *, integer 
	    *, char *, real *, integer *, real *, real *, integer *, integer *
, char *, real *, integer *, real *, integer *), sspcon_(char *, integer *, real *, integer *, real *, 
	    real *, real *, integer *, integer *);
    real result[8];
    extern /* Subroutine */ int ssprfs_(char *, integer *, integer *, real *, 
	    real *, integer *, real *, integer *, real *, integer *, real *, 
	    real *, real *, integer *, integer *), ssptrf_(char *, 
	    integer *, real *, integer *, integer *), ssptri_(char *, 
	    integer *, real *, integer *, real *, integer *), serrsy_(
	    char *, integer *), ssptrs_(char *, integer *, integer *, 
	    real *, integer *, real *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___38 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___41 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___43 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SCHKSP tests SSPTRF, -TRI, -TRS, -RFS, and -CON */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  NNS     (input) INTEGER */
/*          The number of values of NRHS contained in the vector NSVAL. */

/*  NSVAL   (input) INTEGER array, dimension (NNS) */
/*          The values of the number of right hand sides NRHS. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for N, used in dimensioning the */
/*          work arrays. */

/*  A       (workspace) REAL array, dimension */
/*                      (NMAX*(NMAX+1)/2) */

/*  AFAC    (workspace) REAL array, dimension */
/*                      (NMAX*(NMAX+1)/2) */

/*  AINV    (workspace) REAL array, dimension */
/*                      (NMAX*(NMAX+1)/2) */

/*  B       (workspace) REAL array, dimension (NMAX*NSMAX) */
/*          where NSMAX is the largest entry in NSVAL. */

/*  X       (workspace) REAL array, dimension (NMAX*NSMAX) */

/*  XACT    (workspace) REAL array, dimension (NMAX*NSMAX) */

/*  WORK    (workspace) REAL array, dimension */
/*                      (NMAX*max(2,NSMAX)) */

/*  RWORK   (workspace) REAL array, */
/*                                 dimension (NMAX+2*NSMAX) */

/*  IWORK   (workspace) INTEGER array, dimension (2*NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --ainv;
    --afac;
    --a;
    --nsval;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "SP", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	serrsy_(path, nout);
    }
    infoc_1.infot = 0;

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';
	nimat = 10;
	if (n <= 0) {
	    nimat = 1;
	}

	izero = 0;
	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L160;
	    }

/*           Skip types 3, 4, 5, or 6 if the matrix size is too small. */

	    zerot = imat >= 3 && imat <= 6;
	    if (zerot && n < imat - 2) {
		goto L160;
	    }

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		*(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1];
		if (lsame_(uplo, "U")) {
		    *(unsigned char *)packit = 'C';
		} else {
		    *(unsigned char *)packit = 'R';
		}

/*              Set up parameters with SLATB4 and generate a test matrix */
/*              with SLATMS. */

		slatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, 
			&cndnum, dist);

		s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)6, (ftnlen)6);
		slatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			cndnum, &anorm, &kl, &ku, packit, &a[1], &lda, &work[
			1], &info);

/*              Check error code from SLATMS. */

		if (info != 0) {
		    alaerh_(path, "SLATMS", &info, &c__0, uplo, &n, &n, &c_n1, 
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L150;
		}

/*              For types 3-6, zero one or more rows and columns of */
/*              the matrix to test that INFO is returned correctly. */

		if (zerot) {
		    if (imat == 3) {
			izero = 1;
		    } else if (imat == 4) {
			izero = n;
		    } else {
			izero = n / 2 + 1;
		    }

		    if (imat < 6) {

/*                    Set row and column IZERO to zero. */

			if (iuplo == 1) {
			    ioff = (izero - 1) * izero / 2;
			    i__3 = izero - 1;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				a[ioff + i__] = 0.f;
/* L20: */
			    }
			    ioff += izero;
			    i__3 = n;
			    for (i__ = izero; i__ <= i__3; ++i__) {
				a[ioff] = 0.f;
				ioff += i__;
/* L30: */
			    }
			} else {
			    ioff = izero;
			    i__3 = izero - 1;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				a[ioff] = 0.f;
				ioff = ioff + n - i__;
/* L40: */
			    }
			    ioff -= izero;
			    i__3 = n;
			    for (i__ = izero; i__ <= i__3; ++i__) {
				a[ioff + i__] = 0.f;
/* L50: */
			    }
			}
		    } else {
			ioff = 0;
			if (iuplo == 1) {

/*                       Set the first IZERO rows and columns to zero. */

			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
				i2 = min(j,izero);
				i__4 = i2;
				for (i__ = 1; i__ <= i__4; ++i__) {
				    a[ioff + i__] = 0.f;
/* L60: */
				}
				ioff += j;
/* L70: */
			    }
			} else {

/*                       Set the last IZERO rows and columns to zero. */

			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
				i1 = max(j,izero);
				i__4 = n;
				for (i__ = i1; i__ <= i__4; ++i__) {
				    a[ioff + i__] = 0.f;
/* L80: */
				}
				ioff = ioff + n - j;
/* L90: */
			    }
			}
		    }
		} else {
		    izero = 0;
		}

/*              Compute the L*D*L' or U*D*U' factorization of the matrix. */

		npp = n * (n + 1) / 2;
		scopy_(&npp, &a[1], &c__1, &afac[1], &c__1);
		s_copy(srnamc_1.srnamt, "SSPTRF", (ftnlen)6, (ftnlen)6);
		ssptrf_(uplo, &n, &afac[1], &iwork[1], &info);

/*              Adjust the expected value of INFO to account for */
/*              pivoting. */

		k = izero;
		if (k > 0) {
L100:
		    if (iwork[k] < 0) {
			if (iwork[k] != -k) {
			    k = -iwork[k];
			    goto L100;
			}
		    } else if (iwork[k] != k) {
			k = iwork[k];
			goto L100;
		    }
		}

/*              Check error code from SSPTRF. */

		if (info != k) {
		    alaerh_(path, "SSPTRF", &info, &k, uplo, &n, &n, &c_n1, &
			    c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		}
		if (info != 0) {
		    trfcon = TRUE_;
		} else {
		    trfcon = FALSE_;
		}

/* +    TEST 1 */
/*              Reconstruct matrix from factors and compute residual. */

		sspt01_(uplo, &n, &a[1], &afac[1], &iwork[1], &ainv[1], &lda, 
			&rwork[1], result);
		nt = 1;

/* +    TEST 2 */
/*              Form the inverse and compute the residual. */

		if (! trfcon) {
		    scopy_(&npp, &afac[1], &c__1, &ainv[1], &c__1);
		    s_copy(srnamc_1.srnamt, "SSPTRI", (ftnlen)6, (ftnlen)6);
		    ssptri_(uplo, &n, &ainv[1], &iwork[1], &work[1], &info);

/*              Check error code from SSPTRI. */

		    if (info != 0) {
			alaerh_(path, "SSPTRI", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, 
				nout);
		    }

		    sppt03_(uplo, &n, &a[1], &ainv[1], &work[1], &lda, &rwork[
			    1], &rcondc, &result[1]);
		    nt = 2;
		}

/*              Print information about the tests that did not pass */
/*              the threshold. */

		i__3 = nt;
		for (k = 1; k <= i__3; ++k) {
		    if (result[k - 1] >= *thresh) {
			if (nfail == 0 && nerrs == 0) {
			    alahd_(nout, path);
			}
			io___38.ciunit = *nout;
			s_wsfe(&io___38);
			do_fio(&c__1, uplo, (ftnlen)1);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(
				real));
			e_wsfe();
			++nfail;
		    }
/* L110: */
		}
		nrun += nt;

/*              Do only the condition estimate if INFO is not 0. */

		if (trfcon) {
		    rcondc = 0.f;
		    goto L140;
		}

		i__3 = *nns;
		for (irhs = 1; irhs <= i__3; ++irhs) {
		    nrhs = nsval[irhs];

/* +    TEST 3 */
/*              Solve and compute residual for  A * X = B. */

		    s_copy(srnamc_1.srnamt, "SLARHS", (ftnlen)6, (ftnlen)6);
		    slarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, &nrhs, &
			    a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, &
			    info);
		    slacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda);

		    s_copy(srnamc_1.srnamt, "SSPTRS", (ftnlen)6, (ftnlen)6);
		    ssptrs_(uplo, &n, &nrhs, &afac[1], &iwork[1], &x[1], &lda, 
			     &info);

/*              Check error code from SSPTRS. */

		    if (info != 0) {
			alaerh_(path, "SSPTRS", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }

		    slacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], &lda);
		    sppt02_(uplo, &n, &nrhs, &a[1], &x[1], &lda, &work[1], &
			    lda, &rwork[1], &result[2]);

/* +    TEST 4 */
/*              Check solution from generated exact solution. */

		    sget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &
			    result[3]);

/* +    TESTS 5, 6, and 7 */
/*              Use iterative refinement to improve the solution. */

		    s_copy(srnamc_1.srnamt, "SSPRFS", (ftnlen)6, (ftnlen)6);
		    ssprfs_(uplo, &n, &nrhs, &a[1], &afac[1], &iwork[1], &b[1]
, &lda, &x[1], &lda, &rwork[1], &rwork[nrhs + 1], 
			    &work[1], &iwork[n + 1], &info);

/*              Check error code from SSPRFS. */

		    if (info != 0) {
			alaerh_(path, "SSPRFS", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }

		    sget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &
			    result[4]);
		    sppt05_(uplo, &n, &nrhs, &a[1], &b[1], &lda, &x[1], &lda, 
			    &xact[1], &lda, &rwork[1], &rwork[nrhs + 1], &
			    result[5]);

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    for (k = 3; k <= 7; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___41.ciunit = *nout;
			    s_wsfe(&io___41);
			    do_fio(&c__1, uplo, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(real));
			    e_wsfe();
			    ++nfail;
			}
/* L120: */
		    }
		    nrun += 5;
/* L130: */
		}

/* +    TEST 8 */
/*              Get an estimate of RCOND = 1/CNDNUM. */

L140:
		anorm = slansp_("1", uplo, &n, &a[1], &rwork[1]);
		s_copy(srnamc_1.srnamt, "SSPCON", (ftnlen)6, (ftnlen)6);
		sspcon_(uplo, &n, &afac[1], &iwork[1], &anorm, &rcond, &work[
			1], &iwork[n + 1], &info);

/*              Check error code from SSPCON. */

		if (info != 0) {
		    alaerh_(path, "SSPCON", &info, &c__0, uplo, &n, &n, &c_n1, 
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		}

		result[7] = sget06_(&rcond, &rcondc);

/*              Print the test ratio if it is .GE. THRESH. */

		if (result[7] >= *thresh) {
		    if (nfail == 0 && nerrs == 0) {
			alahd_(nout, path);
		    }
		    io___43.ciunit = *nout;
		    s_wsfe(&io___43);
		    do_fio(&c__1, uplo, (ftnlen)1);
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof(real));
		    e_wsfe();
		    ++nfail;
		}
		++nrun;
L150:
		;
	    }
L160:
	    ;
	}
/* L170: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of SCHKSP */

} /* schksp_ */
예제 #4
0
파일: sckglm.c 프로젝트: kstraube/hysim
/* Subroutine */ int sckglm_(integer *nn, integer *mval, integer *pval, 
	integer *nval, integer *nmats, integer *iseed, real *thresh, integer *
	nmax, real *a, real *af, real *b, real *bf, real *x, real *work, real 
	*rwork, integer *nin, integer *nout, integer *info)
{
    /* Format strings */
    static char fmt_9997[] = "(\002 *** Invalid input  for GLM:  M = \002,"
	    "i6,\002, P = \002,i6,\002, N = \002,i6,\002;\002,/\002     must "
	    "satisfy M <= N <= M+P  \002,\002(this set of values will be skip"
	    "ped)\002)";
    static char fmt_9999[] = "(\002 SLATMS in SCKGLM INFO = \002,i5)";
    static char fmt_9998[] = "(\002 N=\002,i4,\002 M=\002,i4,\002, P=\002,"
	    "i4,\002, type \002,i2,\002, test \002,i2,\002, ratio=\002,g13.6)";

    /* System generated locals */
    integer i__1, i__2;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsle(cilist *), e_wsle(void), s_wsfe(cilist *), do_fio(integer *
	    , char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, m, n, p, ik, lda, ldb, kla, klb, kua, kub, imat;
    char path[3], type__[1];
    integer nrun, modea, modeb, nfail;
    char dista[1], distb[1];
    integer iinfo;
    real resid, anorm, bnorm;
    integer lwork;
    extern /* Subroutine */ int slatb9_(char *, integer *, integer *, integer 
	    *, integer *, char *, integer *, integer *, integer *, integer *, 
	    real *, real *, integer *, integer *, real *, real *, char *, 
	    char *), alahdg_(integer *, char *
);
    real cndnma, cndnmb;
    extern /* Subroutine */ int alareq_(char *, integer *, logical *, integer 
	    *, integer *, integer *), alasum_(char *, integer *, 
	    integer *, integer *, integer *);
    extern doublereal slarnd_(integer *, integer *);
    extern /* Subroutine */ int slatms_(integer *, integer *, char *, integer 
	    *, char *, real *, integer *, real *, real *, integer *, integer *
, char *, real *, integer *, real *, integer *);
    logical dotype[8];
    extern /* Subroutine */ int sglmts_(integer *, integer *, integer *, real 
	    *, real *, integer *, real *, real *, integer *, real *, real *, 
	    real *, real *, real *, integer *, real *, real *);
    logical firstt;

    /* Fortran I/O blocks */
    static cilist io___13 = { 0, 0, 0, 0, 0 };
    static cilist io___14 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___30 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___31 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___34 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SCKGLM tests SGGGLM - subroutine for solving generalized linear */
/*                        model problem. */

/*  Arguments */
/*  ========= */

/*  NN      (input) INTEGER */
/*          The number of values of N, M and P contained in the vectors */
/*          NVAL, MVAL and PVAL. */

/*  MVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix column dimension M. */

/*  PVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix column dimension P. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix row dimension N. */

/*  NMATS   (input) INTEGER */
/*          The number of matrix types to be tested for each combination */
/*          of matrix dimensions.  If NMATS >= NTYPES (the maximum */
/*          number of matrix types), then all the different types are */
/*          generated for testing.  If NMATS < NTYPES, another input line */
/*          is read to get the numbers of the matrix types to be used. */

/*  ISEED   (input/output) INTEGER array, dimension (4) */
/*          On entry, the seed of the random number generator.  The array */
/*          elements should be between 0 and 4095, otherwise they will be */
/*          reduced mod 4096, and ISEED(4) must be odd. */
/*          On exit, the next seed in the random number sequence after */
/*          all the test matrices have been generated. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESID >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for M or N, used in dimensioning */
/*          the work arrays. */

/*  A       (workspace) REAL array, dimension (NMAX*NMAX) */

/*  AF      (workspace) REAL array, dimension (NMAX*NMAX) */

/*  B       (workspace) REAL array, dimension (NMAX*NMAX) */

/*  BF      (workspace) REAL array, dimension (NMAX*NMAX) */

/*  X       (workspace) REAL array, dimension (4*NMAX) */

/*  RWORK   (workspace) REAL array, dimension (NMAX) */

/*  WORK    (workspace) REAL array, dimension (NMAX*NMAX) */

/*  NIN     (input) INTEGER */
/*          The unit number for input. */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  INFO    (output) INTEGER */
/*          = 0 :  successful exit */
/*          > 0 :  If SLATMS returns an error code, the absolute value */
/*                 of it is returned. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants. */

    /* Parameter adjustments */
    --rwork;
    --work;
    --x;
    --bf;
    --b;
    --af;
    --a;
    --iseed;
    --nval;
    --pval;
    --mval;

    /* Function Body */
    s_copy(path, "GLM", (ftnlen)3, (ftnlen)3);
    *info = 0;
    nrun = 0;
    nfail = 0;
    firstt = TRUE_;
    alareq_(path, nmats, dotype, &c__8, nin, nout);
    lda = *nmax;
    ldb = *nmax;
    lwork = *nmax * *nmax;

/*     Check for valid input values. */

    i__1 = *nn;
    for (ik = 1; ik <= i__1; ++ik) {
	m = mval[ik];
	p = pval[ik];
	n = nval[ik];
	if (m > n || n > m + p) {
	    if (firstt) {
		io___13.ciunit = *nout;
		s_wsle(&io___13);
		e_wsle();
		firstt = FALSE_;
	    }
	    io___14.ciunit = *nout;
	    s_wsfe(&io___14);
	    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
	    do_fio(&c__1, (char *)&p, (ftnlen)sizeof(integer));
	    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
	    e_wsfe();
	}
/* L10: */
    }
    firstt = TRUE_;

/*     Do for each value of M in MVAL. */

    i__1 = *nn;
    for (ik = 1; ik <= i__1; ++ik) {
	m = mval[ik];
	p = pval[ik];
	n = nval[ik];
	if (m > n || n > m + p) {
	    goto L40;
	}

	for (imat = 1; imat <= 8; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat - 1]) {
		goto L30;
	    }

/*           Set up parameters with SLATB9 and generate test */
/*           matrices A and B with SLATMS. */

	    slatb9_(path, &imat, &m, &p, &n, type__, &kla, &kua, &klb, &kub, &
		    anorm, &bnorm, &modea, &modeb, &cndnma, &cndnmb, dista, 
		    distb);

	    slatms_(&n, &m, dista, &iseed[1], type__, &rwork[1], &modea, &
		    cndnma, &anorm, &kla, &kua, "No packing", &a[1], &lda, &
		    work[1], &iinfo);
	    if (iinfo != 0) {
		io___30.ciunit = *nout;
		s_wsfe(&io___30);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L30;
	    }

	    slatms_(&n, &p, distb, &iseed[1], type__, &rwork[1], &modeb, &
		    cndnmb, &bnorm, &klb, &kub, "No packing", &b[1], &ldb, &
		    work[1], &iinfo);
	    if (iinfo != 0) {
		io___31.ciunit = *nout;
		s_wsfe(&io___31);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L30;
	    }

/*           Generate random left hand side vector of GLM */

	    i__2 = n;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		x[i__] = slarnd_(&c__2, &iseed[1]);
/* L20: */
	    }

	    sglmts_(&n, &m, &p, &a[1], &af[1], &lda, &b[1], &bf[1], &ldb, &x[
		    1], &x[*nmax + 1], &x[(*nmax << 1) + 1], &x[*nmax * 3 + 1]
, &work[1], &lwork, &rwork[1], &resid);

/*           Print information about the tests that did not */
/*           pass the threshold. */

	    if (resid >= *thresh) {
		if (nfail == 0 && firstt) {
		    firstt = FALSE_;
		    alahdg_(nout, path);
		}
		io___34.ciunit = *nout;
		s_wsfe(&io___34);
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&p, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&c__1, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&resid, (ftnlen)sizeof(real));
		e_wsfe();
		++nfail;
	    }
	    ++nrun;

L30:
	    ;
	}
L40:
	;
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &c__0);

    return 0;

/*     End of SCKGLM */

} /* sckglm_ */
예제 #5
0
파일: stimrq.c 프로젝트: zangel/uquad
/* Subroutine */ int stimrq_(char *line, integer *nm, integer *mval, integer *
	nval, integer *nk, integer *kval, integer *nnb, integer *nbval, 
	integer *nxval, integer *nlda, integer *ldaval, real *timmin, real *a,
	 real *tau, real *b, real *work, real *reslts, integer *ldr1, integer 
	*ldr2, integer *ldr3, integer *nout, ftnlen line_len)
{
    /* Initialized data */

    static char subnam[6*3] = "SGERQF" "SORGRQ" "SORMRQ";
    static char sides[1*2] = "L" "R";
    static char transs[1*2] = "N" "T";
    static integer iseed[4] = { 0,0,0,1 };

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002 timing run not attempted\002,/)";
    static char fmt_9998[] = "(/\002 *** Speed of \002,a6,\002 in megaflops "
	    "***\002)";
    static char fmt_9997[] = "(5x,\002line \002,i2,\002 with LDA = \002,i5)";
    static char fmt_9996[] = "(5x,\002K = min(M,N)\002,/)";
    static char fmt_9995[] = "(/5x,a6,\002 with SIDE = '\002,a1,\002', TRANS"
	    " = '\002,a1,\002', \002,a1,\002 =\002,i6,/)";
    static char fmt_9994[] = "(\002 *** No pairs (M,N) found with M <= N: "
	    " \002,a6,\002 not timed\002)";

    /* System generated locals */
    integer reslts_dim1, reslts_dim2, reslts_dim3, reslts_offset, i__1, i__2, 
	    i__3, i__4, i__5, i__6;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void),
	     s_wsle(cilist *), e_wsle(void);

    /* Local variables */
    static integer ilda;
    static char labm[1], side[1];
    static integer info;
    static char path[3];
    static real time;
    static integer isub, muse[12], nuse[12], i__, k, m, n;
    static char cname[6];
    static integer iside, itoff, itran, minmn;
    extern doublereal sopla_(char *, integer *, integer *, integer *, integer 
	    *, integer *);
    extern /* Subroutine */ int icopy_(integer *, integer *, integer *, 
	    integer *, integer *);
    static char trans[1];
    static integer k1, i4, m1, n1;
    static real s1, s2;
    static integer ic;
    extern /* Subroutine */ int sprtb4_(char *, char *, char *, integer *, 
	    integer *, integer *, integer *, integer *, integer *, integer *, 
	    real *, integer *, integer *, integer *, ftnlen, ftnlen, ftnlen), 
	    sprtb5_(char *, char *, char *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, real *, integer *, integer *, 
	    integer *, ftnlen, ftnlen, ftnlen);
    static integer nb, ik, im, lw, nx, reseed[4];
    extern /* Subroutine */ int atimck_(integer *, char *, integer *, integer 
	    *, integer *, integer *, integer *, integer *, ftnlen);
    extern doublereal second_(void);
    extern /* Subroutine */ int atimin_(char *, char *, integer *, char *, 
	    logical *, integer *, integer *, ftnlen, ftnlen, ftnlen), sgerqf_(
	    integer *, integer *, real *, integer *, real *, real *, integer *
	    , integer *), slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *), xlaenv_(integer *, integer 
	    *);
    extern doublereal smflop_(real *, real *, integer *);
    static real untime;
    extern /* Subroutine */ int stimmg_(integer *, integer *, integer *, real 
	    *, integer *, integer *, integer *);
    static logical timsub[3];
    extern /* Subroutine */ int slatms_(integer *, integer *, char *, integer 
	    *, char *, real *, integer *, real *, real *, integer *, integer *
	    , char *, real *, integer *, real *, integer *), sorgrq_(integer *, integer *, integer *, real *, integer 
	    *, real *, real *, integer *, integer *), sormrq_(char *, char *, 
	    integer *, integer *, integer *, real *, integer *, real *, real *
	    , integer *, real *, integer *, integer *);
    static integer lda, icl, inb, imx;
    static real ops;

    /* Fortran I/O blocks */
    static cilist io___9 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___29 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___31 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___32 = { 0, 0, 0, 0, 0 };
    static cilist io___33 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___34 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___49 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___50 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___51 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___53 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___54 = { 0, 0, 0, fmt_9994, 0 };



#define subnam_ref(a_0,a_1) &subnam[(a_1)*6 + a_0 - 6]
#define reslts_ref(a_1,a_2,a_3,a_4) reslts[(((a_4)*reslts_dim3 + (a_3))*\
reslts_dim2 + (a_2))*reslts_dim1 + a_1]


/*  -- LAPACK timing routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    STIMRQ times the LAPACK routines to perform the RQ factorization of   
    a REAL general matrix.   

    Arguments   
    =========   

    LINE    (input) CHARACTER*80   
            The input line that requested this routine.  The first six   
            characters contain either the name of a subroutine or a   
            generic path name.  The remaining characters may be used to   
            specify the individual routines to be timed.  See ATIMIN for   
            a full description of the format of the input line.   

    NM      (input) INTEGER   
            The number of values of M and N contained in the vectors   
            MVAL and NVAL.  The matrix sizes are used in pairs (M,N).   

    MVAL    (input) INTEGER array, dimension (NM)   
            The values of the matrix row dimension M.   

    NVAL    (input) INTEGER array, dimension (NM)   
            The values of the matrix column dimension N.   

    NK      (input) INTEGER   
            The number of values of K in the vector KVAL.   

    KVAL    (input) INTEGER array, dimension (NK)   
            The values of the matrix dimension K, used in SORMRQ.   

    NNB     (input) INTEGER   
            The number of values of NB and NX contained in the   
            vectors NBVAL and NXVAL.  The blocking parameters are used   
            in pairs (NB,NX).   

    NBVAL   (input) INTEGER array, dimension (NNB)   
            The values of the blocksize NB.   

    NXVAL   (input) INTEGER array, dimension (NNB)   
            The values of the crossover point NX.   

    NLDA    (input) INTEGER   
            The number of values of LDA contained in the vector LDAVAL.   

    LDAVAL  (input) INTEGER array, dimension (NLDA)   
            The values of the leading dimension of the array A.   

    TIMMIN  (input) REAL   
            The minimum time a subroutine will be timed.   

    A       (workspace) REAL array, dimension (LDAMAX*NMAX)   
            where LDAMAX and NMAX are the maximum values of LDA and N.   

    TAU     (workspace) REAL array, dimension (min(M,N))   

    B       (workspace) REAL array, dimension (LDAMAX*NMAX)   

    WORK    (workspace) REAL array, dimension (LDAMAX*NBMAX)   
            where NBMAX is the maximum value of NB.   

    RESLTS  (workspace) REAL array, dimension   
                        (LDR1,LDR2,LDR3,2*NK)   
            The timing results for each subroutine over the relevant   
            values of (M,N), (NB,NX), and LDA.   

    LDR1    (input) INTEGER   
            The first dimension of RESLTS.  LDR1 >= max(1,NNB).   

    LDR2    (input) INTEGER   
            The second dimension of RESLTS.  LDR2 >= max(1,NM).   

    LDR3    (input) INTEGER   
            The third dimension of RESLTS.  LDR3 >= max(1,NLDA).   

    NOUT    (input) INTEGER   
            The unit number for output.   

    Internal Parameters   
    ===================   

    MODE    INTEGER   
            The matrix type.  MODE = 3 is a geometric distribution of   
            eigenvalues.  See SLATMS for further details.   

    COND    REAL   
            The condition number of the matrix.  The singular values are   
            set to values from DMAX to DMAX/COND.   

    DMAX    REAL   
            The magnitude of the largest singular value.   

    =====================================================================   

       Parameter adjustments */
    --mval;
    --nval;
    --kval;
    --nbval;
    --nxval;
    --ldaval;
    --a;
    --tau;
    --b;
    --work;
    reslts_dim1 = *ldr1;
    reslts_dim2 = *ldr2;
    reslts_dim3 = *ldr3;
    reslts_offset = 1 + reslts_dim1 * (1 + reslts_dim2 * (1 + reslts_dim3 * 1)
	    );
    reslts -= reslts_offset;

    /* Function Body   

       Extract the timing request from the input line. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "RQ", (ftnlen)2, (ftnlen)2);
    atimin_(path, line, &c__3, subnam, timsub, nout, &info, (ftnlen)3, (
	    ftnlen)80, (ftnlen)6);
    if (info != 0) {
	goto L230;
    }

/*     Check that M <= LDA for the input values. */

    s_copy(cname, line, (ftnlen)6, (ftnlen)6);
    atimck_(&c__1, cname, nm, &mval[1], nlda, &ldaval[1], nout, &info, (
	    ftnlen)6);
    if (info > 0) {
	io___9.ciunit = *nout;
	s_wsfe(&io___9);
	do_fio(&c__1, cname, (ftnlen)6);
	e_wsfe();
	goto L230;
    }

/*     Do for each pair of values (M,N): */

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {
	m = mval[im];
	n = nval[im];
	minmn = min(m,n);
	icopy_(&c__4, iseed, &c__1, reseed, &c__1);

/*        Do for each value of LDA: */

	i__2 = *nlda;
	for (ilda = 1; ilda <= i__2; ++ilda) {
	    lda = ldaval[ilda];

/*           Do for each pair of values (NB, NX) in NBVAL and NXVAL. */

	    i__3 = *nnb;
	    for (inb = 1; inb <= i__3; ++inb) {
		nb = nbval[inb];
		xlaenv_(&c__1, &nb);
		nx = nxval[inb];
		xlaenv_(&c__3, &nx);
/* Computing MAX */
		i__4 = 1, i__5 = m * max(1,nb);
		lw = max(i__4,i__5);

/*              Generate a test matrix of size M by N. */

		icopy_(&c__4, reseed, &c__1, iseed, &c__1);
		slatms_(&m, &n, "Uniform", iseed, "Nonsymm", &tau[1], &c__3, &
			c_b24, &c_b25, &m, &n, "No packing", &b[1], &lda, &
			work[1], &info);

		if (timsub[0]) {

/*                 SGERQF:  RQ factorization */

		    slacpy_("Full", &m, &n, &b[1], &lda, &a[1], &lda);
		    ic = 0;
		    s1 = second_();
L10:
		    sgerqf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lw, &
			    info);
		    s2 = second_();
		    time = s2 - s1;
		    ++ic;
		    if (time < *timmin) {
			slacpy_("Full", &m, &n, &b[1], &lda, &a[1], &lda);
			goto L10;
		    }

/*                 Subtract the time used in SLACPY. */

		    icl = 1;
		    s1 = second_();
L20:
		    s2 = second_();
		    untime = s2 - s1;
		    ++icl;
		    if (icl <= ic) {
			slacpy_("Full", &m, &n, &a[1], &lda, &b[1], &lda);
			goto L20;
		    }

		    time = (time - untime) / (real) ic;
		    ops = sopla_("SGERQF", &m, &n, &c__0, &c__0, &nb);
		    reslts_ref(inb, im, ilda, 1) = smflop_(&ops, &time, &info)
			    ;
		} else {

/*                 If SGERQF was not timed, generate a matrix and factor   
                   it using SGERQF anyway so that the factored form of   
                   the matrix can be used in timing the other routines. */

		    slacpy_("Full", &m, &n, &b[1], &lda, &a[1], &lda);
		    sgerqf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lw, &
			    info);
		}

		if (timsub[1]) {

/*                 SORGRQ:  Generate orthogonal matrix Q from the RQ   
                   factorization */

		    slacpy_("Full", &minmn, &n, &a[1], &lda, &b[1], &lda);
		    ic = 0;
		    s1 = second_();
L30:
		    sorgrq_(&minmn, &n, &minmn, &b[1], &lda, &tau[1], &work[1]
			    , &lw, &info);
		    s2 = second_();
		    time = s2 - s1;
		    ++ic;
		    if (time < *timmin) {
			slacpy_("Full", &minmn, &n, &a[1], &lda, &b[1], &lda);
			goto L30;
		    }

/*                 Subtract the time used in SLACPY. */

		    icl = 1;
		    s1 = second_();
L40:
		    s2 = second_();
		    untime = s2 - s1;
		    ++icl;
		    if (icl <= ic) {
			slacpy_("Full", &minmn, &n, &a[1], &lda, &b[1], &lda);
			goto L40;
		    }

		    time = (time - untime) / (real) ic;
		    ops = sopla_("SORGRQ", &minmn, &n, &minmn, &c__0, &nb);
		    reslts_ref(inb, im, ilda, 2) = smflop_(&ops, &time, &info)
			    ;
		}

/* L50: */
	    }
/* L60: */
	}
/* L70: */
    }

/*     Print tables of results */

    for (isub = 1; isub <= 2; ++isub) {
	if (! timsub[isub - 1]) {
	    goto L90;
	}
	io___29.ciunit = *nout;
	s_wsfe(&io___29);
	do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
	e_wsfe();
	if (*nlda > 1) {
	    i__1 = *nlda;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		io___31.ciunit = *nout;
		s_wsfe(&io___31);
		do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)sizeof(integer));
		e_wsfe();
/* L80: */
	    }
	}
	io___32.ciunit = *nout;
	s_wsle(&io___32);
	e_wsle();
	if (isub == 2) {
	    io___33.ciunit = *nout;
	    s_wsfe(&io___33);
	    e_wsfe();
	}
	sprtb4_("(  NB,  NX)", "M", "N", nnb, &nbval[1], &nxval[1], nm, &mval[
		1], &nval[1], nlda, &reslts_ref(1, 1, 1, isub), ldr1, ldr2, 
		nout, (ftnlen)11, (ftnlen)1, (ftnlen)1);
L90:
	;
    }

/*     Time SORMRQ separately.  Here the starting matrix is M by N, and   
       K is the free dimension of the matrix multiplied by Q. */

    if (timsub[2]) {

/*        Check that K <= LDA for the input values. */

	atimck_(&c__3, cname, nk, &kval[1], nlda, &ldaval[1], nout, &info, (
		ftnlen)6);
	if (info > 0) {
	    io___34.ciunit = *nout;
	    s_wsfe(&io___34);
	    do_fio(&c__1, subnam_ref(0, 3), (ftnlen)6);
	    e_wsfe();
	    goto L230;
	}

/*        Use only the pairs (M,N) where M <= N. */

	imx = 0;
	i__1 = *nm;
	for (im = 1; im <= i__1; ++im) {
	    if (mval[im] <= nval[im]) {
		++imx;
		muse[imx - 1] = mval[im];
		nuse[imx - 1] = nval[im];
	    }
/* L100: */
	}

/*        SORMRQ:  Multiply by Q stored as a product of elementary   
          transformations   

          Do for each pair of values (M,N): */

	i__1 = imx;
	for (im = 1; im <= i__1; ++im) {
	    m = muse[im - 1];
	    n = nuse[im - 1];

/*           Do for each value of LDA: */

	    i__2 = *nlda;
	    for (ilda = 1; ilda <= i__2; ++ilda) {
		lda = ldaval[ilda];

/*              Generate an M by N matrix and form its RQ decomposition. */

		slatms_(&m, &n, "Uniform", iseed, "Nonsymm", &tau[1], &c__3, &
			c_b24, &c_b25, &m, &n, "No packing", &a[1], &lda, &
			work[1], &info);
/* Computing MAX */
		i__3 = 1, i__4 = m * max(1,nb);
		lw = max(i__3,i__4);
		sgerqf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lw, &info);

/*              Do first for SIDE = 'L', then for SIDE = 'R' */

		i4 = 0;
		for (iside = 1; iside <= 2; ++iside) {
		    *(unsigned char *)side = *(unsigned char *)&sides[iside - 
			    1];

/*                 Do for each pair of values (NB, NX) in NBVAL and   
                   NXVAL. */

		    i__3 = *nnb;
		    for (inb = 1; inb <= i__3; ++inb) {
			nb = nbval[inb];
			xlaenv_(&c__1, &nb);
			nx = nxval[inb];
			xlaenv_(&c__3, &nx);

/*                    Do for each value of K in KVAL */

			i__4 = *nk;
			for (ik = 1; ik <= i__4; ++ik) {
			    k = kval[ik];

/*                       Sort out which variable is which */

			    if (iside == 1) {
				k1 = m;
				m1 = n;
				n1 = k;
/* Computing MAX */
				i__5 = 1, i__6 = n1 * max(1,nb);
				lw = max(i__5,i__6);
			    } else {
				k1 = m;
				n1 = n;
				m1 = k;
/* Computing MAX */
				i__5 = 1, i__6 = m1 * max(1,nb);
				lw = max(i__5,i__6);
			    }

/*                       Do first for TRANS = 'N', then for TRANS = 'T' */

			    itoff = 0;
			    for (itran = 1; itran <= 2; ++itran) {
				*(unsigned char *)trans = *(unsigned char *)&
					transs[itran - 1];
				stimmg_(&c__0, &m1, &n1, &b[1], &lda, &c__0, &
					c__0);
				ic = 0;
				s1 = second_();
L110:
				sormrq_(side, trans, &m1, &n1, &k1, &a[1], &
					lda, &tau[1], &b[1], &lda, &work[1], &
					lw, &info);
				s2 = second_();
				time = s2 - s1;
				++ic;
				if (time < *timmin) {
				    stimmg_(&c__0, &m1, &n1, &b[1], &lda, &
					    c__0, &c__0);
				    goto L110;
				}

/*                          Subtract the time used in STIMMG. */

				icl = 1;
				s1 = second_();
L120:
				s2 = second_();
				untime = s2 - s1;
				++icl;
				if (icl <= ic) {
				    stimmg_(&c__0, &m1, &n1, &b[1], &lda, &
					    c__0, &c__0);
				    goto L120;
				}

				time = (time - untime) / (real) ic;
				i__5 = iside - 1;
				ops = sopla_("SORMRQ", &m1, &n1, &k1, &i__5, &
					nb);
				reslts_ref(inb, im, ilda, i4 + itoff + ik) = 
					smflop_(&ops, &time, &info);
				itoff = *nk;
/* L130: */
			    }
/* L140: */
			}
/* L150: */
		    }
		    i4 = *nk << 1;
/* L160: */
		}
/* L170: */
	    }
/* L180: */
	}

/*        Print tables of results */

	isub = 3;
	i4 = 1;
	if (imx >= 1) {
	    for (iside = 1; iside <= 2; ++iside) {
		*(unsigned char *)side = *(unsigned char *)&sides[iside - 1];
		if (iside == 1) {
		    io___49.ciunit = *nout;
		    s_wsfe(&io___49);
		    do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
		    e_wsfe();
		    if (*nlda > 1) {
			i__1 = *nlda;
			for (i__ = 1; i__ <= i__1; ++i__) {
			    io___50.ciunit = *nout;
			    s_wsfe(&io___50);
			    do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)
				    sizeof(integer));
			    e_wsfe();
/* L190: */
			}
		    }
		}
		for (itran = 1; itran <= 2; ++itran) {
		    *(unsigned char *)trans = *(unsigned char *)&transs[itran 
			    - 1];
		    i__1 = *nk;
		    for (ik = 1; ik <= i__1; ++ik) {
			if (iside == 1) {
			    n = kval[ik];
			    io___51.ciunit = *nout;
			    s_wsfe(&io___51);
			    do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
			    do_fio(&c__1, side, (ftnlen)1);
			    do_fio(&c__1, trans, (ftnlen)1);
			    do_fio(&c__1, "N", (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    e_wsfe();
			    *(unsigned char *)labm = 'M';
			} else {
			    m = kval[ik];
			    io___53.ciunit = *nout;
			    s_wsfe(&io___53);
			    do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
			    do_fio(&c__1, side, (ftnlen)1);
			    do_fio(&c__1, trans, (ftnlen)1);
			    do_fio(&c__1, "M", (ftnlen)1);
			    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer))
				    ;
			    e_wsfe();
			    *(unsigned char *)labm = 'N';
			}
			sprtb5_("NB", "K", labm, nnb, &nbval[1], &imx, muse, 
				nuse, nlda, &reslts_ref(1, 1, 1, i4), ldr1, 
				ldr2, nout, (ftnlen)2, (ftnlen)1, (ftnlen)1);
			++i4;
/* L200: */
		    }
/* L210: */
		}
/* L220: */
	    }
	} else {
	    io___54.ciunit = *nout;
	    s_wsfe(&io___54);
	    do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
	    e_wsfe();
	}
    }
L230:
    return 0;

/*     End of STIMRQ */

} /* stimrq_ */
예제 #6
0
파일: sdrvvx.c 프로젝트: zangel/uquad
/* Subroutine */ int sdrvvx_(integer *nsizes, integer *nn, integer *ntypes, 
	logical *dotype, integer *iseed, real *thresh, integer *niunit, 
	integer *nounit, real *a, integer *lda, real *h__, real *wr, real *wi,
	 real *wr1, real *wi1, real *vl, integer *ldvl, real *vr, integer *
	ldvr, real *lre, integer *ldlre, real *rcondv, real *rcndv1, real *
	rcdvin, real *rconde, real *rcnde1, real *rcdein, real *scale, real *
	scale1, real *result, real *work, integer *nwork, integer *iwork, 
	integer *info)
{
    /* Initialized data */

    static integer ktype[21] = { 1,2,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,9,9,9 };
    static integer kmagn[21] = { 1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,2,3,1,2,3 };
    static integer kmode[21] = { 0,0,0,4,3,1,4,4,4,3,1,5,4,3,1,5,5,5,4,3,1 };
    static integer kconds[21] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,0,0,0 };
    static char bal[1*4] = "N" "P" "S" "B";

    /* Format strings */
    static char fmt_9992[] = "(\002 SDRVVX: \002,a,\002 returned INFO=\002,i"
	    "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED="
	    "(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9999[] = "(/1x,a3,\002 -- Real Eigenvalue-Eigenvector De"
	    "composition\002,\002 Expert Driver\002,/\002 Matrix types (see S"
	    "DRVVX for details): \002)";
    static char fmt_9998[] = "(/\002 Special Matrices:\002,/\002  1=Zero mat"
	    "rix.             \002,\002           \002,\002  5=Diagonal: geom"
	    "etr. spaced entries.\002,/\002  2=Identity matrix.              "
	    "      \002,\002  6=Diagona\002,\002l: clustered entries.\002,"
	    "/\002  3=Transposed Jordan block.  \002,\002          \002,\002 "
	    " 7=Diagonal: large, evenly spaced.\002,/\002  \002,\0024=Diagona"
	    "l: evenly spaced entries.    \002,\002  8=Diagonal: s\002,\002ma"
	    "ll, evenly spaced.\002)";
    static char fmt_9997[] = "(\002 Dense, Non-Symmetric Matrices:\002,/\002"
	    "  9=Well-cond., ev\002,\002enly spaced eigenvals.\002,\002 14=Il"
	    "l-cond., geomet. spaced e\002,\002igenals.\002,/\002 10=Well-con"
	    "d., geom. spaced eigenvals. \002,\002 15=Ill-conditioned, cluste"
	    "red e.vals.\002,/\002 11=Well-cond\002,\002itioned, clustered e."
	    "vals. \002,\002 16=Ill-cond., random comp\002,\002lex \002,/\002"
	    " 12=Well-cond., random complex \002,\002         \002,\002 17=Il"
	    "l-cond., large rand. complx \002,/\002 13=Ill-condi\002,\002tion"
	    "ed, evenly spaced.     \002,\002 18=Ill-cond., small rand.\002"
	    ",\002 complx \002)";
    static char fmt_9996[] = "(\002 19=Matrix with random O(1) entries.   "
	    " \002,\002 21=Matrix \002,\002with small random entries.\002,"
	    "/\002 20=Matrix with large ran\002,\002dom entries.   \002,\002 "
	    "22=Matrix read from input file\002,/)";
    static char fmt_9995[] = "(\002 Tests performed with test threshold ="
	    "\002,f8.2,//\002 1 = | A VR - VR W | / ( n |A| ulp ) \002,/\002 "
	    "2 = | transpose(A) VL - VL W | / ( n |A| ulp ) \002,/\002 3 = | "
	    "|VR(i)| - 1 | / ulp \002,/\002 4 = | |VL(i)| - 1 | / ulp \002,"
	    "/\002 5 = 0 if W same no matter if VR or VL computed,\002,\002 1"
	    "/ulp otherwise\002,/\002 6 = 0 if VR same no matter what else co"
	    "mputed,\002,\002  1/ulp otherwise\002,/\002 7 = 0 if VL same no "
	    "matter what else computed,\002,\002  1/ulp otherwise\002,/\002 8"
	    " = 0 if RCONDV same no matter what else computed,\002,\002  1/ul"
	    "p otherwise\002,/\002 9 = 0 if SCALE, ILO, IHI, ABNRM same no ma"
	    "tter what else\002,\002 computed,  1/ulp otherwise\002,/\002 10 "
	    "= | RCONDV - RCONDV(precomputed) | / cond(RCONDV),\002,/\002 11 "
	    "= | RCONDE - RCONDE(precomputed) | / cond(RCONDE),\002)";
    static char fmt_9994[] = "(\002 BALANC='\002,a1,\002',N=\002,i4,\002,I"
	    "WK=\002,i1,\002, seed=\002,4(i4,\002,\002),\002 type \002,i2,"
	    "\002, test(\002,i2,\002)=\002,g10.3)";
    static char fmt_9993[] = "(\002 N=\002,i5,\002, input example =\002,i3"
	    ",\002,  test(\002,i2,\002)=\002,g10.3)";

    /* System generated locals */
    integer a_dim1, a_offset, h_dim1, h_offset, lre_dim1, lre_offset, vl_dim1,
	     vl_offset, vr_dim1, vr_offset, i__1, i__2, i__3;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    double sqrt(doublereal);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void),
	     s_rsle(cilist *), do_lio(integer *, integer *, char *, ftnlen), 
	    e_rsle(void);

    /* Local variables */
    static integer ibal;
    static real cond;
    static integer jcol;
    static char path[3];
    static integer nmax;
    static real unfl, ovfl;
    static integer i__, j, n;
    static logical badnn;
    static integer nfail, imode, iinfo;
    static real conds;
    extern /* Subroutine */ int sget23_(logical *, char *, integer *, real *, 
	    integer *, integer *, integer *, real *, integer *, real *, real *
	    , real *, real *, real *, real *, integer *, real *, integer *, 
	    real *, integer *, real *, real *, real *, real *, real *, real *,
	     real *, real *, real *, real *, integer *, integer *, integer *);
    static real anorm;
    static integer jsize, nerrs, itype, jtype, ntest;
    static real rtulp;
    static char balanc[1];
    extern /* Subroutine */ int slabad_(real *, real *);
    static char adumma[1*1];
    extern doublereal slamch_(char *);
    static integer idumma[1];
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static integer ioldsd[4];
    extern /* Subroutine */ int slatme_(integer *, char *, integer *, real *, 
	    integer *, real *, real *, char *, char *, char *, char *, real *,
	     integer *, real *, integer *, integer *, real *, real *, integer 
	    *, real *, integer *), 
	    slaset_(char *, integer *, integer *, real *, real *, real *, 
	    integer *), slatmr_(integer *, integer *, char *, integer 
	    *, char *, real *, integer *, real *, real *, char *, char *, 
	    real *, integer *, real *, real *, integer *, real *, char *, 
	    integer *, integer *, integer *, real *, real *, char *, real *, 
	    integer *, integer *, integer *);
    static integer ntestf;
    extern /* Subroutine */ int slasum_(char *, integer *, integer *, integer 
	    *), slatms_(integer *, integer *, char *, integer *, char 
	    *, real *, integer *, real *, real *, integer *, integer *, char *
	    , real *, integer *, real *, integer *);
    static real ulpinv;
    static integer nnwork;
    static real rtulpi;
    static integer mtypes, ntestt, iwk;
    static real ulp;

    /* Fortran I/O blocks */
    static cilist io___33 = { 0, 0, 0, fmt_9992, 0 };
    static cilist io___40 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___41 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___42 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___43 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___44 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9994, 0 };
    static cilist io___46 = { 0, 0, 1, 0, 0 };
    static cilist io___48 = { 0, 0, 0, 0, 0 };
    static cilist io___49 = { 0, 0, 0, 0, 0 };
    static cilist io___50 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___51 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___52 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___53 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___54 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___55 = { 0, 0, 0, fmt_9993, 0 };



#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

       SDRVVX  checks the nonsymmetric eigenvalue problem expert driver   
       SGEEVX.   

       SDRVVX uses both test matrices generated randomly depending on   
       data supplied in the calling sequence, as well as on data   
       read from an input file and including precomputed condition   
       numbers to which it compares the ones it computes.   

       When SDRVVX is called, a number of matrix "sizes" ("n's") and a   
       number of matrix "types" are specified in the calling sequence.   
       For each size ("n") and each type of matrix, one matrix will be   
       generated and used to test the nonsymmetric eigenroutines.  For   
       each matrix, 9 tests will be performed:   

       (1)     | A * VR - VR * W | / ( n |A| ulp )   

         Here VR is the matrix of unit right eigenvectors.   
         W is a block diagonal matrix, with a 1x1 block for each   
         real eigenvalue and a 2x2 block for each complex conjugate   
         pair.  If eigenvalues j and j+1 are a complex conjugate pair,   
         so WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the   
         2 x 2 block corresponding to the pair will be:   

                 (  wr  wi  )   
                 ( -wi  wr  )   

         Such a block multiplying an n x 2 matrix  ( ur ui ) on the   
         right will be the same as multiplying  ur + i*ui  by  wr + i*wi.   

       (2)     | A**H * VL - VL * W**H | / ( n |A| ulp )   

         Here VL is the matrix of unit left eigenvectors, A**H is the   
         conjugate transpose of A, and W is as above.   

       (3)     | |VR(i)| - 1 | / ulp and largest component real   

         VR(i) denotes the i-th column of VR.   

       (4)     | |VL(i)| - 1 | / ulp and largest component real   

         VL(i) denotes the i-th column of VL.   

       (5)     W(full) = W(partial)   

         W(full) denotes the eigenvalues computed when VR, VL, RCONDV   
         and RCONDE are also computed, and W(partial) denotes the   
         eigenvalues computed when only some of VR, VL, RCONDV, and   
         RCONDE are computed.   

       (6)     VR(full) = VR(partial)   

         VR(full) denotes the right eigenvectors computed when VL, RCONDV   
         and RCONDE are computed, and VR(partial) denotes the result   
         when only some of VL and RCONDV are computed.   

       (7)     VL(full) = VL(partial)   

         VL(full) denotes the left eigenvectors computed when VR, RCONDV   
         and RCONDE are computed, and VL(partial) denotes the result   
         when only some of VR and RCONDV are computed.   

       (8)     0 if SCALE, ILO, IHI, ABNRM (full) =   
                    SCALE, ILO, IHI, ABNRM (partial)   
               1/ulp otherwise   

         SCALE, ILO, IHI and ABNRM describe how the matrix is balanced.   
         (full) is when VR, VL, RCONDE and RCONDV are also computed, and   
         (partial) is when some are not computed.   

       (9)     RCONDV(full) = RCONDV(partial)   

         RCONDV(full) denotes the reciprocal condition numbers of the   
         right eigenvectors computed when VR, VL and RCONDE are also   
         computed. RCONDV(partial) denotes the reciprocal condition   
         numbers when only some of VR, VL and RCONDE are computed.   

       The "sizes" are specified by an array NN(1:NSIZES); the value of   
       each element NN(j) specifies one size.   
       The "types" are specified by a logical array DOTYPE( 1:NTYPES );   
       if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.   
       Currently, the list of possible types is:   

       (1)  The zero matrix.   
       (2)  The identity matrix.   
       (3)  A (transposed) Jordan block, with 1's on the diagonal.   

       (4)  A diagonal matrix with evenly spaced entries   
            1, ..., ULP  and random signs.   
            (ULP = (first number larger than 1) - 1 )   
       (5)  A diagonal matrix with geometrically spaced entries   
            1, ..., ULP  and random signs.   
       (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP   
            and random signs.   

       (7)  Same as (4), but multiplied by a constant near   
            the overflow threshold   
       (8)  Same as (4), but multiplied by a constant near   
            the underflow threshold   

       (9)  A matrix of the form  U' T U, where U is orthogonal and   
            T has evenly spaced entries 1, ..., ULP with random signs   
            on the diagonal and random O(1) entries in the upper   
            triangle.   

       (10) A matrix of the form  U' T U, where U is orthogonal and   
            T has geometrically spaced entries 1, ..., ULP with random   
            signs on the diagonal and random O(1) entries in the upper   
            triangle.   

       (11) A matrix of the form  U' T U, where U is orthogonal and   
            T has "clustered" entries 1, ULP,..., ULP with random   
            signs on the diagonal and random O(1) entries in the upper   
            triangle.   

       (12) A matrix of the form  U' T U, where U is orthogonal and   
            T has real or complex conjugate paired eigenvalues randomly   
            chosen from ( ULP, 1 ) and random O(1) entries in the upper   
            triangle.   

       (13) A matrix of the form  X' T X, where X has condition   
            SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP   
            with random signs on the diagonal and random O(1) entries   
            in the upper triangle.   

       (14) A matrix of the form  X' T X, where X has condition   
            SQRT( ULP ) and T has geometrically spaced entries   
            1, ..., ULP with random signs on the diagonal and random   
            O(1) entries in the upper triangle.   

       (15) A matrix of the form  X' T X, where X has condition   
            SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP   
            with random signs on the diagonal and random O(1) entries   
            in the upper triangle.   

       (16) A matrix of the form  X' T X, where X has condition   
            SQRT( ULP ) and T has real or complex conjugate paired   
            eigenvalues randomly chosen from ( ULP, 1 ) and random   
            O(1) entries in the upper triangle.   

       (17) Same as (16), but multiplied by a constant   
            near the overflow threshold   
       (18) Same as (16), but multiplied by a constant   
            near the underflow threshold   

       (19) Nonsymmetric matrix with random entries chosen from (-1,1).   
            If N is at least 4, all entries in first two rows and last   
            row, and first column and last two columns are zero.   
       (20) Same as (19), but multiplied by a constant   
            near the overflow threshold   
       (21) Same as (19), but multiplied by a constant   
            near the underflow threshold   

       In addition, an input file will be read from logical unit number   
       NIUNIT. The file contains matrices along with precomputed   
       eigenvalues and reciprocal condition numbers for the eigenvalues   
       and right eigenvectors. For these matrices, in addition to tests   
       (1) to (9) we will compute the following two tests:   

      (10)  |RCONDV - RCDVIN| / cond(RCONDV)   

         RCONDV is the reciprocal right eigenvector condition number   
         computed by SGEEVX and RCDVIN (the precomputed true value)   
         is supplied as input. cond(RCONDV) is the condition number of   
         RCONDV, and takes errors in computing RCONDV into account, so   
         that the resulting quantity should be O(ULP). cond(RCONDV) is   
         essentially given by norm(A)/RCONDE.   

      (11)  |RCONDE - RCDEIN| / cond(RCONDE)   

         RCONDE is the reciprocal eigenvalue condition number   
         computed by SGEEVX and RCDEIN (the precomputed true value)   
         is supplied as input.  cond(RCONDE) is the condition number   
         of RCONDE, and takes errors in computing RCONDE into account,   
         so that the resulting quantity should be O(ULP). cond(RCONDE)   
         is essentially given by norm(A)/RCONDV.   

    Arguments   
    ==========   

    NSIZES  (input) INTEGER   
            The number of sizes of matrices to use.  NSIZES must be at   
            least zero. If it is zero, no randomly generated matrices   
            are tested, but any test matrices read from NIUNIT will be   
            tested.   

    NN      (input) INTEGER array, dimension (NSIZES)   
            An array containing the sizes to be used for the matrices.   
            Zero values will be skipped.  The values must be at least   
            zero.   

    NTYPES  (input) INTEGER   
            The number of elements in DOTYPE. NTYPES must be at least   
            zero. If it is zero, no randomly generated test matrices   
            are tested, but and test matrices read from NIUNIT will be   
            tested. If it is MAXTYP+1 and NSIZES is 1, then an   
            additional type, MAXTYP+1 is defined, which is to use   
            whatever matrix is in A.  This is only useful if   
            DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. .   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            If DOTYPE(j) is .TRUE., then for each size in NN a   
            matrix of that size and of type j will be generated.   
            If NTYPES is smaller than the maximum number of types   
            defined (PARAMETER MAXTYP), then types NTYPES+1 through   
            MAXTYP will not be generated.  If NTYPES is larger   
            than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)   
            will be ignored.   

    ISEED   (input/output) INTEGER array, dimension (4)   
            On entry ISEED specifies the seed of the random number   
            generator. The array elements should be between 0 and 4095;   
            if not they will be reduced mod 4096.  Also, ISEED(4) must   
            be odd.  The random number generator uses a linear   
            congruential sequence limited to small integers, and so   
            should produce machine independent random numbers. The   
            values of ISEED are changed on exit, and can be used in the   
            next call to SDRVVX to continue the same random number   
            sequence.   

    THRESH  (input) REAL   
            A test will count as "failed" if the "error", computed as   
            described above, exceeds THRESH.  Note that the error   
            is scaled to be O(1), so THRESH should be a reasonably   
            small multiple of 1, e.g., 10 or 100.  In particular,   
            it should not depend on the precision (single vs. double)   
            or the size of the matrix.  It must be at least zero.   

    NIUNIT  (input) INTEGER   
            The FORTRAN unit number for reading in the data file of   
            problems to solve.   

    NOUNIT  (input) INTEGER   
            The FORTRAN unit number for printing out error messages   
            (e.g., if a routine returns INFO not equal to 0.)   

    A       (workspace) REAL array, dimension   
                        (LDA, max(NN,12))   
            Used to hold the matrix whose eigenvalues are to be   
            computed.  On exit, A contains the last matrix actually used.   

    LDA     (input) INTEGER   
            The leading dimension of the arrays A and H.   
            LDA >= max(NN,12), since 12 is the dimension of the largest   
            matrix in the precomputed input file.   

    H       (workspace) REAL array, dimension   
                        (LDA, max(NN,12))   
            Another copy of the test matrix A, modified by SGEEVX.   

    WR      (workspace) REAL array, dimension (max(NN))   
    WI      (workspace) REAL array, dimension (max(NN))   
            The real and imaginary parts of the eigenvalues of A.   
            On exit, WR + WI*i are the eigenvalues of the matrix in A.   

    WR1     (workspace) REAL array, dimension (max(NN,12))   
    WI1     (workspace) REAL array, dimension (max(NN,12))   
            Like WR, WI, these arrays contain the eigenvalues of A,   
            but those computed when SGEEVX only computes a partial   
            eigendecomposition, i.e. not the eigenvalues and left   
            and right eigenvectors.   

    VL      (workspace) REAL array, dimension   
                        (LDVL, max(NN,12))   
            VL holds the computed left eigenvectors.   

    LDVL    (input) INTEGER   
            Leading dimension of VL. Must be at least max(1,max(NN,12)).   

    VR      (workspace) REAL array, dimension   
                        (LDVR, max(NN,12))   
            VR holds the computed right eigenvectors.   

    LDVR    (input) INTEGER   
            Leading dimension of VR. Must be at least max(1,max(NN,12)).   

    LRE     (workspace) REAL array, dimension   
                        (LDLRE, max(NN,12))   
            LRE holds the computed right or left eigenvectors.   

    LDLRE   (input) INTEGER   
            Leading dimension of LRE. Must be at least max(1,max(NN,12))   

    RCONDV  (workspace) REAL array, dimension (N)   
            RCONDV holds the computed reciprocal condition numbers   
            for eigenvectors.   

    RCNDV1  (workspace) REAL array, dimension (N)   
            RCNDV1 holds more computed reciprocal condition numbers   
            for eigenvectors.   

    RCDVIN  (workspace) REAL array, dimension (N)   
            When COMP = .TRUE. RCDVIN holds the precomputed reciprocal   
            condition numbers for eigenvectors to be compared with   
            RCONDV.   

    RCONDE  (workspace) REAL array, dimension (N)   
            RCONDE holds the computed reciprocal condition numbers   
            for eigenvalues.   

    RCNDE1  (workspace) REAL array, dimension (N)   
            RCNDE1 holds more computed reciprocal condition numbers   
            for eigenvalues.   

    RCDEIN  (workspace) REAL array, dimension (N)   
            When COMP = .TRUE. RCDEIN holds the precomputed reciprocal   
            condition numbers for eigenvalues to be compared with   
            RCONDE.   

    RESULT  (output) REAL array, dimension (11)   
            The values computed by the seven tests described above.   
            The values are currently limited to 1/ulp, to avoid overflow.   

    WORK    (workspace) REAL array, dimension (NWORK)   

    NWORK   (input) INTEGER   
            The number of entries in WORK.  This must be at least   
            max(6*12+2*12**2,6*NN(j)+2*NN(j)**2) =   
            max(    360     ,6*NN(j)+2*NN(j)**2)    for all j.   

    IWORK   (workspace) INTEGER array, dimension (2*max(NN,12))   

    INFO    (output) INTEGER   
            If 0,  then successful exit.   
            If <0, then input paramter -INFO is incorrect.   
            If >0, SLATMR, SLATMS, SLATME or SGET23 returned an error   
                   code, and INFO is its absolute value.   

   -----------------------------------------------------------------------   

       Some Local Variables and Parameters:   
       ---- ----- --------- --- ----------   

       ZERO, ONE       Real 0 and 1.   
       MAXTYP          The number of types defined.   
       NMAX            Largest value in NN or 12.   
       NERRS           The number of tests which have exceeded THRESH   
       COND, CONDS,   
       IMODE           Values to be passed to the matrix generators.   
       ANORM           Norm of A; passed to matrix generators.   

       OVFL, UNFL      Overflow and underflow thresholds.   
       ULP, ULPINV     Finest relative precision and its inverse.   
       RTULP, RTULPI   Square roots of the previous 4 values.   

               The following four arrays decode JTYPE:   
       KTYPE(j)        The general type (1-10) for type "j".   
       KMODE(j)        The MODE value to be passed to the matrix   
                       generator for type "j".   
       KMAGN(j)        The order of magnitude ( O(1),   
                       O(overflow^(1/2) ), O(underflow^(1/2) )   
       KCONDS(j)       Selectw whether CONDS is to be 1 or   
                       1/sqrt(ulp).  (0 means irrelevant.)   

    =====================================================================   

       Parameter adjustments */
    --nn;
    --dotype;
    --iseed;
    h_dim1 = *lda;
    h_offset = 1 + h_dim1 * 1;
    h__ -= h_offset;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --wr;
    --wi;
    --wr1;
    --wi1;
    vl_dim1 = *ldvl;
    vl_offset = 1 + vl_dim1 * 1;
    vl -= vl_offset;
    vr_dim1 = *ldvr;
    vr_offset = 1 + vr_dim1 * 1;
    vr -= vr_offset;
    lre_dim1 = *ldlre;
    lre_offset = 1 + lre_dim1 * 1;
    lre -= lre_offset;
    --rcondv;
    --rcndv1;
    --rcdvin;
    --rconde;
    --rcnde1;
    --rcdein;
    --scale;
    --scale1;
    --result;
    --work;
    --iwork;

    /* Function Body */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "VX", (ftnlen)2, (ftnlen)2);

/*     Check for errors */

    ntestt = 0;
    ntestf = 0;
    *info = 0;

/*     Important constants */

    badnn = FALSE_;

/*     12 is the largest dimension in the input file of precomputed   
       problems */

    nmax = 12;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = nmax, i__3 = nn[j];
	nmax = max(i__2,i__3);
	if (nn[j] < 0) {
	    badnn = TRUE_;
	}
/* L10: */
    }

/*     Check for errors */

    if (*nsizes < 0) {
	*info = -1;
    } else if (badnn) {
	*info = -2;
    } else if (*ntypes < 0) {
	*info = -3;
    } else if (*thresh < 0.f) {
	*info = -6;
    } else if (*lda < 1 || *lda < nmax) {
	*info = -10;
    } else if (*ldvl < 1 || *ldvl < nmax) {
	*info = -17;
    } else if (*ldvr < 1 || *ldvr < nmax) {
	*info = -19;
    } else if (*ldlre < 1 || *ldlre < nmax) {
	*info = -21;
    } else /* if(complicated condition) */ {
/* Computing 2nd power */
	i__1 = nmax;
	if (nmax * 6 + (i__1 * i__1 << 1) > *nwork) {
	    *info = -32;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SDRVVX", &i__1);
	return 0;
    }

/*     If nothing to do check on NIUNIT */

    if (*nsizes == 0 || *ntypes == 0) {
	goto L160;
    }

/*     More Important constants */

    unfl = slamch_("Safe minimum");
    ovfl = 1.f / unfl;
    slabad_(&unfl, &ovfl);
    ulp = slamch_("Precision");
    ulpinv = 1.f / ulp;
    rtulp = sqrt(ulp);
    rtulpi = 1.f / rtulp;

/*     Loop over sizes, types */

    nerrs = 0;

    i__1 = *nsizes;
    for (jsize = 1; jsize <= i__1; ++jsize) {
	n = nn[jsize];
	if (*nsizes != 1) {
	    mtypes = min(21,*ntypes);
	} else {
	    mtypes = min(22,*ntypes);
	}

	i__2 = mtypes;
	for (jtype = 1; jtype <= i__2; ++jtype) {
	    if (! dotype[jtype]) {
		goto L140;
	    }

/*           Save ISEED in case of an error. */

	    for (j = 1; j <= 4; ++j) {
		ioldsd[j - 1] = iseed[j];
/* L20: */
	    }

/*           Compute "A"   

             Control parameters:   

             KMAGN  KCONDS  KMODE        KTYPE   
         =1  O(1)   1       clustered 1  zero   
         =2  large  large   clustered 2  identity   
         =3  small          exponential  Jordan   
         =4                 arithmetic   diagonal, (w/ eigenvalues)   
         =5                 random log   symmetric, w/ eigenvalues   
         =6                 random       general, w/ eigenvalues   
         =7                              random diagonal   
         =8                              random symmetric   
         =9                              random general   
         =10                             random triangular */

	    if (mtypes > 21) {
		goto L90;
	    }

	    itype = ktype[jtype - 1];
	    imode = kmode[jtype - 1];

/*           Compute norm */

	    switch (kmagn[jtype - 1]) {
		case 1:  goto L30;
		case 2:  goto L40;
		case 3:  goto L50;
	    }

L30:
	    anorm = 1.f;
	    goto L60;

L40:
	    anorm = ovfl * ulp;
	    goto L60;

L50:
	    anorm = unfl * ulpinv;
	    goto L60;

L60:

	    slaset_("Full", lda, &n, &c_b18, &c_b18, &a[a_offset], lda);
	    iinfo = 0;
	    cond = ulpinv;

/*           Special Matrices -- Identity & Jordan block   

                Zero */

	    if (itype == 1) {
		iinfo = 0;

	    } else if (itype == 2) {

/*              Identity */

		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    a_ref(jcol, jcol) = anorm;
/* L70: */
		}

	    } else if (itype == 3) {

/*              Jordan Block */

		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    a_ref(jcol, jcol) = anorm;
		    if (jcol > 1) {
			a_ref(jcol, jcol - 1) = 1.f;
		    }
/* L80: */
		}

	    } else if (itype == 4) {

/*              Diagonal Matrix, [Eigen]values Specified */

		slatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, 
			&anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[n 
			+ 1], &iinfo);

	    } else if (itype == 5) {

/*              Symmetric, eigenvalues specified */

		slatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, 
			&anorm, &n, &n, "N", &a[a_offset], lda, &work[n + 1], 
			&iinfo);

	    } else if (itype == 6) {

/*              General, eigenvalues specified */

		if (kconds[jtype - 1] == 1) {
		    conds = 1.f;
		} else if (kconds[jtype - 1] == 2) {
		    conds = rtulpi;
		} else {
		    conds = 0.f;
		}

		*(unsigned char *)&adumma[0] = ' ';
		slatme_(&n, "S", &iseed[1], &work[1], &imode, &cond, &c_b32, 
			adumma, "T", "T", "T", &work[n + 1], &c__4, &conds, &
			n, &n, &anorm, &a[a_offset], lda, &work[(n << 1) + 1],
			 &iinfo);

	    } else if (itype == 7) {

/*              Diagonal, random eigenvalues */

		slatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &c__0, &
			c__0, &c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[
			1], &iinfo);

	    } else if (itype == 8) {

/*              Symmetric, random eigenvalues */

		slatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &n, &
			c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else if (itype == 9) {

/*              General, random eigenvalues */

		slatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &n, &
			c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);
		if (n >= 4) {
		    slaset_("Full", &c__2, &n, &c_b18, &c_b18, &a[a_offset], 
			    lda);
		    i__3 = n - 3;
		    slaset_("Full", &i__3, &c__1, &c_b18, &c_b18, &a_ref(3, 1)
			    , lda);
		    i__3 = n - 3;
		    slaset_("Full", &i__3, &c__2, &c_b18, &c_b18, &a_ref(3, n 
			    - 1), lda);
		    slaset_("Full", &c__1, &n, &c_b18, &c_b18, &a_ref(n, 1), 
			    lda);
		}

	    } else if (itype == 10) {

/*              Triangular, random eigenvalues */

		slatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &c__0, &
			c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else {

		iinfo = 1;
	    }

	    if (iinfo != 0) {
		io___33.ciunit = *nounit;
		s_wsfe(&io___33);
		do_fio(&c__1, "Generator", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		return 0;
	    }

L90:

/*           Test for minimal and generous workspace */

	    for (iwk = 1; iwk <= 3; ++iwk) {
		if (iwk == 1) {
		    nnwork = n * 3;
		} else if (iwk == 2) {
/* Computing 2nd power */
		    i__3 = n;
		    nnwork = n * 6 + i__3 * i__3;
		} else {
/* Computing 2nd power */
		    i__3 = n;
		    nnwork = n * 6 + (i__3 * i__3 << 1);
		}
		nnwork = max(nnwork,1);

/*              Test for all balancing options */

		for (ibal = 1; ibal <= 4; ++ibal) {
		    *(unsigned char *)balanc = *(unsigned char *)&bal[ibal - 
			    1];

/*                 Perform tests */

		    sget23_(&c_false, balanc, &jtype, thresh, ioldsd, nounit, 
			    &n, &a[a_offset], lda, &h__[h_offset], &wr[1], &
			    wi[1], &wr1[1], &wi1[1], &vl[vl_offset], ldvl, &
			    vr[vr_offset], ldvr, &lre[lre_offset], ldlre, &
			    rcondv[1], &rcndv1[1], &rcdvin[1], &rconde[1], &
			    rcnde1[1], &rcdein[1], &scale[1], &scale1[1], &
			    result[1], &work[1], &nnwork, &iwork[1], info);

/*                 Check for RESULT(j) > THRESH */

		    ntest = 0;
		    nfail = 0;
		    for (j = 1; j <= 9; ++j) {
			if (result[j] >= 0.f) {
			    ++ntest;
			}
			if (result[j] >= *thresh) {
			    ++nfail;
			}
/* L100: */
		    }

		    if (nfail > 0) {
			++ntestf;
		    }
		    if (ntestf == 1) {
			io___40.ciunit = *nounit;
			s_wsfe(&io___40);
			do_fio(&c__1, path, (ftnlen)3);
			e_wsfe();
			io___41.ciunit = *nounit;
			s_wsfe(&io___41);
			e_wsfe();
			io___42.ciunit = *nounit;
			s_wsfe(&io___42);
			e_wsfe();
			io___43.ciunit = *nounit;
			s_wsfe(&io___43);
			e_wsfe();
			io___44.ciunit = *nounit;
			s_wsfe(&io___44);
			do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(real)
				);
			e_wsfe();
			ntestf = 2;
		    }

		    for (j = 1; j <= 9; ++j) {
			if (result[j] >= *thresh) {
			    io___45.ciunit = *nounit;
			    s_wsfe(&io___45);
			    do_fio(&c__1, balanc, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&iwk, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof(
				    real));
			    e_wsfe();
			}
/* L110: */
		    }

		    nerrs += nfail;
		    ntestt += ntest;

/* L120: */
		}
/* L130: */
	    }
L140:
	    ;
	}
/* L150: */
    }

L160:

/*     Read in data from file to check accuracy of condition estimation.   
       Assume input eigenvalues are sorted lexicographically (increasing   
       by real part, then decreasing by imaginary part) */

    jtype = 0;
L170:
    io___46.ciunit = *niunit;
    i__1 = s_rsle(&io___46);
    if (i__1 != 0) {
	goto L220;
    }
    i__1 = do_lio(&c__3, &c__1, (char *)&n, (ftnlen)sizeof(integer));
    if (i__1 != 0) {
	goto L220;
    }
    i__1 = e_rsle();
    if (i__1 != 0) {
	goto L220;
    }

/*     Read input data until N=0 */

    if (n == 0) {
	goto L220;
    }
    ++jtype;
    iseed[1] = jtype;
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	io___48.ciunit = *niunit;
	s_rsle(&io___48);
	i__2 = n;
	for (j = 1; j <= i__2; ++j) {
	    do_lio(&c__4, &c__1, (char *)&a_ref(i__, j), (ftnlen)sizeof(real))
		    ;
	}
	e_rsle();
/* L180: */
    }
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	io___49.ciunit = *niunit;
	s_rsle(&io___49);
	do_lio(&c__4, &c__1, (char *)&wr1[i__], (ftnlen)sizeof(real));
	do_lio(&c__4, &c__1, (char *)&wi1[i__], (ftnlen)sizeof(real));
	do_lio(&c__4, &c__1, (char *)&rcdein[i__], (ftnlen)sizeof(real));
	do_lio(&c__4, &c__1, (char *)&rcdvin[i__], (ftnlen)sizeof(real));
	e_rsle();
/* L190: */
    }
/* Computing 2nd power */
    i__2 = n;
    i__1 = n * 6 + (i__2 * i__2 << 1);
    sget23_(&c_true, "N", &c__22, thresh, &iseed[1], nounit, &n, &a[a_offset],
	     lda, &h__[h_offset], &wr[1], &wi[1], &wr1[1], &wi1[1], &vl[
	    vl_offset], ldvl, &vr[vr_offset], ldvr, &lre[lre_offset], ldlre, &
	    rcondv[1], &rcndv1[1], &rcdvin[1], &rconde[1], &rcnde1[1], &
	    rcdein[1], &scale[1], &scale1[1], &result[1], &work[1], &i__1, &
	    iwork[1], info);

/*     Check for RESULT(j) > THRESH */

    ntest = 0;
    nfail = 0;
    for (j = 1; j <= 11; ++j) {
	if (result[j] >= 0.f) {
	    ++ntest;
	}
	if (result[j] >= *thresh) {
	    ++nfail;
	}
/* L200: */
    }

    if (nfail > 0) {
	++ntestf;
    }
    if (ntestf == 1) {
	io___50.ciunit = *nounit;
	s_wsfe(&io___50);
	do_fio(&c__1, path, (ftnlen)3);
	e_wsfe();
	io___51.ciunit = *nounit;
	s_wsfe(&io___51);
	e_wsfe();
	io___52.ciunit = *nounit;
	s_wsfe(&io___52);
	e_wsfe();
	io___53.ciunit = *nounit;
	s_wsfe(&io___53);
	e_wsfe();
	io___54.ciunit = *nounit;
	s_wsfe(&io___54);
	do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(real));
	e_wsfe();
	ntestf = 2;
    }

    for (j = 1; j <= 11; ++j) {
	if (result[j] >= *thresh) {
	    io___55.ciunit = *nounit;
	    s_wsfe(&io___55);
	    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
	    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
	    do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer));
	    do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof(real));
	    e_wsfe();
	}
/* L210: */
    }

    nerrs += nfail;
    ntestt += ntest;
    goto L170;
L220:

/*     Summary */

    slasum_(path, nounit, &nerrs, &ntestt);



    return 0;

/*     End of SDRVVX */

} /* sdrvvx_ */
예제 #7
0
파일: schktz.c 프로젝트: 3deggi/levmar-ndk
/* Subroutine */ int schktz_(logical *dotype, integer *nm, integer *mval, 
	integer *nn, integer *nval, real *thresh, logical *tsterr, real *a, 
	real *copya, real *s, real *copys, real *tau, real *work, integer *
	nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };

    /* Format strings */
    static char fmt_9999[] = "(\002 M =\002,i5,\002, N =\002,i5,\002, type"
	    " \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;
    real r__1;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, k, m, n, im, in, lda;
    real eps;
    integer mode, info;
    char path[3];
    integer nrun;
    extern /* Subroutine */ int alahd_(integer *, char *);
    integer nfail, iseed[4], imode, mnmin, nerrs;
    extern doublereal sqrt12_(integer *, integer *, real *, integer *, real *, 
	     real *, integer *);
    integer lwork;
    extern doublereal srzt01_(integer *, integer *, real *, real *, integer *, 
	     real *, real *, integer *), srzt02_(integer *, integer *, real *, 
	     integer *, real *, real *, integer *), stzt01_(integer *, 
	    integer *, real *, real *, integer *, real *, real *, integer *), 
	    stzt02_(integer *, integer *, real *, integer *, real *, real *, 
	    integer *);
    extern /* Subroutine */ int sgeqr2_(integer *, integer *, real *, integer 
	    *, real *, real *, integer *);
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer 
	    *, integer *), slaord_(char *, integer *, real *, integer 
	    *), slacpy_(char *, integer *, integer *, real *, integer 
	    *, real *, integer *), slaset_(char *, integer *, integer 
	    *, real *, real *, real *, integer *), slatms_(integer *, 
	    integer *, char *, integer *, char *, real *, integer *, real *, 
	    real *, integer *, integer *, char *, real *, integer *, real *, 
	    integer *);
    real result[6];
    extern /* Subroutine */ int serrtz_(char *, integer *), stzrqf_(
	    integer *, integer *, real *, integer *, real *, integer *), 
	    stzrzf_(integer *, integer *, real *, integer *, real *, real *, 
	    integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___21 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.1.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     January 2007 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SCHKTZ tests STZRQF and STZRZF. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NM      (input) INTEGER */
/*          The number of values of M contained in the vector MVAL. */

/*  MVAL    (input) INTEGER array, dimension (NM) */
/*          The values of the matrix row dimension M. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix column dimension N. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  A       (workspace) REAL array, dimension (MMAX*NMAX) */
/*          where MMAX is the maximum value of M in MVAL and NMAX is the */
/*          maximum value of N in NVAL. */

/*  COPYA   (workspace) REAL array, dimension (MMAX*NMAX) */

/*  S       (workspace) REAL array, dimension */
/*                      (min(MMAX,NMAX)) */

/*  COPYS   (workspace) REAL array, dimension */
/*                      (min(MMAX,NMAX)) */

/*  TAU     (workspace) REAL array, dimension (MMAX) */

/*  WORK    (workspace) REAL array, dimension */
/*                      (MMAX*NMAX + 4*NMAX + MMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --work;
    --tau;
    --copys;
    --s;
    --copya;
    --a;
    --nval;
    --mval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "TZ", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }
    eps = slamch_("Epsilon");

/*     Test the error exits */

    if (*tsterr) {
	serrtz_(path, nout);
    }
    infoc_1.infot = 0;

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {

/*        Do for each value of M in MVAL. */

	m = mval[im];
	lda = max(1,m);

	i__2 = *nn;
	for (in = 1; in <= i__2; ++in) {

/*           Do for each value of N in NVAL for which M .LE. N. */

	    n = nval[in];
	    mnmin = min(m,n);
/* Computing MAX */
	    i__3 = 1, i__4 = n * n + (m << 2) + n, i__3 = max(i__3,i__4), 
		    i__4 = m * n + (mnmin << 1) + (n << 2);
	    lwork = max(i__3,i__4);

	    if (m <= n) {
		for (imode = 1; imode <= 3; ++imode) {
		    if (! dotype[imode]) {
			goto L50;
		    }

/*                 Do for each type of singular value distribution. */
/*                    0:  zero matrix */
/*                    1:  one small singular value */
/*                    2:  exponential distribution */

		    mode = imode - 1;

/*                 Test STZRQF */

/*                 Generate test matrix of size m by n using */
/*                 singular value distribution indicated by `mode'. */

		    if (mode == 0) {
			slaset_("Full", &m, &n, &c_b10, &c_b10, &a[1], &lda);
			i__3 = mnmin;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    copys[i__] = 0.f;
/* L20: */
			}
		    } else {
			r__1 = 1.f / eps;
			slatms_(&m, &n, "Uniform", iseed, "Nonsymmetric", &
				copys[1], &imode, &r__1, &c_b15, &m, &n, 
				"No packing", &a[1], &lda, &work[1], &info);
			sgeqr2_(&m, &n, &a[1], &lda, &work[1], &work[mnmin + 
				1], &info);
			i__3 = m - 1;
			slaset_("Lower", &i__3, &n, &c_b10, &c_b10, &a[2], &
				lda);
			slaord_("Decreasing", &mnmin, &copys[1], &c__1);
		    }

/*                 Save A and its singular values */

		    slacpy_("All", &m, &n, &a[1], &lda, &copya[1], &lda);

/*                 Call STZRQF to reduce the upper trapezoidal matrix to */
/*                 upper triangular form. */

		    s_copy(srnamc_1.srnamt, "STZRQF", (ftnlen)32, (ftnlen)6);
		    stzrqf_(&m, &n, &a[1], &lda, &tau[1], &info);

/*                 Compute norm(svd(a) - svd(r)) */

		    result[0] = sqrt12_(&m, &m, &a[1], &lda, &copys[1], &work[
			    1], &lwork);

/*                 Compute norm( A - R*Q ) */

		    result[1] = stzt01_(&m, &n, &copya[1], &a[1], &lda, &tau[
			    1], &work[1], &lwork);

/*                 Compute norm(Q'*Q - I). */

		    result[2] = stzt02_(&m, &n, &a[1], &lda, &tau[1], &work[1]
, &lwork);

/*                 Test STZRZF */

/*                 Generate test matrix of size m by n using */
/*                 singular value distribution indicated by `mode'. */

		    if (mode == 0) {
			slaset_("Full", &m, &n, &c_b10, &c_b10, &a[1], &lda);
			i__3 = mnmin;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    copys[i__] = 0.f;
/* L30: */
			}
		    } else {
			r__1 = 1.f / eps;
			slatms_(&m, &n, "Uniform", iseed, "Nonsymmetric", &
				copys[1], &imode, &r__1, &c_b15, &m, &n, 
				"No packing", &a[1], &lda, &work[1], &info);
			sgeqr2_(&m, &n, &a[1], &lda, &work[1], &work[mnmin + 
				1], &info);
			i__3 = m - 1;
			slaset_("Lower", &i__3, &n, &c_b10, &c_b10, &a[2], &
				lda);
			slaord_("Decreasing", &mnmin, &copys[1], &c__1);
		    }

/*                 Save A and its singular values */

		    slacpy_("All", &m, &n, &a[1], &lda, &copya[1], &lda);

/*                 Call STZRZF to reduce the upper trapezoidal matrix to */
/*                 upper triangular form. */

		    s_copy(srnamc_1.srnamt, "STZRZF", (ftnlen)32, (ftnlen)6);
		    stzrzf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lwork, &
			    info);

/*                 Compute norm(svd(a) - svd(r)) */

		    result[3] = sqrt12_(&m, &m, &a[1], &lda, &copys[1], &work[
			    1], &lwork);

/*                 Compute norm( A - R*Q ) */

		    result[4] = srzt01_(&m, &n, &copya[1], &a[1], &lda, &tau[
			    1], &work[1], &lwork);

/*                 Compute norm(Q'*Q - I). */

		    result[5] = srzt02_(&m, &n, &a[1], &lda, &tau[1], &work[1]
, &lwork);

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    for (k = 1; k <= 6; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___21.ciunit = *nout;
			    s_wsfe(&io___21);
			    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imode, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(real));
			    e_wsfe();
			    ++nfail;
			}
/* L40: */
		    }
		    nrun += 6;
L50:
		    ;
		}
	    }
/* L60: */
	}
/* L70: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);


/*     End if SCHKTZ */

    return 0;
} /* schktz_ */
예제 #8
0
main(int argc, char *argv[])
{
/* 
 * Purpose
 * =======
 *
 * SDRIVE is the main test program for the FLOAT linear 
 * equation driver routines SGSSV and SGSSVX.
 * 
 * The program is invoked by a shell script file -- stest.csh.
 * The output from the tests are written into a file -- stest.out.
 *
 * =====================================================================
 */
    float         *a, *a_save;
    int            *asub, *asub_save;
    int            *xa, *xa_save;
    SuperMatrix  A, B, X, L, U;
    SuperMatrix  ASAV, AC;
    factor_param_t iparam;
    mem_usage_t    mem_usage;
    int            *perm_r; /* row permutation from partial pivoting */
    int            *perm_c, *pc_save; /* column permutation */
    int            *etree;
    float  zero = 0.0;
    float         *R, *C;
    float         *ferr, *berr;
    float         *rwork;
    float	   *wwork;
    void           *work;
    int            info, lwork, nrhs, panel_size, relax;
    int            m, n, nnz;
    float         *xact;
    float         *rhsb, *solx, *bsav;
    int            ldb, ldx;
    float         rpg, rcond;
    int            i, j, k1;
    float         rowcnd, colcnd, amax;
    int            maxsuper, rowblk, colblk;
    int            prefact, nofact, equil, iequed, norefact;
    int            nt, nrun, nfail, nerrs, imat, fimat, nimat;
    int            nfact, ifact, nrefact, irefact, itran;
    int            kl, ku, mode, lda;
    int            zerot, izero, ioff;
    float         anorm, cndnum;
    float         *Afull;
    float         result[NTESTS];
    void    parse_command_line();
    static char    matrix_type[8];
    static char    fact[1], trans[1], equed[1], refact[1],
                   path[3], sym[1], dist[1];

    /* Fixed set of parameters */
    int            iseed[]  = {1988, 1989, 1990, 1991};
    static char    equeds[]  = {'N', 'R', 'C', 'B'};
    static char    facts[]   = {'F', 'N', 'E'};
    static char    refacts[] = {'Y', 'N'};
    static char    transs[]  = {'N', 'T'};

    /* Some function prototypes */ 
    extern int sp_sget01(int, int, SuperMatrix *, SuperMatrix *, 
		         SuperMatrix *, int *, float *);
    extern int sp_sget02(char *, int, int, int, SuperMatrix *, float *,
                         int, float *, int, float *resid);
    extern int sp_sget04(int, int, float *, int, 
                         float *, int, float rcond, float *resid);
    extern int sp_sget07(char *, int, int, SuperMatrix *, float *, int,
                         float *, int, float *, int, 
                         float *, float *, float *);
    extern int slatb4_(char *, int *, int *, int *, char *, int *, int *, 
	               float *, int *, float *, char *);
    extern int slatms_(int *, int *, char *, int *, char *, float *d,
                       int *, float *, float *, int *, int *,
                       char *, float *, int *, float *, int *);
    extern int sp_sconvert(int, int, float *, int, int, int,
	                   float *a, int *, int *, int *);


    /* Executable statements */

    strcpy(path, "SGE");
    nrun  = 0;
    nfail = 0;
    nerrs = 0;


    /* Defaults */
    lwork      = 0;
    n          = 1;
    nrhs       = 1;
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    strcpy(matrix_type, "LA");
    parse_command_line(argc, argv, matrix_type, &n,
		       &panel_size, &relax, &nrhs, &maxsuper,
		       &rowblk, &colblk, &lwork);
    if ( lwork > 0 ) {
	work = SUPERLU_MALLOC(lwork);
	if ( !work ) {
	    fprintf(stderr, "expert: cannot allocate %d bytes\n", lwork);
	    exit (-1);
	}
    }

    iparam.panel_size = panel_size;
    iparam.relax      = relax;
    iparam.diag_pivot_thresh = 1.0;
    iparam.drop_tol   = 0.0;
    
    if ( strcmp(matrix_type, "LA") == 0 ) {
	/* Test LAPACK matrix suite. */
	m = n;
	lda = SUPERLU_MAX(n, 1);
	nnz = n * n;        /* upper bound */
	fimat = 1;
	nimat = NTYPES;
	Afull = floatCalloc(lda * n);
	sallocateA(n, nnz, &a, &asub, &xa);
    } else {
	/* Read a sparse matrix */
	fimat = nimat = 0;
	sreadhb(&m, &n, &nnz, &a, &asub, &xa);
    }

    sallocateA(n, nnz, &a_save, &asub_save, &xa_save);
    rhsb = floatMalloc(m * nrhs);
    bsav = floatMalloc(m * nrhs);
    solx = floatMalloc(n * nrhs);
    ldb  = m;
    ldx  = n;
    sCreate_Dense_Matrix(&B, m, nrhs, rhsb, ldb, SLU_DN, SLU_S, SLU_GE);
    sCreate_Dense_Matrix(&X, n, nrhs, solx, ldx, SLU_DN, SLU_S, SLU_GE);
    xact = floatMalloc(n * nrhs);
    etree   = intMalloc(n);
    perm_r  = intMalloc(n);
    perm_c  = intMalloc(n);
    pc_save = intMalloc(n);
    R       = (float *) SUPERLU_MALLOC(m*sizeof(float));
    C       = (float *) SUPERLU_MALLOC(n*sizeof(float));
    ferr    = (float *) SUPERLU_MALLOC(nrhs*sizeof(float));
    berr    = (float *) SUPERLU_MALLOC(nrhs*sizeof(float));
    j = SUPERLU_MAX(m,n) * SUPERLU_MAX(4,nrhs);    
    rwork   = (float *) SUPERLU_MALLOC(j*sizeof(float));
    for (i = 0; i < j; ++i) rwork[i] = 0.;
    if ( !R ) ABORT("SUPERLU_MALLOC fails for R");
    if ( !C ) ABORT("SUPERLU_MALLOC fails for C");
    if ( !ferr ) ABORT("SUPERLU_MALLOC fails for ferr");
    if ( !berr ) ABORT("SUPERLU_MALLOC fails for berr");
    if ( !rwork ) ABORT("SUPERLU_MALLOC fails for rwork");
    wwork   = floatCalloc( SUPERLU_MAX(m,n) * SUPERLU_MAX(4,nrhs) );

    for (i = 0; i < n; ++i) perm_c[i] = pc_save[i] = i;

    for (imat = fimat; imat <= nimat; ++imat) { /* All matrix types */
	
	if ( imat ) {

	    /* Skip types 5, 6, or 7 if the matrix size is too small. */
	    zerot = (imat >= 5 && imat <= 7);
	    if ( zerot && n < imat-4 )
		continue;
	    
	    /* Set up parameters with SLATB4 and generate a test matrix
	       with SLATMS.  */
	    slatb4_(path, &imat, &n, &n, sym, &kl, &ku, &anorm, &mode,
		    &cndnum, dist);

	    slatms_(&n, &n, dist, iseed, sym, &rwork[0], &mode, &cndnum,
		    &anorm, &kl, &ku, "No packing", Afull, &lda,
		    &wwork[0], &info);

	    if ( info ) {
		printf(FMT3, "SLATMS", info, izero, n, nrhs, imat, nfail);
		continue;
	    }

	    /* For types 5-7, zero one or more columns of the matrix
	       to test that INFO is returned correctly.   */
	    if ( zerot ) {
		if ( imat == 5 ) izero = 1;
		else if ( imat == 6 ) izero = n;
		else izero = n / 2 + 1;
		ioff = (izero - 1) * lda;
		if ( imat < 7 ) {
		    for (i = 0; i < n; ++i) Afull[ioff + i] = zero;
		} else {
		    for (j = 0; j < n - izero + 1; ++j)
			for (i = 0; i < n; ++i)
			    Afull[ioff + i + j*lda] = zero;
		}
	    } else {
		izero = 0;
	    }

	    /* Convert to sparse representation. */
	    sp_sconvert(n, n, Afull, lda, kl, ku, a, asub, xa, &nnz);

	} else {
	    izero = 0;
	    zerot = 0;
	}
	
	sCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_S, SLU_GE);

	/* Save a copy of matrix A in ASAV */
	sCreate_CompCol_Matrix(&ASAV, m, n, nnz, a_save, asub_save, xa_save,
			      SLU_NC, SLU_S, SLU_GE);
	sCopy_CompCol_Matrix(&A, &ASAV);
	
	/* Form exact solution. */
	sGenXtrue(n, nrhs, xact, ldx);
	
	for (iequed = 0; iequed < 4; ++iequed) {
	    *equed = equeds[iequed];
	    if (iequed == 0) nfact = 3;
	    else nfact = 1;

	    for (ifact = 0; ifact < nfact; ++ifact) {
		*fact = facts[ifact];
		if (ifact == 0) nrefact = 1;
		else nrefact = 2;

		for (irefact = 0; irefact < nrefact; ++irefact) {
		    *refact = refacts[irefact];
		    norefact  = lsame_(refact, "N");
		    prefact   = lsame_(fact, "F") || ( ! norefact );
		    nofact    = lsame_(fact, "N");
		    equil     = lsame_(fact, "E");

		    /* Restore the matrix A. */
		    sCopy_CompCol_Matrix(&ASAV, &A);
			
		    if ( zerot ) {
			if ( prefact ) continue;
		    } else if ( ! nofact ) {
			if ( equil || iequed ) {
			    /* Compute row and column scale factors to
			       equilibrate matrix A.    */
			    sgsequ(&A, R, C, &rowcnd, &colcnd,
				      &amax, &info);

			    /* Force equilibration. */
			    if ( !info && n > 0 ) {
				if ( lsame_(equed, "R") ) {
				    rowcnd = 0.;
				    colcnd = 1.;
				} else if ( lsame_(equed, "C") ) {
				    rowcnd = 1.;
				    colcnd = 0.;
				} else if ( lsame_(equed, "B") ) {
				    rowcnd = 0.;
				    colcnd = 0.;
				}
			    }
			
			    /* Equilibrate the matrix. */
			    slaqgs(&A, R, C, rowcnd, colcnd, amax, equed);
			}
		    }
		    
		    if ( prefact ) {	/* First time factor */
			
			StatInit(panel_size, relax);
			
			/* Preorder the matrix, obtain the column etree. */
			sp_preorder("N", &A, perm_c, etree, &AC);

			/* Factor the matrix AC. */
			sgstrf("N", &AC, iparam.diag_pivot_thresh,
			       iparam.drop_tol, iparam.relax,
			       iparam.panel_size, etree,
			       work, lwork, perm_r, perm_c, &L, &U, &info);

			if ( info ) { 
                            printf("** First factor: info %d, equed %c\n",
				   info, *equed);
                            if ( lwork == -1 ) {
                                printf("** Estimated memory: %d bytes\n",
                                        info - n);
                                exit(0);
                            }
                        }
	
                        Destroy_CompCol_Permuted(&AC);
			StatFree();
			
		    } /* if .. first time factor */
		    
		    for (itran = 0; itran < NTRAN; ++itran) {
			*trans = transs[itran];

			/* Restore the matrix A. */
			sCopy_CompCol_Matrix(&ASAV, &A);
			
 			/* Set the right hand side. */
			sFillRHS(trans, nrhs, xact, ldx, &A, &B);
			sCopy_Dense_Matrix(m, nrhs, rhsb, ldb, bsav, ldb);

			/*----------------
			 * Test sgssv
			 *----------------*/
			if ( nofact && norefact && itran == 0) {
                            /* Not yet factored, and untransposed */
	
			    sCopy_Dense_Matrix(m, nrhs, rhsb, ldb, solx, ldx);
			    sgssv(&A, perm_c, perm_r, &L, &U, &X, &info);
			    
			    if ( info && info != izero ) {
                                printf(FMT3, "sgssv",
				       info, izero, n, nrhs, imat, nfail);
			    } else {
                                /* Reconstruct matrix from factors and
	                           compute residual. */
                                sp_sget01(m, n, &A, &L, &U, perm_r,
					       &result[0]);
				nt = 1;
				if ( izero == 0 ) {
				    /* Compute residual of the computed
				       solution. */
				    sCopy_Dense_Matrix(m, nrhs, rhsb, ldb,
						       wwork, ldb);
				    sp_sget02(trans, m, n, nrhs, &A, solx,
                                              ldx, wwork,ldb, &result[1]);
				    nt = 2;
				}
				
				/* Print information about the tests that
				   did not pass the threshold.      */
				for (i = 0; i < nt; ++i) {
				    if ( result[i] >= THRESH ) {
					printf(FMT1, "sgssv", n, i,
					       result[i]);
					++nfail;
				    }
				}
				nrun += nt;
			    } /* else .. info == 0 */

			    /* Restore perm_c. */
			    for (i = 0; i < n; ++i) perm_c[i] = pc_save[i];

		            if (lwork == 0) {
			        Destroy_SuperNode_Matrix(&L);
			        Destroy_CompCol_Matrix(&U);
			    }
			} /* if .. end of testing sgssv */
    
			/*----------------
			 * Test sgssvx
			 *----------------*/
    
			/* Equilibrate the matrix if fact = 'F' and
			   equed = 'R', 'C', or 'B'.   */
			if ( iequed > 0 && n > 0 ) {
			    slaqgs(&A, R, C, rowcnd, colcnd, amax, equed);
			}
			
			/* Solve the system and compute the condition number
			   and error bounds using sgssvx.      */
			sgssvx(fact, trans, refact, &A, &iparam, perm_c,
			       perm_r, etree, equed, R, C, &L, &U, work,
			       lwork, &B, &X, &rpg, &rcond, ferr, berr,
			       &mem_usage, &info);

			if ( info && info != izero ) {
			    printf(FMT3, "sgssvx",
				   info, izero, n, nrhs, imat, nfail);
                            if ( lwork == -1 ) {
                                printf("** Estimated memory: %.0f bytes\n",
                                        mem_usage.total_needed);
                                exit(0);
                            }
			} else {
			    if ( !prefact ) {
			    	/* Reconstruct matrix from factors and
	 			   compute residual. */
                                sp_sget01(m, n, &A, &L, &U, perm_r,
					       &result[0]);
				k1 = 0;
			    } else {
			   	k1 = 1;
			    }

			    if ( !info ) {
				/* Compute residual of the computed solution.*/
				sCopy_Dense_Matrix(m, nrhs, bsav, ldb,
						  wwork, ldb);
				sp_sget02(trans, m, n, nrhs, &ASAV, solx, ldx,
					  wwork, ldb, &result[1]);

				/* Check solution from generated exact
				   solution. */
				sp_sget04(n, nrhs, solx, ldx, xact, ldx, rcond,
					  &result[2]);

				/* Check the error bounds from iterative
				   refinement. */
				sp_sget07(trans, n, nrhs, &ASAV, bsav, ldb,
					  solx, ldx, xact, ldx, ferr, berr,
					  &result[3]);

				/* Print information about the tests that did
				   not pass the threshold.    */
				for (i = k1; i < NTESTS; ++i) {
				    if ( result[i] >= THRESH ) {
					printf(FMT2, "sgssvx",
					       *fact, *trans, *refact, *equed,
					       n, imat, i, result[i]);
					++nfail;
				    }
				}
				nrun += NTESTS;
			    } /* if .. info == 0 */
			} /* else .. end of testing sgssvx */

		    } /* for itran ... */

		    if ( lwork == 0 ) {
			Destroy_SuperNode_Matrix(&L);
			Destroy_CompCol_Matrix(&U);
		    }

		} /* for irefact ... */
	    } /* for ifact ... */
	} /* for iequed ... */
#if 0    
    if ( !info ) {
	PrintPerf(&L, &U, &mem_usage, rpg, rcond, ferr, berr, equed);
    }
#endif    

    } /* for imat ... */

    /* Print a summary of the results. */
    PrintSumm("SGE", nfail, nrun, nerrs);

    SUPERLU_FREE (rhsb);
    SUPERLU_FREE (bsav);
    SUPERLU_FREE (solx);    
    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (pc_save);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    SUPERLU_FREE (ferr);
    SUPERLU_FREE (berr);
    SUPERLU_FREE (rwork);
    SUPERLU_FREE (wwork);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperMatrix_Store(&X);
    Destroy_CompCol_Matrix(&A);
    Destroy_CompCol_Matrix(&ASAV);
    if ( lwork > 0 ) {
	SUPERLU_FREE (work);
	Destroy_SuperMatrix_Store(&L);
	Destroy_SuperMatrix_Store(&U);
    }

    return 0;
}
예제 #9
0
파일: sdrvsx.c 프로젝트: 3deggi/levmar-ndk
/* Subroutine */ int sdrvsx_(integer *nsizes, integer *nn, integer *ntypes, 
	logical *dotype, integer *iseed, real *thresh, integer *niunit, 
	integer *nounit, real *a, integer *lda, real *h__, real *ht, real *wr, 
	 real *wi, real *wrt, real *wit, real *wrtmp, real *witmp, real *vs, 
	integer *ldvs, real *vs1, real *result, real *work, integer *lwork, 
	integer *iwork, logical *bwork, integer *info)
{
    /* Initialized data */

    static integer ktype[21] = { 1,2,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,9,9,9 };
    static integer kmagn[21] = { 1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,2,3,1,2,3 };
    static integer kmode[21] = { 0,0,0,4,3,1,4,4,4,3,1,5,4,3,1,5,5,5,4,3,1 };
    static integer kconds[21] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,0,0,0 };

    /* Format strings */
    static char fmt_9991[] = "(\002 SDRVSX: \002,a,\002 returned INFO=\002,i"
	    "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED="
	    "(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9999[] = "(/1x,a3,\002 -- Real Schur Form Decomposition "
	    "Expert \002,\002Driver\002,/\002 Matrix types (see SDRVSX for de"
	    "tails):\002)";
    static char fmt_9998[] = "(/\002 Special Matrices:\002,/\002  1=Zero mat"
	    "rix.             \002,\002           \002,\002  5=Diagonal: geom"
	    "etr. spaced entries.\002,/\002  2=Identity matrix.              "
	    "      \002,\002  6=Diagona\002,\002l: clustered entries.\002,"
	    "/\002  3=Transposed Jordan block.  \002,\002          \002,\002 "
	    " 7=Diagonal: large, evenly spaced.\002,/\002  \002,\0024=Diagona"
	    "l: evenly spaced entries.    \002,\002  8=Diagonal: s\002,\002ma"
	    "ll, evenly spaced.\002)";
    static char fmt_9997[] = "(\002 Dense, Non-Symmetric Matrices:\002,/\002"
	    "  9=Well-cond., ev\002,\002enly spaced eigenvals.\002,\002 14=Il"
	    "l-cond., geomet. spaced e\002,\002igenals.\002,/\002 10=Well-con"
	    "d., geom. spaced eigenvals. \002,\002 15=Ill-conditioned, cluste"
	    "red e.vals.\002,/\002 11=Well-cond\002,\002itioned, clustered e."
	    "vals. \002,\002 16=Ill-cond., random comp\002,\002lex \002,/\002"
	    " 12=Well-cond., random complex \002,\002         \002,\002 17=Il"
	    "l-cond., large rand. complx \002,/\002 13=Ill-condi\002,\002tion"
	    "ed, evenly spaced.     \002,\002 18=Ill-cond., small rand.\002"
	    ",\002 complx \002)";
    static char fmt_9996[] = "(\002 19=Matrix with random O(1) entries.   "
	    " \002,\002 21=Matrix \002,\002with small random entries.\002,"
	    "/\002 20=Matrix with large ran\002,\002dom entries.   \002,/)";
    static char fmt_9995[] = "(\002 Tests performed with test threshold ="
	    "\002,f8.2,/\002 ( A denotes A on input and T denotes A on output)"
	    "\002,//\002 1 = 0 if T in Schur form (no sort), \002,\002  1/ulp"
	    " otherwise\002,/\002 2 = | A - VS T transpose(VS) | / ( n |A| ul"
	    "p ) (no sort)\002,/\002 3 = | I - VS transpose(VS) | / ( n ulp )"
	    " (no sort) \002,/\002 4 = 0 if WR+sqrt(-1)*WI are eigenvalues of"
	    " T (no sort),\002,\002  1/ulp otherwise\002,/\002 5 = 0 if T sam"
	    "e no matter if VS computed (no sort),\002,\002  1/ulp otherwis"
	    "e\002,/\002 6 = 0 if WR, WI same no matter if VS computed (no so"
	    "rt)\002,\002,  1/ulp otherwise\002)";
    static char fmt_9994[] = "(\002 7 = 0 if T in Schur form (sort), \002"
	    ",\002  1/ulp otherwise\002,/\002 8 = | A - VS T transpose(VS) | "
	    "/ ( n |A| ulp ) (sort)\002,/\002 9 = | I - VS transpose(VS) | / "
	    "( n ulp ) (sort) \002,/\002 10 = 0 if WR+sqrt(-1)*WI are eigenva"
	    "lues of T (sort),\002,\002  1/ulp otherwise\002,/\002 11 = 0 if "
	    "T same no matter what else computed (sort),\002,\002  1/ulp othe"
	    "rwise\002,/\002 12 = 0 if WR, WI same no matter what else comput"
	    "ed \002,\002(sort), 1/ulp otherwise\002,/\002 13 = 0 if sorting "
	    "succesful, 1/ulp otherwise\002,/\002 14 = 0 if RCONDE same no ma"
	    "tter what else computed,\002,\002 1/ulp otherwise\002,/\002 15 ="
	    " 0 if RCONDv same no matter what else computed,\002,\002 1/ulp o"
	    "therwise\002,/\002 16 = | RCONDE - RCONDE(precomputed) | / cond("
	    "RCONDE),\002,/\002 17 = | RCONDV - RCONDV(precomputed) | / cond("
	    "RCONDV),\002)";
    static char fmt_9993[] = "(\002 N=\002,i5,\002, IWK=\002,i2,\002, seed"
	    "=\002,4(i4,\002,\002),\002 type \002,i2,\002, test(\002,i2,\002)="
	    "\002,g10.3)";
    static char fmt_9992[] = "(\002 N=\002,i5,\002, input example =\002,i3"
	    ",\002,  test(\002,i2,\002)=\002,g10.3)";

    /* System generated locals */
    integer a_dim1, a_offset, h_dim1, h_offset, ht_dim1, ht_offset, vs_dim1, 
	    vs_offset, vs1_dim1, vs1_offset, i__1, i__2, i__3, i__4;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    double sqrt(doublereal);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void),
	     s_rsle(cilist *), do_lio(integer *, integer *, char *, ftnlen), 
	    e_rsle(void);

    /* Local variables */
    integer i__, j, n, iwk;
    real ulp, cond;
    integer jcol;
    char path[3];
    integer nmax;
    real unfl, ovfl;
    logical badnn;
    integer nfail, imode, iinfo;
    real conds;
    extern /* Subroutine */ int sget24_(logical *, integer *, real *, integer 
	    *, integer *, integer *, real *, integer *, real *, real *, real *
, real *, real *, real *, real *, real *, real *, integer *, real 
	    *, real *, real *, integer *, integer *, real *, real *, integer *
, integer *, logical *, integer *);
    real anorm;
    integer islct[20], nslct, jsize, nerrs, itype, jtype, ntest;
    real rtulp;
    extern /* Subroutine */ int slabad_(real *, real *);
    real rcdein;
    char adumma[1*1];
    extern doublereal slamch_(char *);
    integer idumma[1], ioldsd[4];
    extern /* Subroutine */ int xerbla_(char *, integer *);
    real rcdvin;
    extern /* Subroutine */ int slatme_(integer *, char *, integer *, real *, 
	    integer *, real *, real *, char *, char *, char *, char *, real *, 
	     integer *, real *, integer *, integer *, real *, real *, integer 
	    *, real *, integer *), 
	    slaset_(char *, integer *, integer *, real *, real *, real *, 
	    integer *), slatmr_(integer *, integer *, char *, integer 
	    *, char *, real *, integer *, real *, real *, char *, char *, 
	    real *, integer *, real *, real *, integer *, real *, char *, 
	    integer *, integer *, integer *, real *, real *, char *, real *, 
	    integer *, integer *, integer *);
    integer ntestf;
    extern /* Subroutine */ int slasum_(char *, integer *, integer *, integer 
	    *), slatms_(integer *, integer *, char *, integer *, char 
	    *, real *, integer *, real *, real *, integer *, integer *, char *
, real *, integer *, real *, integer *);
    real ulpinv;
    integer nnwork;
    real rtulpi;
    integer mtypes, ntestt;

    /* Fortran I/O blocks */
    static cilist io___32 = { 0, 0, 0, fmt_9991, 0 };
    static cilist io___41 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___42 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___43 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___44 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___46 = { 0, 0, 0, fmt_9994, 0 };
    static cilist io___47 = { 0, 0, 0, fmt_9993, 0 };
    static cilist io___48 = { 0, 0, 1, 0, 0 };
    static cilist io___49 = { 0, 0, 0, 0, 0 };
    static cilist io___51 = { 0, 0, 0, 0, 0 };
    static cilist io___52 = { 0, 0, 0, 0, 0 };
    static cilist io___53 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___54 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___55 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___56 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___57 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___58 = { 0, 0, 0, fmt_9994, 0 };
    static cilist io___59 = { 0, 0, 0, fmt_9992, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*     SDRVSX checks the nonsymmetric eigenvalue (Schur form) problem */
/*     expert driver SGEESX. */

/*     SDRVSX uses both test matrices generated randomly depending on */
/*     data supplied in the calling sequence, as well as on data */
/*     read from an input file and including precomputed condition */
/*     numbers to which it compares the ones it computes. */

/*     When SDRVSX is called, a number of matrix "sizes" ("n's") and a */
/*     number of matrix "types" are specified.  For each size ("n") */
/*     and each type of matrix, one matrix will be generated and used */
/*     to test the nonsymmetric eigenroutines.  For each matrix, 15 */
/*     tests will be performed: */

/*     (1)     0 if T is in Schur form, 1/ulp otherwise */
/*            (no sorting of eigenvalues) */

/*     (2)     | A - VS T VS' | / ( n |A| ulp ) */

/*       Here VS is the matrix of Schur eigenvectors, and T is in Schur */
/*       form  (no sorting of eigenvalues). */

/*     (3)     | I - VS VS' | / ( n ulp ) (no sorting of eigenvalues). */

/*     (4)     0     if WR+sqrt(-1)*WI are eigenvalues of T */
/*             1/ulp otherwise */
/*             (no sorting of eigenvalues) */

/*     (5)     0     if T(with VS) = T(without VS), */
/*             1/ulp otherwise */
/*             (no sorting of eigenvalues) */

/*     (6)     0     if eigenvalues(with VS) = eigenvalues(without VS), */
/*             1/ulp otherwise */
/*             (no sorting of eigenvalues) */

/*     (7)     0 if T is in Schur form, 1/ulp otherwise */
/*             (with sorting of eigenvalues) */

/*     (8)     | A - VS T VS' | / ( n |A| ulp ) */

/*       Here VS is the matrix of Schur eigenvectors, and T is in Schur */
/*       form  (with sorting of eigenvalues). */

/*     (9)     | I - VS VS' | / ( n ulp ) (with sorting of eigenvalues). */

/*     (10)    0     if WR+sqrt(-1)*WI are eigenvalues of T */
/*             1/ulp otherwise */
/*             If workspace sufficient, also compare WR, WI with and */
/*             without reciprocal condition numbers */
/*             (with sorting of eigenvalues) */

/*     (11)    0     if T(with VS) = T(without VS), */
/*             1/ulp otherwise */
/*             If workspace sufficient, also compare T with and without */
/*             reciprocal condition numbers */
/*             (with sorting of eigenvalues) */

/*     (12)    0     if eigenvalues(with VS) = eigenvalues(without VS), */
/*             1/ulp otherwise */
/*             If workspace sufficient, also compare VS with and without */
/*             reciprocal condition numbers */
/*             (with sorting of eigenvalues) */

/*     (13)    if sorting worked and SDIM is the number of */
/*             eigenvalues which were SELECTed */
/*             If workspace sufficient, also compare SDIM with and */
/*             without reciprocal condition numbers */

/*     (14)    if RCONDE the same no matter if VS and/or RCONDV computed */

/*     (15)    if RCONDV the same no matter if VS and/or RCONDE computed */

/*     The "sizes" are specified by an array NN(1:NSIZES); the value of */
/*     each element NN(j) specifies one size. */
/*     The "types" are specified by a logical array DOTYPE( 1:NTYPES ); */
/*     if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. */
/*     Currently, the list of possible types is: */

/*     (1)  The zero matrix. */
/*     (2)  The identity matrix. */
/*     (3)  A (transposed) Jordan block, with 1's on the diagonal. */

/*     (4)  A diagonal matrix with evenly spaced entries */
/*          1, ..., ULP  and random signs. */
/*          (ULP = (first number larger than 1) - 1 ) */
/*     (5)  A diagonal matrix with geometrically spaced entries */
/*          1, ..., ULP  and random signs. */
/*     (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP */
/*          and random signs. */

/*     (7)  Same as (4), but multiplied by a constant near */
/*          the overflow threshold */
/*     (8)  Same as (4), but multiplied by a constant near */
/*          the underflow threshold */

/*     (9)  A matrix of the form  U' T U, where U is orthogonal and */
/*          T has evenly spaced entries 1, ..., ULP with random signs */
/*          on the diagonal and random O(1) entries in the upper */
/*          triangle. */

/*     (10) A matrix of the form  U' T U, where U is orthogonal and */
/*          T has geometrically spaced entries 1, ..., ULP with random */
/*          signs on the diagonal and random O(1) entries in the upper */
/*          triangle. */

/*     (11) A matrix of the form  U' T U, where U is orthogonal and */
/*          T has "clustered" entries 1, ULP,..., ULP with random */
/*          signs on the diagonal and random O(1) entries in the upper */
/*          triangle. */

/*     (12) A matrix of the form  U' T U, where U is orthogonal and */
/*          T has real or complex conjugate paired eigenvalues randomly */
/*          chosen from ( ULP, 1 ) and random O(1) entries in the upper */
/*          triangle. */

/*     (13) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP */
/*          with random signs on the diagonal and random O(1) entries */
/*          in the upper triangle. */

/*     (14) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has geometrically spaced entries */
/*          1, ..., ULP with random signs on the diagonal and random */
/*          O(1) entries in the upper triangle. */

/*     (15) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP */
/*          with random signs on the diagonal and random O(1) entries */
/*          in the upper triangle. */

/*     (16) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has real or complex conjugate paired */
/*          eigenvalues randomly chosen from ( ULP, 1 ) and random */
/*          O(1) entries in the upper triangle. */

/*     (17) Same as (16), but multiplied by a constant */
/*          near the overflow threshold */
/*     (18) Same as (16), but multiplied by a constant */
/*          near the underflow threshold */

/*     (19) Nonsymmetric matrix with random entries chosen from (-1,1). */
/*          If N is at least 4, all entries in first two rows and last */
/*          row, and first column and last two columns are zero. */
/*     (20) Same as (19), but multiplied by a constant */
/*          near the overflow threshold */
/*     (21) Same as (19), but multiplied by a constant */
/*          near the underflow threshold */

/*     In addition, an input file will be read from logical unit number */
/*     NIUNIT. The file contains matrices along with precomputed */
/*     eigenvalues and reciprocal condition numbers for the eigenvalue */
/*     average and right invariant subspace. For these matrices, in */
/*     addition to tests (1) to (15) we will compute the following two */
/*     tests: */

/*    (16)  |RCONDE - RCDEIN| / cond(RCONDE) */

/*       RCONDE is the reciprocal average eigenvalue condition number */
/*       computed by SGEESX and RCDEIN (the precomputed true value) */
/*       is supplied as input.  cond(RCONDE) is the condition number */
/*       of RCONDE, and takes errors in computing RCONDE into account, */
/*       so that the resulting quantity should be O(ULP). cond(RCONDE) */
/*       is essentially given by norm(A)/RCONDV. */

/*    (17)  |RCONDV - RCDVIN| / cond(RCONDV) */

/*       RCONDV is the reciprocal right invariant subspace condition */
/*       number computed by SGEESX and RCDVIN (the precomputed true */
/*       value) is supplied as input. cond(RCONDV) is the condition */
/*       number of RCONDV, and takes errors in computing RCONDV into */
/*       account, so that the resulting quantity should be O(ULP). */
/*       cond(RCONDV) is essentially given by norm(A)/RCONDE. */

/*  Arguments */
/*  ========= */

/*  NSIZES  (input) INTEGER */
/*          The number of sizes of matrices to use.  NSIZES must be at */
/*          least zero. If it is zero, no randomly generated matrices */
/*          are tested, but any test matrices read from NIUNIT will be */
/*          tested. */

/*  NN      (input) INTEGER array, dimension (NSIZES) */
/*          An array containing the sizes to be used for the matrices. */
/*          Zero values will be skipped.  The values must be at least */
/*          zero. */

/*  NTYPES  (input) INTEGER */
/*          The number of elements in DOTYPE. NTYPES must be at least */
/*          zero. If it is zero, no randomly generated test matrices */
/*          are tested, but and test matrices read from NIUNIT will be */
/*          tested. If it is MAXTYP+1 and NSIZES is 1, then an */
/*          additional type, MAXTYP+1 is defined, which is to use */
/*          whatever matrix is in A.  This is only useful if */
/*          DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. . */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          If DOTYPE(j) is .TRUE., then for each size in NN a */
/*          matrix of that size and of type j will be generated. */
/*          If NTYPES is smaller than the maximum number of types */
/*          defined (PARAMETER MAXTYP), then types NTYPES+1 through */
/*          MAXTYP will not be generated.  If NTYPES is larger */
/*          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) */
/*          will be ignored. */

/*  ISEED   (input/output) INTEGER array, dimension (4) */
/*          On entry ISEED specifies the seed of the random number */
/*          generator. The array elements should be between 0 and 4095; */
/*          if not they will be reduced mod 4096.  Also, ISEED(4) must */
/*          be odd.  The random number generator uses a linear */
/*          congruential sequence limited to small integers, and so */
/*          should produce machine independent random numbers. The */
/*          values of ISEED are changed on exit, and can be used in the */
/*          next call to SDRVSX to continue the same random number */
/*          sequence. */

/*  THRESH  (input) REAL */
/*          A test will count as "failed" if the "error", computed as */
/*          described above, exceeds THRESH.  Note that the error */
/*          is scaled to be O(1), so THRESH should be a reasonably */
/*          small multiple of 1, e.g., 10 or 100.  In particular, */
/*          it should not depend on the precision (single vs. double) */
/*          or the size of the matrix.  It must be at least zero. */

/*  NIUNIT  (input) INTEGER */
/*          The FORTRAN unit number for reading in the data file of */
/*          problems to solve. */

/*  NOUNIT  (input) INTEGER */
/*          The FORTRAN unit number for printing out error messages */
/*          (e.g., if a routine returns INFO not equal to 0.) */

/*  A       (workspace) REAL array, dimension (LDA, max(NN)) */
/*          Used to hold the matrix whose eigenvalues are to be */
/*          computed.  On exit, A contains the last matrix actually used. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of A, and H. LDA must be at */
/*          least 1 and at least max( NN ). */

/*  H       (workspace) REAL array, dimension (LDA, max(NN)) */
/*          Another copy of the test matrix A, modified by SGEESX. */

/*  HT      (workspace) REAL array, dimension (LDA, max(NN)) */
/*          Yet another copy of the test matrix A, modified by SGEESX. */

/*  WR      (workspace) REAL array, dimension (max(NN)) */
/*  WI      (workspace) REAL array, dimension (max(NN)) */
/*          The real and imaginary parts of the eigenvalues of A. */
/*          On exit, WR + WI*i are the eigenvalues of the matrix in A. */

/*  WRT     (workspace) REAL array, dimension (max(NN)) */
/*  WIT     (workspace) REAL array, dimension (max(NN)) */
/*          Like WR, WI, these arrays contain the eigenvalues of A, */
/*          but those computed when SGEESX only computes a partial */
/*          eigendecomposition, i.e. not Schur vectors */

/*  WRTMP   (workspace) REAL array, dimension (max(NN)) */
/*  WITMP   (workspace) REAL array, dimension (max(NN)) */
/*          More temporary storage for eigenvalues. */

/*  VS      (workspace) REAL array, dimension (LDVS, max(NN)) */
/*          VS holds the computed Schur vectors. */

/*  LDVS    (input) INTEGER */
/*          Leading dimension of VS. Must be at least max(1,max(NN)). */

/*  VS1     (workspace) REAL array, dimension (LDVS, max(NN)) */
/*          VS1 holds another copy of the computed Schur vectors. */

/*  RESULT  (output) REAL array, dimension (17) */
/*          The values computed by the 17 tests described above. */
/*          The values are currently limited to 1/ulp, to avoid overflow. */

/*  WORK    (workspace) REAL array, dimension (LWORK) */

/*  LWORK   (input) INTEGER */
/*          The number of entries in WORK.  This must be at least */
/*          max(3*NN(j),2*NN(j)**2) for all j. */

/*  IWORK   (workspace) INTEGER array, dimension (max(NN)*max(NN)) */

/*  INFO    (output) INTEGER */
/*          If 0,  successful exit. */
/*            <0,  input parameter -INFO is incorrect */
/*            >0,  SLATMR, SLATMS, SLATME or SGET24 returned an error */
/*                 code and INFO is its absolute value */

/* ----------------------------------------------------------------------- */

/*     Some Local Variables and Parameters: */
/*     ---- ----- --------- --- ---------- */
/*     ZERO, ONE       Real 0 and 1. */
/*     MAXTYP          The number of types defined. */
/*     NMAX            Largest value in NN. */
/*     NERRS           The number of tests which have exceeded THRESH */
/*     COND, CONDS, */
/*     IMODE           Values to be passed to the matrix generators. */
/*     ANORM           Norm of A; passed to matrix generators. */

/*     OVFL, UNFL      Overflow and underflow thresholds. */
/*     ULP, ULPINV     Finest relative precision and its inverse. */
/*     RTULP, RTULPI   Square roots of the previous 4 values. */
/*             The following four arrays decode JTYPE: */
/*     KTYPE(j)        The general type (1-10) for type "j". */
/*     KMODE(j)        The MODE value to be passed to the matrix */
/*                     generator for type "j". */
/*     KMAGN(j)        The order of magnitude ( O(1), */
/*                     O(overflow^(1/2) ), O(underflow^(1/2) ) */
/*     KCONDS(j)       Selectw whether CONDS is to be 1 or */
/*                     1/sqrt(ulp).  (0 means irrelevant.) */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. Arrays in Common .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --nn;
    --dotype;
    --iseed;
    ht_dim1 = *lda;
    ht_offset = 1 + ht_dim1;
    ht -= ht_offset;
    h_dim1 = *lda;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --wr;
    --wi;
    --wrt;
    --wit;
    --wrtmp;
    --witmp;
    vs1_dim1 = *ldvs;
    vs1_offset = 1 + vs1_dim1;
    vs1 -= vs1_offset;
    vs_dim1 = *ldvs;
    vs_offset = 1 + vs_dim1;
    vs -= vs_offset;
    --result;
    --work;
    --iwork;
    --bwork;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "SX", (ftnlen)2, (ftnlen)2);

/*     Check for errors */

    ntestt = 0;
    ntestf = 0;
    *info = 0;

/*     Important constants */

    badnn = FALSE_;

/*     12 is the largest dimension in the input file of precomputed */
/*     problems */

    nmax = 12;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = nmax, i__3 = nn[j];
	nmax = max(i__2,i__3);
	if (nn[j] < 0) {
	    badnn = TRUE_;
	}
/* L10: */
    }

/*     Check for errors */

    if (*nsizes < 0) {
	*info = -1;
    } else if (badnn) {
	*info = -2;
    } else if (*ntypes < 0) {
	*info = -3;
    } else if (*thresh < 0.f) {
	*info = -6;
    } else if (*niunit <= 0) {
	*info = -7;
    } else if (*nounit <= 0) {
	*info = -8;
    } else if (*lda < 1 || *lda < nmax) {
	*info = -10;
    } else if (*ldvs < 1 || *ldvs < nmax) {
	*info = -20;
    } else /* if(complicated condition) */ {
/* Computing MAX */
/* Computing 2nd power */
	i__3 = nmax;
	i__1 = nmax * 3, i__2 = i__3 * i__3 << 1;
	if (max(i__1,i__2) > *lwork) {
	    *info = -24;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SDRVSX", &i__1);
	return 0;
    }

/*     If nothing to do check on NIUNIT */

    if (*nsizes == 0 || *ntypes == 0) {
	goto L150;
    }

/*     More Important constants */

    unfl = slamch_("Safe minimum");
    ovfl = 1.f / unfl;
    slabad_(&unfl, &ovfl);
    ulp = slamch_("Precision");
    ulpinv = 1.f / ulp;
    rtulp = sqrt(ulp);
    rtulpi = 1.f / rtulp;

/*     Loop over sizes, types */

    nerrs = 0;

    i__1 = *nsizes;
    for (jsize = 1; jsize <= i__1; ++jsize) {
	n = nn[jsize];
	if (*nsizes != 1) {
	    mtypes = min(21,*ntypes);
	} else {
	    mtypes = min(22,*ntypes);
	}

	i__2 = mtypes;
	for (jtype = 1; jtype <= i__2; ++jtype) {
	    if (! dotype[jtype]) {
		goto L130;
	    }

/*           Save ISEED in case of an error. */

	    for (j = 1; j <= 4; ++j) {
		ioldsd[j - 1] = iseed[j];
/* L20: */
	    }

/*           Compute "A" */

/*           Control parameters: */

/*           KMAGN  KCONDS  KMODE        KTYPE */
/*       =1  O(1)   1       clustered 1  zero */
/*       =2  large  large   clustered 2  identity */
/*       =3  small          exponential  Jordan */
/*       =4                 arithmetic   diagonal, (w/ eigenvalues) */
/*       =5                 random log   symmetric, w/ eigenvalues */
/*       =6                 random       general, w/ eigenvalues */
/*       =7                              random diagonal */
/*       =8                              random symmetric */
/*       =9                              random general */
/*       =10                             random triangular */

	    if (mtypes > 21) {
		goto L90;
	    }

	    itype = ktype[jtype - 1];
	    imode = kmode[jtype - 1];

/*           Compute norm */

	    switch (kmagn[jtype - 1]) {
		case 1:  goto L30;
		case 2:  goto L40;
		case 3:  goto L50;
	    }

L30:
	    anorm = 1.f;
	    goto L60;

L40:
	    anorm = ovfl * ulp;
	    goto L60;

L50:
	    anorm = unfl * ulpinv;
	    goto L60;

L60:

	    slaset_("Full", lda, &n, &c_b18, &c_b18, &a[a_offset], lda);
	    iinfo = 0;
	    cond = ulpinv;

/*           Special Matrices -- Identity & Jordan block */

/*              Zero */

	    if (itype == 1) {
		iinfo = 0;

	    } else if (itype == 2) {

/*              Identity */

		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    a[jcol + jcol * a_dim1] = anorm;
/* L70: */
		}

	    } else if (itype == 3) {

/*              Jordan Block */

		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    a[jcol + jcol * a_dim1] = anorm;
		    if (jcol > 1) {
			a[jcol + (jcol - 1) * a_dim1] = 1.f;
		    }
/* L80: */
		}

	    } else if (itype == 4) {

/*              Diagonal Matrix, [Eigen]values Specified */

		slatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, 
			&anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[n 
			+ 1], &iinfo);

	    } else if (itype == 5) {

/*              Symmetric, eigenvalues specified */

		slatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, 
			&anorm, &n, &n, "N", &a[a_offset], lda, &work[n + 1], 
			&iinfo);

	    } else if (itype == 6) {

/*              General, eigenvalues specified */

		if (kconds[jtype - 1] == 1) {
		    conds = 1.f;
		} else if (kconds[jtype - 1] == 2) {
		    conds = rtulpi;
		} else {
		    conds = 0.f;
		}

		*(unsigned char *)&adumma[0] = ' ';
		slatme_(&n, "S", &iseed[1], &work[1], &imode, &cond, &c_b32, 
			adumma, "T", "T", "T", &work[n + 1], &c__4, &conds, &
			n, &n, &anorm, &a[a_offset], lda, &work[(n << 1) + 1], 
			 &iinfo);

	    } else if (itype == 7) {

/*              Diagonal, random eigenvalues */

		slatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &c__0, &
			c__0, &c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[
			1], &iinfo);

	    } else if (itype == 8) {

/*              Symmetric, random eigenvalues */

		slatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &n, &
			c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else if (itype == 9) {

/*              General, random eigenvalues */

		slatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &n, &
			c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);
		if (n >= 4) {
		    slaset_("Full", &c__2, &n, &c_b18, &c_b18, &a[a_offset], 
			    lda);
		    i__3 = n - 3;
		    slaset_("Full", &i__3, &c__1, &c_b18, &c_b18, &a[a_dim1 + 
			    3], lda);
		    i__3 = n - 3;
		    slaset_("Full", &i__3, &c__2, &c_b18, &c_b18, &a[(n - 1) *
			     a_dim1 + 3], lda);
		    slaset_("Full", &c__1, &n, &c_b18, &c_b18, &a[n + a_dim1], 
			     lda);
		}

	    } else if (itype == 10) {

/*              Triangular, random eigenvalues */

		slatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &c__0, &
			c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else {

		iinfo = 1;
	    }

	    if (iinfo != 0) {
		io___32.ciunit = *nounit;
		s_wsfe(&io___32);
		do_fio(&c__1, "Generator", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		return 0;
	    }

L90:

/*           Test for minimal and generous workspace */

	    for (iwk = 1; iwk <= 2; ++iwk) {
		if (iwk == 1) {
		    nnwork = n * 3;
		} else {
/* Computing MAX */
		    i__3 = n * 3, i__4 = (n << 1) * n;
		    nnwork = max(i__3,i__4);
		}
		nnwork = max(nnwork,1);

		sget24_(&c_false, &jtype, thresh, ioldsd, nounit, &n, &a[
			a_offset], lda, &h__[h_offset], &ht[ht_offset], &wr[1]
, &wi[1], &wrt[1], &wit[1], &wrtmp[1], &witmp[1], &vs[
			vs_offset], ldvs, &vs1[vs1_offset], &rcdein, &rcdvin, 
			&nslct, islct, &result[1], &work[1], &nnwork, &iwork[
			1], &bwork[1], info);

/*              Check for RESULT(j) > THRESH */

		ntest = 0;
		nfail = 0;
		for (j = 1; j <= 15; ++j) {
		    if (result[j] >= 0.f) {
			++ntest;
		    }
		    if (result[j] >= *thresh) {
			++nfail;
		    }
/* L100: */
		}

		if (nfail > 0) {
		    ++ntestf;
		}
		if (ntestf == 1) {
		    io___41.ciunit = *nounit;
		    s_wsfe(&io___41);
		    do_fio(&c__1, path, (ftnlen)3);
		    e_wsfe();
		    io___42.ciunit = *nounit;
		    s_wsfe(&io___42);
		    e_wsfe();
		    io___43.ciunit = *nounit;
		    s_wsfe(&io___43);
		    e_wsfe();
		    io___44.ciunit = *nounit;
		    s_wsfe(&io___44);
		    e_wsfe();
		    io___45.ciunit = *nounit;
		    s_wsfe(&io___45);
		    do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(real));
		    e_wsfe();
		    io___46.ciunit = *nounit;
		    s_wsfe(&io___46);
		    e_wsfe();
		    ntestf = 2;
		}

		for (j = 1; j <= 15; ++j) {
		    if (result[j] >= *thresh) {
			io___47.ciunit = *nounit;
			s_wsfe(&io___47);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&iwk, (ftnlen)sizeof(integer));
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof(real)
				);
			e_wsfe();
		    }
/* L110: */
		}

		nerrs += nfail;
		ntestt += ntest;

/* L120: */
	    }
L130:
	    ;
	}
/* L140: */
    }

L150:

/*     Read in data from file to check accuracy of condition estimation */
/*     Read input data until N=0 */

    jtype = 0;
L160:
    io___48.ciunit = *niunit;
    i__1 = s_rsle(&io___48);
    if (i__1 != 0) {
	goto L200;
    }
    i__1 = do_lio(&c__3, &c__1, (char *)&n, (ftnlen)sizeof(integer));
    if (i__1 != 0) {
	goto L200;
    }
    i__1 = do_lio(&c__3, &c__1, (char *)&nslct, (ftnlen)sizeof(integer));
    if (i__1 != 0) {
	goto L200;
    }
    i__1 = e_rsle();
    if (i__1 != 0) {
	goto L200;
    }
    if (n == 0) {
	goto L200;
    }
    ++jtype;
    iseed[1] = jtype;
    if (nslct > 0) {
	io___49.ciunit = *niunit;
	s_rsle(&io___49);
	i__1 = nslct;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    do_lio(&c__3, &c__1, (char *)&islct[i__ - 1], (ftnlen)sizeof(
		    integer));
	}
	e_rsle();
    }
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	io___51.ciunit = *niunit;
	s_rsle(&io___51);
	i__2 = n;
	for (j = 1; j <= i__2; ++j) {
	    do_lio(&c__4, &c__1, (char *)&a[i__ + j * a_dim1], (ftnlen)sizeof(
		    real));
	}
	e_rsle();
/* L170: */
    }
    io___52.ciunit = *niunit;
    s_rsle(&io___52);
    do_lio(&c__4, &c__1, (char *)&rcdein, (ftnlen)sizeof(real));
    do_lio(&c__4, &c__1, (char *)&rcdvin, (ftnlen)sizeof(real));
    e_rsle();

    sget24_(&c_true, &c__22, thresh, &iseed[1], nounit, &n, &a[a_offset], lda, 
	     &h__[h_offset], &ht[ht_offset], &wr[1], &wi[1], &wrt[1], &wit[1], 
	     &wrtmp[1], &witmp[1], &vs[vs_offset], ldvs, &vs1[vs1_offset], &
	    rcdein, &rcdvin, &nslct, islct, &result[1], &work[1], lwork, &
	    iwork[1], &bwork[1], info);

/*     Check for RESULT(j) > THRESH */

    ntest = 0;
    nfail = 0;
    for (j = 1; j <= 17; ++j) {
	if (result[j] >= 0.f) {
	    ++ntest;
	}
	if (result[j] >= *thresh) {
	    ++nfail;
	}
/* L180: */
    }

    if (nfail > 0) {
	++ntestf;
    }
    if (ntestf == 1) {
	io___53.ciunit = *nounit;
	s_wsfe(&io___53);
	do_fio(&c__1, path, (ftnlen)3);
	e_wsfe();
	io___54.ciunit = *nounit;
	s_wsfe(&io___54);
	e_wsfe();
	io___55.ciunit = *nounit;
	s_wsfe(&io___55);
	e_wsfe();
	io___56.ciunit = *nounit;
	s_wsfe(&io___56);
	e_wsfe();
	io___57.ciunit = *nounit;
	s_wsfe(&io___57);
	do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(real));
	e_wsfe();
	io___58.ciunit = *nounit;
	s_wsfe(&io___58);
	e_wsfe();
	ntestf = 2;
    }
    for (j = 1; j <= 17; ++j) {
	if (result[j] >= *thresh) {
	    io___59.ciunit = *nounit;
	    s_wsfe(&io___59);
	    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
	    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
	    do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer));
	    do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof(real));
	    e_wsfe();
	}
/* L190: */
    }

    nerrs += nfail;
    ntestt += ntest;
    goto L160;
L200:

/*     Summary */

    slasum_(path, nounit, &nerrs, &ntestt);



    return 0;

/*     End of SDRVSX */

} /* sdrvsx_ */
예제 #10
0
/* Subroutine */ int sdrvev_(integer *nsizes, integer *nn, integer *ntypes, 
	logical *dotype, integer *iseed, real *thresh, integer *nounit, real *
	a, integer *lda, real *h__, real *wr, real *wi, real *wr1, real *wi1, 
	real *vl, integer *ldvl, real *vr, integer *ldvr, real *lre, integer *
	ldlre, real *result, real *work, integer *nwork, integer *iwork, 
	integer *info)
{
    /* Initialized data */

    static integer ktype[21] = { 1,2,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,9,9,9 };
    static integer kmagn[21] = { 1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,2,3,1,2,3 };
    static integer kmode[21] = { 0,0,0,4,3,1,4,4,4,3,1,5,4,3,1,5,5,5,4,3,1 };
    static integer kconds[21] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,0,0,0 };

    /* Format strings */
    static char fmt_9993[] = "(\002 SDRVEV: \002,a,\002 returned INFO=\002,i"
	    "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED="
	    "(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9999[] = "(/1x,a3,\002 -- Real Eigenvalue-Eigenvector De"
	    "composition\002,\002 Driver\002,/\002 Matrix types (see SDRVEV f"
	    "or details): \002)";
    static char fmt_9998[] = "(/\002 Special Matrices:\002,/\002  1=Zero mat"
	    "rix.             \002,\002           \002,\002  5=Diagonal: geom"
	    "etr. spaced entries.\002,/\002  2=Identity matrix.              "
	    "      \002,\002  6=Diagona\002,\002l: clustered entries.\002,"
	    "/\002  3=Transposed Jordan block.  \002,\002          \002,\002 "
	    " 7=Diagonal: large, evenly spaced.\002,/\002  \002,\0024=Diagona"
	    "l: evenly spaced entries.    \002,\002  8=Diagonal: s\002,\002ma"
	    "ll, evenly spaced.\002)";
    static char fmt_9997[] = "(\002 Dense, Non-Symmetric Matrices:\002,/\002"
	    "  9=Well-cond., ev\002,\002enly spaced eigenvals.\002,\002 14=Il"
	    "l-cond., geomet. spaced e\002,\002igenals.\002,/\002 10=Well-con"
	    "d., geom. spaced eigenvals. \002,\002 15=Ill-conditioned, cluste"
	    "red e.vals.\002,/\002 11=Well-cond\002,\002itioned, clustered e."
	    "vals. \002,\002 16=Ill-cond., random comp\002,\002lex \002,/\002"
	    " 12=Well-cond., random complex \002,6x,\002   \002,\002 17=Ill-c"
	    "ond., large rand. complx \002,/\002 13=Ill-condi\002,\002tioned,"
	    " evenly spaced.     \002,\002 18=Ill-cond., small rand.\002,\002"
	    " complx \002)";
    static char fmt_9996[] = "(\002 19=Matrix with random O(1) entries.   "
	    " \002,\002 21=Matrix \002,\002with small random entries.\002,"
	    "/\002 20=Matrix with large ran\002,\002dom entries.   \002,/)";
    static char fmt_9995[] = "(\002 Tests performed with test threshold ="
	    "\002,f8.2,//\002 1 = | A VR - VR W | / ( n |A| ulp ) \002,/\002 "
	    "2 = | transpose(A) VL - VL W | / ( n |A| ulp ) \002,/\002 3 = | "
	    "|VR(i)| - 1 | / ulp \002,/\002 4 = | |VL(i)| - 1 | / ulp \002,"
	    "/\002 5 = 0 if W same no matter if VR or VL computed,\002,\002 1"
	    "/ulp otherwise\002,/\002 6 = 0 if VR same no matter if VL comput"
	    "ed,\002,\002  1/ulp otherwise\002,/\002 7 = 0 if VL same no matt"
	    "er if VR computed,\002,\002  1/ulp otherwise\002,/)";
    static char fmt_9994[] = "(\002 N=\002,i5,\002, IWK=\002,i2,\002, seed"
	    "=\002,4(i4,\002,\002),\002 type \002,i2,\002, test(\002,i2,\002)="
	    "\002,g10.3)";

    /* System generated locals */
    integer a_dim1, a_offset, h_dim1, h_offset, lre_dim1, lre_offset, vl_dim1,
	     vl_offset, vr_dim1, vr_offset, i__1, i__2, i__3, i__4;
    real r__1, r__2, r__3, r__4, r__5;

    /* Local variables */
    integer j, n, jj;
    real dum[1], res[2];
    integer iwk;
    real ulp, vmx, cond;
    integer jcol;
    char path[3];
    integer nmax;
    real unfl, ovfl, tnrm, vrmx, vtst;
    extern doublereal snrm2_(integer *, real *, integer *);
    logical badnn;
    integer nfail, imode, iinfo;
    real conds;
    extern /* Subroutine */ int sget22_(char *, char *, char *, integer *, 
	    real *, integer *, real *, integer *, real *, real *, real *, 
	    real *), sgeev_(char *, char *, integer *, 
	     real *, integer *, real *, real *, real *, integer *, real *, 
	    integer *, real *, integer *, integer *);
    real anorm;
    integer jsize, nerrs, itype, jtype, ntest;
    real rtulp;
    extern doublereal slapy2_(real *, real *);
    extern /* Subroutine */ int slabad_(real *, real *);
    char adumma[1*1];
    extern doublereal slamch_(char *);
    integer idumma[1];
    integer ioldsd[4];
    extern /* Subroutine */ int slatme_(integer *, char *, integer *, real *, 
	    integer *, real *, real *, char *, char *, char *, char *, real *, 
	     integer *, real *, integer *, integer *, real *, real *, integer 
	    *, real *, integer *), 
	    slacpy_(char *, integer *, integer *, real *, integer *, real *, 
	    integer *), slaset_(char *, integer *, integer *, real *, 
	    real *, real *, integer *), slatmr_(integer *, integer *, 
	    char *, integer *, char *, real *, integer *, real *, real *, 
	    char *, char *, real *, integer *, real *, real *, integer *, 
	    real *, char *, integer *, integer *, integer *, real *, real *, 
	    char *, real *, integer *, integer *, integer *);
    integer ntestf;
    extern /* Subroutine */ int slasum_(char *, integer *, integer *, integer 
	    *), slatms_(integer *, integer *, char *, integer *, char 
	    *, real *, integer *, real *, real *, integer *, integer *, char *
, real *, integer *, real *, integer *);
    real ulpinv;
    integer nnwork;
    real rtulpi;
    integer mtypes, ntestt;

    /* Fortran I/O blocks */
    static cilist io___32 = { 0, 0, 0, fmt_9993, 0 };
    static cilist io___35 = { 0, 0, 0, fmt_9993, 0 };
    static cilist io___43 = { 0, 0, 0, fmt_9993, 0 };
    static cilist io___44 = { 0, 0, 0, fmt_9993, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9993, 0 };
    static cilist io___48 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___49 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___50 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___51 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___52 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___53 = { 0, 0, 0, fmt_9994, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*     SDRVEV  checks the nonsymmetric eigenvalue problem driver SGEEV. */

/*     When SDRVEV is called, a number of matrix "sizes" ("n's") and a */
/*     number of matrix "types" are specified.  For each size ("n") */
/*     and each type of matrix, one matrix will be generated and used */
/*     to test the nonsymmetric eigenroutines.  For each matrix, 7 */
/*     tests will be performed: */

/*     (1)     | A * VR - VR * W | / ( n |A| ulp ) */

/*       Here VR is the matrix of unit right eigenvectors. */
/*       W is a block diagonal matrix, with a 1x1 block for each */
/*       real eigenvalue and a 2x2 block for each complex conjugate */
/*       pair.  If eigenvalues j and j+1 are a complex conjugate pair, */
/*       so WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the */
/*       2 x 2 block corresponding to the pair will be: */

/*               (  wr  wi  ) */
/*               ( -wi  wr  ) */

/*       Such a block multiplying an n x 2 matrix  ( ur ui ) on the */
/*       right will be the same as multiplying  ur + i*ui  by  wr + i*wi. */

/*     (2)     | A**H * VL - VL * W**H | / ( n |A| ulp ) */

/*       Here VL is the matrix of unit left eigenvectors, A**H is the */
/*       conjugate transpose of A, and W is as above. */

/*     (3)     | |VR(i)| - 1 | / ulp and whether largest component real */

/*       VR(i) denotes the i-th column of VR. */

/*     (4)     | |VL(i)| - 1 | / ulp and whether largest component real */

/*       VL(i) denotes the i-th column of VL. */

/*     (5)     W(full) = W(partial) */

/*       W(full) denotes the eigenvalues computed when both VR and VL */
/*       are also computed, and W(partial) denotes the eigenvalues */
/*       computed when only W, only W and VR, or only W and VL are */
/*       computed. */

/*     (6)     VR(full) = VR(partial) */

/*       VR(full) denotes the right eigenvectors computed when both VR */
/*       and VL are computed, and VR(partial) denotes the result */
/*       when only VR is computed. */

/*      (7)     VL(full) = VL(partial) */

/*       VL(full) denotes the left eigenvectors computed when both VR */
/*       and VL are also computed, and VL(partial) denotes the result */
/*       when only VL is computed. */

/*     The "sizes" are specified by an array NN(1:NSIZES); the value of */
/*     each element NN(j) specifies one size. */
/*     The "types" are specified by a logical array DOTYPE( 1:NTYPES ); */
/*     if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. */
/*     Currently, the list of possible types is: */

/*     (1)  The zero matrix. */
/*     (2)  The identity matrix. */
/*     (3)  A (transposed) Jordan block, with 1's on the diagonal. */

/*     (4)  A diagonal matrix with evenly spaced entries */
/*          1, ..., ULP  and random signs. */
/*          (ULP = (first number larger than 1) - 1 ) */
/*     (5)  A diagonal matrix with geometrically spaced entries */
/*          1, ..., ULP  and random signs. */
/*     (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP */
/*          and random signs. */

/*     (7)  Same as (4), but multiplied by a constant near */
/*          the overflow threshold */
/*     (8)  Same as (4), but multiplied by a constant near */
/*          the underflow threshold */

/*     (9)  A matrix of the form  U' T U, where U is orthogonal and */
/*          T has evenly spaced entries 1, ..., ULP with random signs */
/*          on the diagonal and random O(1) entries in the upper */
/*          triangle. */

/*     (10) A matrix of the form  U' T U, where U is orthogonal and */
/*          T has geometrically spaced entries 1, ..., ULP with random */
/*          signs on the diagonal and random O(1) entries in the upper */
/*          triangle. */

/*     (11) A matrix of the form  U' T U, where U is orthogonal and */
/*          T has "clustered" entries 1, ULP,..., ULP with random */
/*          signs on the diagonal and random O(1) entries in the upper */
/*          triangle. */

/*     (12) A matrix of the form  U' T U, where U is orthogonal and */
/*          T has real or complex conjugate paired eigenvalues randomly */
/*          chosen from ( ULP, 1 ) and random O(1) entries in the upper */
/*          triangle. */

/*     (13) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP */
/*          with random signs on the diagonal and random O(1) entries */
/*          in the upper triangle. */

/*     (14) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has geometrically spaced entries */
/*          1, ..., ULP with random signs on the diagonal and random */
/*          O(1) entries in the upper triangle. */

/*     (15) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP */
/*          with random signs on the diagonal and random O(1) entries */
/*          in the upper triangle. */

/*     (16) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has real or complex conjugate paired */
/*          eigenvalues randomly chosen from ( ULP, 1 ) and random */
/*          O(1) entries in the upper triangle. */

/*     (17) Same as (16), but multiplied by a constant */
/*          near the overflow threshold */
/*     (18) Same as (16), but multiplied by a constant */
/*          near the underflow threshold */

/*     (19) Nonsymmetric matrix with random entries chosen from (-1,1). */
/*          If N is at least 4, all entries in first two rows and last */
/*          row, and first column and last two columns are zero. */
/*     (20) Same as (19), but multiplied by a constant */
/*          near the overflow threshold */
/*     (21) Same as (19), but multiplied by a constant */
/*          near the underflow threshold */

/*  Arguments */
/*  ========== */

/*  NSIZES  (input) INTEGER */
/*          The number of sizes of matrices to use.  If it is zero, */
/*          SDRVEV does nothing.  It must be at least zero. */

/*  NN      (input) INTEGER array, dimension (NSIZES) */
/*          An array containing the sizes to be used for the matrices. */
/*          Zero values will be skipped.  The values must be at least */
/*          zero. */

/*  NTYPES  (input) INTEGER */
/*          The number of elements in DOTYPE.   If it is zero, SDRVEV */
/*          does nothing.  It must be at least zero.  If it is MAXTYP+1 */
/*          and NSIZES is 1, then an additional type, MAXTYP+1 is */
/*          defined, which is to use whatever matrix is in A.  This */
/*          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and */
/*          DOTYPE(MAXTYP+1) is .TRUE. . */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          If DOTYPE(j) is .TRUE., then for each size in NN a */
/*          matrix of that size and of type j will be generated. */
/*          If NTYPES is smaller than the maximum number of types */
/*          defined (PARAMETER MAXTYP), then types NTYPES+1 through */
/*          MAXTYP will not be generated.  If NTYPES is larger */
/*          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) */
/*          will be ignored. */

/*  ISEED   (input/output) INTEGER array, dimension (4) */
/*          On entry ISEED specifies the seed of the random number */
/*          generator. The array elements should be between 0 and 4095; */
/*          if not they will be reduced mod 4096.  Also, ISEED(4) must */
/*          be odd.  The random number generator uses a linear */
/*          congruential sequence limited to small integers, and so */
/*          should produce machine independent random numbers. The */
/*          values of ISEED are changed on exit, and can be used in the */
/*          next call to SDRVEV to continue the same random number */
/*          sequence. */

/*  THRESH  (input) REAL */
/*          A test will count as "failed" if the "error", computed as */
/*          described above, exceeds THRESH.  Note that the error */
/*          is scaled to be O(1), so THRESH should be a reasonably */
/*          small multiple of 1, e.g., 10 or 100.  In particular, */
/*          it should not depend on the precision (single vs. double) */
/*          or the size of the matrix.  It must be at least zero. */

/*  NOUNIT  (input) INTEGER */
/*          The FORTRAN unit number for printing out error messages */
/*          (e.g., if a routine returns INFO not equal to 0.) */

/*  A       (workspace) REAL array, dimension (LDA, max(NN)) */
/*          Used to hold the matrix whose eigenvalues are to be */
/*          computed.  On exit, A contains the last matrix actually used. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of A, and H. LDA must be at */
/*          least 1 and at least max(NN). */

/*  H       (workspace) REAL array, dimension (LDA, max(NN)) */
/*          Another copy of the test matrix A, modified by SGEEV. */

/*  WR      (workspace) REAL array, dimension (max(NN)) */
/*  WI      (workspace) REAL array, dimension (max(NN)) */
/*          The real and imaginary parts of the eigenvalues of A. */
/*          On exit, WR + WI*i are the eigenvalues of the matrix in A. */

/*  WR1     (workspace) REAL array, dimension (max(NN)) */
/*  WI1     (workspace) REAL array, dimension (max(NN)) */
/*          Like WR, WI, these arrays contain the eigenvalues of A, */
/*          but those computed when SGEEV only computes a partial */
/*          eigendecomposition, i.e. not the eigenvalues and left */
/*          and right eigenvectors. */

/*  VL      (workspace) REAL array, dimension (LDVL, max(NN)) */
/*          VL holds the computed left eigenvectors. */

/*  LDVL    (input) INTEGER */
/*          Leading dimension of VL. Must be at least max(1,max(NN)). */

/*  VR      (workspace) REAL array, dimension (LDVR, max(NN)) */
/*          VR holds the computed right eigenvectors. */

/*  LDVR    (input) INTEGER */
/*          Leading dimension of VR. Must be at least max(1,max(NN)). */

/*  LRE     (workspace) REAL array, dimension (LDLRE,max(NN)) */
/*          LRE holds the computed right or left eigenvectors. */

/*  LDLRE   (input) INTEGER */
/*          Leading dimension of LRE. Must be at least max(1,max(NN)). */

/*  RESULT  (output) REAL array, dimension (7) */
/*          The values computed by the seven tests described above. */
/*          The values are currently limited to 1/ulp, to avoid overflow. */

/*  WORK    (workspace) REAL array, dimension (NWORK) */

/*  NWORK   (input) INTEGER */
/*          The number of entries in WORK.  This must be at least */
/*          5*NN(j)+2*NN(j)**2 for all j. */

/*  IWORK   (workspace) INTEGER array, dimension (max(NN)) */

/*  INFO    (output) INTEGER */
/*          If 0, then everything ran OK. */
/*           -1: NSIZES < 0 */
/*           -2: Some NN(j) < 0 */
/*           -3: NTYPES < 0 */
/*           -6: THRESH < 0 */
/*           -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). */
/*          -16: LDVL < 1 or LDVL < NMAX, where NMAX is max( NN(j) ). */
/*          -18: LDVR < 1 or LDVR < NMAX, where NMAX is max( NN(j) ). */
/*          -20: LDLRE < 1 or LDLRE < NMAX, where NMAX is max( NN(j) ). */
/*          -23: NWORK too small. */
/*          If  SLATMR, SLATMS, SLATME or SGEEV returns an error code, */
/*              the absolute value of it is returned. */

/* ----------------------------------------------------------------------- */

/*     Some Local Variables and Parameters: */
/*     ---- ----- --------- --- ---------- */

/*     ZERO, ONE       Real 0 and 1. */
/*     MAXTYP          The number of types defined. */
/*     NMAX            Largest value in NN. */
/*     NERRS           The number of tests which have exceeded THRESH */
/*     COND, CONDS, */
/*     IMODE           Values to be passed to the matrix generators. */
/*     ANORM           Norm of A; passed to matrix generators. */

/*     OVFL, UNFL      Overflow and underflow thresholds. */
/*     ULP, ULPINV     Finest relative precision and its inverse. */
/*     RTULP, RTULPI   Square roots of the previous 4 values. */

/*             The following four arrays decode JTYPE: */
/*     KTYPE(j)        The general type (1-10) for type "j". */
/*     KMODE(j)        The MODE value to be passed to the matrix */
/*                     generator for type "j". */
/*     KMAGN(j)        The order of magnitude ( O(1), */
/*                     O(overflow^(1/2) ), O(underflow^(1/2) ) */
/*     KCONDS(j)       Selectw whether CONDS is to be 1 or */
/*                     1/sqrt(ulp).  (0 means irrelevant.) */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --nn;
    --dotype;
    --iseed;
    h_dim1 = *lda;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --wr;
    --wi;
    --wr1;
    --wi1;
    vl_dim1 = *ldvl;
    vl_offset = 1 + vl_dim1;
    vl -= vl_offset;
    vr_dim1 = *ldvr;
    vr_offset = 1 + vr_dim1;
    vr -= vr_offset;
    lre_dim1 = *ldlre;
    lre_offset = 1 + lre_dim1;
    lre -= lre_offset;
    --result;
    --work;
    --iwork;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "EV", (ftnlen)2, (ftnlen)2);

/*     Check for errors */

    ntestt = 0;
    ntestf = 0;
    *info = 0;

/*     Important constants */

    badnn = FALSE_;
    nmax = 0;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = nmax, i__3 = nn[j];
	nmax = max(i__2,i__3);
	if (nn[j] < 0) {
	    badnn = TRUE_;
	}
/* L10: */
    }

/*     Check for errors */

    if (*nsizes < 0) {
	*info = -1;
    } else if (badnn) {
	*info = -2;
    } else if (*ntypes < 0) {
	*info = -3;
    } else if (*thresh < 0.f) {
	*info = -6;
    } else if (*nounit <= 0) {
	*info = -7;
    } else if (*lda < 1 || *lda < nmax) {
	*info = -9;
    } else if (*ldvl < 1 || *ldvl < nmax) {
	*info = -16;
    } else if (*ldvr < 1 || *ldvr < nmax) {
	*info = -18;
    } else if (*ldlre < 1 || *ldlre < nmax) {
	*info = -20;
    } else /* if(complicated condition) */ {
/* Computing 2nd power */
	i__1 = nmax;
	if (nmax * 5 + (i__1 * i__1 << 1) > *nwork) {
	    *info = -23;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SDRVEV", &i__1);
	return 0;
    }

/*     Quick return if nothing to do */

    if (*nsizes == 0 || *ntypes == 0) {
	return 0;
    }

/*     More Important constants */

    unfl = slamch_("Safe minimum");
    ovfl = 1.f / unfl;
    slabad_(&unfl, &ovfl);
    ulp = slamch_("Precision");
    ulpinv = 1.f / ulp;
    rtulp = sqrt(ulp);
    rtulpi = 1.f / rtulp;

/*     Loop over sizes, types */

    nerrs = 0;

    i__1 = *nsizes;
    for (jsize = 1; jsize <= i__1; ++jsize) {
	n = nn[jsize];
	if (*nsizes != 1) {
	    mtypes = min(21,*ntypes);
	} else {
	    mtypes = min(22,*ntypes);
	}

	i__2 = mtypes;
	for (jtype = 1; jtype <= i__2; ++jtype) {
	    if (! dotype[jtype]) {
		goto L260;
	    }

/*           Save ISEED in case of an error. */

	    for (j = 1; j <= 4; ++j) {
		ioldsd[j - 1] = iseed[j];
/* L20: */
	    }

/*           Compute "A" */

/*           Control parameters: */

/*           KMAGN  KCONDS  KMODE        KTYPE */
/*       =1  O(1)   1       clustered 1  zero */
/*       =2  large  large   clustered 2  identity */
/*       =3  small          exponential  Jordan */
/*       =4                 arithmetic   diagonal, (w/ eigenvalues) */
/*       =5                 random log   symmetric, w/ eigenvalues */
/*       =6                 random       general, w/ eigenvalues */
/*       =7                              random diagonal */
/*       =8                              random symmetric */
/*       =9                              random general */
/*       =10                             random triangular */

	    if (mtypes > 21) {
		goto L90;
	    }

	    itype = ktype[jtype - 1];
	    imode = kmode[jtype - 1];

/*           Compute norm */

	    switch (kmagn[jtype - 1]) {
		case 1:  goto L30;
		case 2:  goto L40;
		case 3:  goto L50;
	    }

L30:
	    anorm = 1.f;
	    goto L60;

L40:
	    anorm = ovfl * ulp;
	    goto L60;

L50:
	    anorm = unfl * ulpinv;
	    goto L60;

L60:

	    slaset_("Full", lda, &n, &c_b17, &c_b17, &a[a_offset], lda);
	    iinfo = 0;
	    cond = ulpinv;

/*           Special Matrices -- Identity & Jordan block */

/*              Zero */

	    if (itype == 1) {
		iinfo = 0;

	    } else if (itype == 2) {

/*              Identity */

		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    a[jcol + jcol * a_dim1] = anorm;
/* L70: */
		}

	    } else if (itype == 3) {

/*              Jordan Block */

		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    a[jcol + jcol * a_dim1] = anorm;
		    if (jcol > 1) {
			a[jcol + (jcol - 1) * a_dim1] = 1.f;
		    }
/* L80: */
		}

	    } else if (itype == 4) {

/*              Diagonal Matrix, [Eigen]values Specified */

		slatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, 
			&anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[n 
			+ 1], &iinfo);

	    } else if (itype == 5) {

/*              Symmetric, eigenvalues specified */

		slatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, 
			&anorm, &n, &n, "N", &a[a_offset], lda, &work[n + 1], 
			&iinfo);

	    } else if (itype == 6) {

/*              General, eigenvalues specified */

		if (kconds[jtype - 1] == 1) {
		    conds = 1.f;
		} else if (kconds[jtype - 1] == 2) {
		    conds = rtulpi;
		} else {
		    conds = 0.f;
		}

		*(unsigned char *)&adumma[0] = ' ';
		slatme_(&n, "S", &iseed[1], &work[1], &imode, &cond, &c_b31, 
			adumma, "T", "T", "T", &work[n + 1], &c__4, &conds, &
			n, &n, &anorm, &a[a_offset], lda, &work[(n << 1) + 1], 
			 &iinfo);

	    } else if (itype == 7) {

/*              Diagonal, random eigenvalues */

		slatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b31, 
			&c_b31, "T", "N", &work[n + 1], &c__1, &c_b31, &work[(
			n << 1) + 1], &c__1, &c_b31, "N", idumma, &c__0, &
			c__0, &c_b17, &anorm, "NO", &a[a_offset], lda, &iwork[
			1], &iinfo);

	    } else if (itype == 8) {

/*              Symmetric, random eigenvalues */

		slatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b31, 
			&c_b31, "T", "N", &work[n + 1], &c__1, &c_b31, &work[(
			n << 1) + 1], &c__1, &c_b31, "N", idumma, &n, &n, &
			c_b17, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else if (itype == 9) {

/*              General, random eigenvalues */

		slatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b31, 
			&c_b31, "T", "N", &work[n + 1], &c__1, &c_b31, &work[(
			n << 1) + 1], &c__1, &c_b31, "N", idumma, &n, &n, &
			c_b17, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);
		if (n >= 4) {
		    slaset_("Full", &c__2, &n, &c_b17, &c_b17, &a[a_offset], 
			    lda);
		    i__3 = n - 3;
		    slaset_("Full", &i__3, &c__1, &c_b17, &c_b17, &a[a_dim1 + 
			    3], lda);
		    i__3 = n - 3;
		    slaset_("Full", &i__3, &c__2, &c_b17, &c_b17, &a[(n - 1) *
			     a_dim1 + 3], lda);
		    slaset_("Full", &c__1, &n, &c_b17, &c_b17, &a[n + a_dim1], 
			     lda);
		}

	    } else if (itype == 10) {

/*              Triangular, random eigenvalues */

		slatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b31, 
			&c_b31, "T", "N", &work[n + 1], &c__1, &c_b31, &work[(
			n << 1) + 1], &c__1, &c_b31, "N", idumma, &n, &c__0, &
			c_b17, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else {

		iinfo = 1;
	    }

	    if (iinfo != 0) {
		io___32.ciunit = *nounit;
		s_wsfe(&io___32);
		do_fio(&c__1, "Generator", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		return 0;
	    }

L90:

/*           Test for minimal and generous workspace */

	    for (iwk = 1; iwk <= 2; ++iwk) {
		if (iwk == 1) {
		    nnwork = n << 2;
		} else {
/* Computing 2nd power */
		    i__3 = n;
		    nnwork = n * 5 + (i__3 * i__3 << 1);
		}
		nnwork = max(nnwork,1);

/*              Initialize RESULT */

		for (j = 1; j <= 7; ++j) {
		    result[j] = -1.f;
/* L100: */
		}

/*              Compute eigenvalues and eigenvectors, and test them */

		slacpy_("F", &n, &n, &a[a_offset], lda, &h__[h_offset], lda);
		sgeev_("V", "V", &n, &h__[h_offset], lda, &wr[1], &wi[1], &vl[
			vl_offset], ldvl, &vr[vr_offset], ldvr, &work[1], &
			nnwork, &iinfo);
		if (iinfo != 0) {
		    result[1] = ulpinv;
		    io___35.ciunit = *nounit;
		    s_wsfe(&io___35);
		    do_fio(&c__1, "SGEEV1", (ftnlen)6);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    goto L220;
		}

/*              Do Test (1) */

		sget22_("N", "N", "N", &n, &a[a_offset], lda, &vr[vr_offset], 
			ldvr, &wr[1], &wi[1], &work[1], res);
		result[1] = res[0];

/*              Do Test (2) */

		sget22_("T", "N", "T", &n, &a[a_offset], lda, &vl[vl_offset], 
			ldvl, &wr[1], &wi[1], &work[1], res);
		result[2] = res[0];

/*              Do Test (3) */

		i__3 = n;
		for (j = 1; j <= i__3; ++j) {
		    tnrm = 1.f;
		    if (wi[j] == 0.f) {
			tnrm = snrm2_(&n, &vr[j * vr_dim1 + 1], &c__1);
		    } else if (wi[j] > 0.f) {
			r__1 = snrm2_(&n, &vr[j * vr_dim1 + 1], &c__1);
			r__2 = snrm2_(&n, &vr[(j + 1) * vr_dim1 + 1], &c__1);
			tnrm = slapy2_(&r__1, &r__2);
		    }
/* Computing MAX */
/* Computing MIN */
		    r__4 = ulpinv, r__5 = (r__1 = tnrm - 1.f, dabs(r__1)) / 
			    ulp;
		    r__2 = result[3], r__3 = dmin(r__4,r__5);
		    result[3] = dmax(r__2,r__3);
		    if (wi[j] > 0.f) {
			vmx = 0.f;
			vrmx = 0.f;
			i__4 = n;
			for (jj = 1; jj <= i__4; ++jj) {
			    vtst = slapy2_(&vr[jj + j * vr_dim1], &vr[jj + (j 
				    + 1) * vr_dim1]);
			    if (vtst > vmx) {
				vmx = vtst;
			    }
			    if (vr[jj + (j + 1) * vr_dim1] == 0.f && (r__1 = 
				    vr[jj + j * vr_dim1], dabs(r__1)) > vrmx) 
				    {
				vrmx = (r__2 = vr[jj + j * vr_dim1], dabs(
					r__2));
			    }
/* L110: */
			}
			if (vrmx / vmx < 1.f - ulp * 2.f) {
			    result[3] = ulpinv;
			}
		    }
/* L120: */
		}

/*              Do Test (4) */

		i__3 = n;
		for (j = 1; j <= i__3; ++j) {
		    tnrm = 1.f;
		    if (wi[j] == 0.f) {
			tnrm = snrm2_(&n, &vl[j * vl_dim1 + 1], &c__1);
		    } else if (wi[j] > 0.f) {
			r__1 = snrm2_(&n, &vl[j * vl_dim1 + 1], &c__1);
			r__2 = snrm2_(&n, &vl[(j + 1) * vl_dim1 + 1], &c__1);
			tnrm = slapy2_(&r__1, &r__2);
		    }
/* Computing MAX */
/* Computing MIN */
		    r__4 = ulpinv, r__5 = (r__1 = tnrm - 1.f, dabs(r__1)) / 
			    ulp;
		    r__2 = result[4], r__3 = dmin(r__4,r__5);
		    result[4] = dmax(r__2,r__3);
		    if (wi[j] > 0.f) {
			vmx = 0.f;
			vrmx = 0.f;
			i__4 = n;
			for (jj = 1; jj <= i__4; ++jj) {
			    vtst = slapy2_(&vl[jj + j * vl_dim1], &vl[jj + (j 
				    + 1) * vl_dim1]);
			    if (vtst > vmx) {
				vmx = vtst;
			    }
			    if (vl[jj + (j + 1) * vl_dim1] == 0.f && (r__1 = 
				    vl[jj + j * vl_dim1], dabs(r__1)) > vrmx) 
				    {
				vrmx = (r__2 = vl[jj + j * vl_dim1], dabs(
					r__2));
			    }
/* L130: */
			}
			if (vrmx / vmx < 1.f - ulp * 2.f) {
			    result[4] = ulpinv;
			}
		    }
/* L140: */
		}

/*              Compute eigenvalues only, and test them */

		slacpy_("F", &n, &n, &a[a_offset], lda, &h__[h_offset], lda);
		sgeev_("N", "N", &n, &h__[h_offset], lda, &wr1[1], &wi1[1], 
			dum, &c__1, dum, &c__1, &work[1], &nnwork, &iinfo);
		if (iinfo != 0) {
		    result[1] = ulpinv;
		    io___43.ciunit = *nounit;
		    s_wsfe(&io___43);
		    do_fio(&c__1, "SGEEV2", (ftnlen)6);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    goto L220;
		}

/*              Do Test (5) */

		i__3 = n;
		for (j = 1; j <= i__3; ++j) {
		    if (wr[j] != wr1[j] || wi[j] != wi1[j]) {
			result[5] = ulpinv;
		    }
/* L150: */
		}

/*              Compute eigenvalues and right eigenvectors, and test them */

		slacpy_("F", &n, &n, &a[a_offset], lda, &h__[h_offset], lda);
		sgeev_("N", "V", &n, &h__[h_offset], lda, &wr1[1], &wi1[1], 
			dum, &c__1, &lre[lre_offset], ldlre, &work[1], &
			nnwork, &iinfo);
		if (iinfo != 0) {
		    result[1] = ulpinv;
		    io___44.ciunit = *nounit;
		    s_wsfe(&io___44);
		    do_fio(&c__1, "SGEEV3", (ftnlen)6);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    goto L220;
		}

/*              Do Test (5) again */

		i__3 = n;
		for (j = 1; j <= i__3; ++j) {
		    if (wr[j] != wr1[j] || wi[j] != wi1[j]) {
			result[5] = ulpinv;
		    }
/* L160: */
		}

/*              Do Test (6) */

		i__3 = n;
		for (j = 1; j <= i__3; ++j) {
		    i__4 = n;
		    for (jj = 1; jj <= i__4; ++jj) {
			if (vr[j + jj * vr_dim1] != lre[j + jj * lre_dim1]) {
			    result[6] = ulpinv;
			}
/* L170: */
		    }
/* L180: */
		}

/*              Compute eigenvalues and left eigenvectors, and test them */

		slacpy_("F", &n, &n, &a[a_offset], lda, &h__[h_offset], lda);
		sgeev_("V", "N", &n, &h__[h_offset], lda, &wr1[1], &wi1[1], &
			lre[lre_offset], ldlre, dum, &c__1, &work[1], &nnwork, 
			 &iinfo);
		if (iinfo != 0) {
		    result[1] = ulpinv;
		    io___45.ciunit = *nounit;
		    s_wsfe(&io___45);
		    do_fio(&c__1, "SGEEV4", (ftnlen)6);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    goto L220;
		}

/*              Do Test (5) again */

		i__3 = n;
		for (j = 1; j <= i__3; ++j) {
		    if (wr[j] != wr1[j] || wi[j] != wi1[j]) {
			result[5] = ulpinv;
		    }
/* L190: */
		}

/*              Do Test (7) */

		i__3 = n;
		for (j = 1; j <= i__3; ++j) {
		    i__4 = n;
		    for (jj = 1; jj <= i__4; ++jj) {
			if (vl[j + jj * vl_dim1] != lre[j + jj * lre_dim1]) {
			    result[7] = ulpinv;
			}
/* L200: */
		    }
/* L210: */
		}

/*              End of Loop -- Check for RESULT(j) > THRESH */

L220:

		ntest = 0;
		nfail = 0;
		for (j = 1; j <= 7; ++j) {
		    if (result[j] >= 0.f) {
			++ntest;
		    }
		    if (result[j] >= *thresh) {
			++nfail;
		    }
/* L230: */
		}

		if (nfail > 0) {
		    ++ntestf;
		}
		if (ntestf == 1) {
		    io___48.ciunit = *nounit;
		    s_wsfe(&io___48);
		    do_fio(&c__1, path, (ftnlen)3);
		    e_wsfe();
		    io___49.ciunit = *nounit;
		    s_wsfe(&io___49);
		    e_wsfe();
		    io___50.ciunit = *nounit;
		    s_wsfe(&io___50);
		    e_wsfe();
		    io___51.ciunit = *nounit;
		    s_wsfe(&io___51);
		    e_wsfe();
		    io___52.ciunit = *nounit;
		    s_wsfe(&io___52);
		    do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(real));
		    e_wsfe();
		    ntestf = 2;
		}

		for (j = 1; j <= 7; ++j) {
		    if (result[j] >= *thresh) {
			io___53.ciunit = *nounit;
			s_wsfe(&io___53);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&iwk, (ftnlen)sizeof(integer));
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof(real)
				);
			e_wsfe();
		    }
/* L240: */
		}

		nerrs += nfail;
		ntestt += ntest;

/* L250: */
	    }
L260:
	    ;
	}
/* L270: */
    }

/*     Summary */

    slasum_(path, nounit, &nerrs, &ntestt);



    return 0;

/*     End of SDRVEV */

} /* sdrvev_ */
예제 #11
0
파일: sdrvpb.c 프로젝트: 3deggi/levmar-ndk
/* Subroutine */ int sdrvpb_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, real *thresh, logical *tsterr, integer *nmax, real *a, 
	real *afac, real *asav, real *b, real *bsav, real *x, real *xact, 
	real *s, real *work, real *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char facts[1*3] = "F" "N" "E";
    static char equeds[1*2] = "N" "Y";

    /* Format strings */
    static char fmt_9999[] = "(1x,a,\002, UPLO='\002,a1,\002', N =\002,i5"
	    ",\002, KD =\002,i5,\002, type \002,i1,\002, test(\002,i1,\002)"
	    "=\002,g12.5)";
    static char fmt_9997[] = "(1x,a,\002( '\002,a1,\002', '\002,a1,\002',"
	    " \002,i5,\002, \002,i5,\002, ... ), EQUED='\002,a1,\002', type"
	    " \002,i1,\002, test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9998[] = "(1x,a,\002( '\002,a1,\002', '\002,a1,\002',"
	    " \002,i5,\002, \002,i5,\002, ... ), type \002,i1,\002, test(\002"
	    ",i1,\002)=\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5, i__6, i__7[2];
    char ch__1[2];

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    integer i__, k, n, i1, i2, k1, kd, nb, in, kl, iw, ku, nt, lda, ikd, nkd, 
	    ldab;
    char fact[1];
    integer ioff, mode, koff;
    real amax;
    char path[3];
    integer imat, info;
    char dist[1], uplo[1], type__[1];
    integer nrun, ifact, nfail, iseed[4], nfact, kdval[4];
    extern logical lsame_(char *, char *);
    char equed[1];
    integer nbmin;
    real rcond, roldc, scond;
    integer nimat;
    extern doublereal sget06_(real *, real *);
    extern /* Subroutine */ int sget04_(integer *, integer *, real *, integer 
	    *, real *, integer *, real *, real *), spbt01_(char *, integer *, 
	    integer *, real *, integer *, real *, integer *, real *, real *);
    real anorm;
    extern /* Subroutine */ int spbt02_(char *, integer *, integer *, integer 
	    *, real *, integer *, real *, integer *, real *, integer *, real *
, real *), spbt05_(char *, integer *, integer *, integer *
, real *, integer *, real *, integer *, real *, integer *, real *, 
	     integer *, real *, real *, real *);
    logical equil;
    integer iuplo, izero, nerrs;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *), spbsv_(char *, integer *, integer *, integer *, real *
, integer *, real *, integer *, integer *), sswap_(
	    integer *, real *, integer *, real *, integer *);
    logical zerot;
    char xtype[1];
    extern /* Subroutine */ int slatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, real *, integer *, real *, char *
), aladhd_(integer *, char *), 
	    alaerh_(char *, char *, integer *, integer *, char *, integer *, 
	    integer *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *);
    logical prefac;
    real rcondc;
    extern doublereal slange_(char *, integer *, integer *, real *, integer *, 
	     real *);
    logical nofact;
    char packit[1];
    integer iequed;
    extern doublereal slansb_(char *, char *, integer *, integer *, real *, 
	    integer *, real *);
    real cndnum;
    extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer 
	    *, integer *), slaqsb_(char *, integer *, integer *, real 
	    *, integer *, real *, real *, real *, char *);
    real ainvnm;
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *), slarhs_(char *, char *, 
	    char *, char *, integer *, integer *, integer *, integer *, 
	    integer *, real *, integer *, real *, integer *, real *, integer *
, integer *, integer *), slaset_(
	    char *, integer *, integer *, real *, real *, real *, integer *), spbequ_(char *, integer *, integer *, real *, integer *, 
	    real *, real *, real *, integer *), spbtrf_(char *, 
	    integer *, integer *, real *, integer *, integer *), 
	    xlaenv_(integer *, integer *), slatms_(integer *, integer *, char 
	    *, integer *, char *, real *, integer *, real *, real *, integer *
, integer *, char *, real *, integer *, real *, integer *), spbtrs_(char *, integer *, integer *, integer *, 
	     real *, integer *, real *, integer *, integer *);
    real result[6];
    extern /* Subroutine */ int spbsvx_(char *, char *, integer *, integer *, 
	    integer *, real *, integer *, real *, integer *, char *, real *, 
	    real *, integer *, real *, integer *, real *, real *, real *, 
	    real *, integer *, integer *), serrvx_(
	    char *, integer *);

    /* Fortran I/O blocks */
    static cilist io___57 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___60 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___61 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SDRVPB tests the driver routines SPBSV and -SVX. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors to be generated for */
/*          each linear system. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for N, used in dimensioning the */
/*          work arrays. */

/*  A       (workspace) REAL array, dimension (NMAX*NMAX) */

/*  AFAC    (workspace) REAL array, dimension (NMAX*NMAX) */

/*  ASAV    (workspace) REAL array, dimension (NMAX*NMAX) */

/*  B       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  BSAV    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  X       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  S       (workspace) REAL array, dimension (NMAX) */

/*  WORK    (workspace) REAL array, dimension */
/*                      (NMAX*max(3,NRHS)) */

/*  RWORK   (workspace) REAL array, dimension (NMAX+2*NRHS) */

/*  IWORK   (workspace) INTEGER array, dimension (NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --s;
    --xact;
    --x;
    --bsav;
    --b;
    --asav;
    --afac;
    --a;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "PB", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	serrvx_(path, nout);
    }
    infoc_1.infot = 0;
    kdval[0] = 0;

/*     Set the block size and minimum block size for testing. */

    nb = 1;
    nbmin = 2;
    xlaenv_(&c__1, &nb);
    xlaenv_(&c__2, &nbmin);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';

/*        Set limits on the number of loop iterations. */

/* Computing MAX */
	i__2 = 1, i__3 = min(n,4);
	nkd = max(i__2,i__3);
	nimat = 8;
	if (n == 0) {
	    nimat = 1;
	}

	kdval[1] = n + (n + 1) / 4;
	kdval[2] = (n * 3 - 1) / 4;
	kdval[3] = (n + 1) / 4;

	i__2 = nkd;
	for (ikd = 1; ikd <= i__2; ++ikd) {

/*           Do for KD = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This order */
/*           makes it easier to skip redundant values for small values */
/*           of N. */

	    kd = kdval[ikd - 1];
	    ldab = kd + 1;

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		koff = 1;
		if (iuplo == 1) {
		    *(unsigned char *)uplo = 'U';
		    *(unsigned char *)packit = 'Q';
/* Computing MAX */
		    i__3 = 1, i__4 = kd + 2 - n;
		    koff = max(i__3,i__4);
		} else {
		    *(unsigned char *)uplo = 'L';
		    *(unsigned char *)packit = 'B';
		}

		i__3 = nimat;
		for (imat = 1; imat <= i__3; ++imat) {

/*                 Do the tests only if DOTYPE( IMAT ) is true. */

		    if (! dotype[imat]) {
			goto L80;
		    }

/*                 Skip types 2, 3, or 4 if the matrix size is too small. */

		    zerot = imat >= 2 && imat <= 4;
		    if (zerot && n < imat - 1) {
			goto L80;
		    }

		    if (! zerot || ! dotype[1]) {

/*                    Set up parameters with SLATB4 and generate a test */
/*                    matrix with SLATMS. */

			slatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, 
				 &mode, &cndnum, dist);

			s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)32, (ftnlen)
				6);
			slatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, 
				 &cndnum, &anorm, &kd, &kd, packit, &a[koff], 
				&ldab, &work[1], &info);

/*                    Check error code from SLATMS. */

			if (info != 0) {
			    alaerh_(path, "SLATMS", &info, &c__0, uplo, &n, &
				    n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &
				    nerrs, nout);
			    goto L80;
			}
		    } else if (izero > 0) {

/*                    Use the same matrix for types 3 and 4 as for type */
/*                    2 by copying back the zeroed out column, */

			iw = (lda << 1) + 1;
			if (iuplo == 1) {
			    ioff = (izero - 1) * ldab + kd + 1;
			    i__4 = izero - i1;
			    scopy_(&i__4, &work[iw], &c__1, &a[ioff - izero + 
				    i1], &c__1);
			    iw = iw + izero - i1;
			    i__4 = i2 - izero + 1;
/* Computing MAX */
			    i__6 = ldab - 1;
			    i__5 = max(i__6,1);
			    scopy_(&i__4, &work[iw], &c__1, &a[ioff], &i__5);
			} else {
			    ioff = (i1 - 1) * ldab + 1;
			    i__4 = izero - i1;
/* Computing MAX */
			    i__6 = ldab - 1;
			    i__5 = max(i__6,1);
			    scopy_(&i__4, &work[iw], &c__1, &a[ioff + izero - 
				    i1], &i__5);
			    ioff = (izero - 1) * ldab + 1;
			    iw = iw + izero - i1;
			    i__4 = i2 - izero + 1;
			    scopy_(&i__4, &work[iw], &c__1, &a[ioff], &c__1);
			}
		    }

/*                 For types 2-4, zero one row and column of the matrix */
/*                 to test that INFO is returned correctly. */

		    izero = 0;
		    if (zerot) {
			if (imat == 2) {
			    izero = 1;
			} else if (imat == 3) {
			    izero = n;
			} else {
			    izero = n / 2 + 1;
			}

/*                    Save the zeroed out row and column in WORK(*,3) */

			iw = lda << 1;
/* Computing MIN */
			i__5 = (kd << 1) + 1;
			i__4 = min(i__5,n);
			for (i__ = 1; i__ <= i__4; ++i__) {
			    work[iw + i__] = 0.f;
/* L20: */
			}
			++iw;
/* Computing MAX */
			i__4 = izero - kd;
			i1 = max(i__4,1);
/* Computing MIN */
			i__4 = izero + kd;
			i2 = min(i__4,n);

			if (iuplo == 1) {
			    ioff = (izero - 1) * ldab + kd + 1;
			    i__4 = izero - i1;
			    sswap_(&i__4, &a[ioff - izero + i1], &c__1, &work[
				    iw], &c__1);
			    iw = iw + izero - i1;
			    i__4 = i2 - izero + 1;
/* Computing MAX */
			    i__6 = ldab - 1;
			    i__5 = max(i__6,1);
			    sswap_(&i__4, &a[ioff], &i__5, &work[iw], &c__1);
			} else {
			    ioff = (i1 - 1) * ldab + 1;
			    i__4 = izero - i1;
/* Computing MAX */
			    i__6 = ldab - 1;
			    i__5 = max(i__6,1);
			    sswap_(&i__4, &a[ioff + izero - i1], &i__5, &work[
				    iw], &c__1);
			    ioff = (izero - 1) * ldab + 1;
			    iw = iw + izero - i1;
			    i__4 = i2 - izero + 1;
			    sswap_(&i__4, &a[ioff], &c__1, &work[iw], &c__1);
			}
		    }

/*                 Save a copy of the matrix A in ASAV. */

		    i__4 = kd + 1;
		    slacpy_("Full", &i__4, &n, &a[1], &ldab, &asav[1], &ldab);

		    for (iequed = 1; iequed <= 2; ++iequed) {
			*(unsigned char *)equed = *(unsigned char *)&equeds[
				iequed - 1];
			if (iequed == 1) {
			    nfact = 3;
			} else {
			    nfact = 1;
			}

			i__4 = nfact;
			for (ifact = 1; ifact <= i__4; ++ifact) {
			    *(unsigned char *)fact = *(unsigned char *)&facts[
				    ifact - 1];
			    prefac = lsame_(fact, "F");
			    nofact = lsame_(fact, "N");
			    equil = lsame_(fact, "E");

			    if (zerot) {
				if (prefac) {
				    goto L60;
				}
				rcondc = 0.f;

			    } else if (! lsame_(fact, "N")) {

/*                          Compute the condition number for comparison */
/*                          with the value returned by SPBSVX (FACT = */
/*                          'N' reuses the condition number from the */
/*                          previous iteration with FACT = 'F'). */

				i__5 = kd + 1;
				slacpy_("Full", &i__5, &n, &asav[1], &ldab, &
					afac[1], &ldab);
				if (equil || iequed > 1) {

/*                             Compute row and column scale factors to */
/*                             equilibrate the matrix A. */

				    spbequ_(uplo, &n, &kd, &afac[1], &ldab, &
					    s[1], &scond, &amax, &info);
				    if (info == 0 && n > 0) {
					if (iequed > 1) {
					    scond = 0.f;
					}

/*                                Equilibrate the matrix. */

					slaqsb_(uplo, &n, &kd, &afac[1], &
						ldab, &s[1], &scond, &amax, 
						equed);
				    }
				}

/*                          Save the condition number of the */
/*                          non-equilibrated system for use in SGET04. */

				if (equil) {
				    roldc = rcondc;
				}

/*                          Compute the 1-norm of A. */

				anorm = slansb_("1", uplo, &n, &kd, &afac[1], 
					&ldab, &rwork[1]);

/*                          Factor the matrix A. */

				spbtrf_(uplo, &n, &kd, &afac[1], &ldab, &info);

/*                          Form the inverse of A. */

				slaset_("Full", &n, &n, &c_b45, &c_b46, &a[1], 
					 &lda);
				s_copy(srnamc_1.srnamt, "SPBTRS", (ftnlen)32, 
					(ftnlen)6);
				spbtrs_(uplo, &n, &kd, &n, &afac[1], &ldab, &
					a[1], &lda, &info);

/*                          Compute the 1-norm condition number of A. */

				ainvnm = slange_("1", &n, &n, &a[1], &lda, &
					rwork[1]);
				if (anorm <= 0.f || ainvnm <= 0.f) {
				    rcondc = 1.f;
				} else {
				    rcondc = 1.f / anorm / ainvnm;
				}
			    }

/*                       Restore the matrix A. */

			    i__5 = kd + 1;
			    slacpy_("Full", &i__5, &n, &asav[1], &ldab, &a[1], 
				     &ldab);

/*                       Form an exact solution and set the right hand */
/*                       side. */

			    s_copy(srnamc_1.srnamt, "SLARHS", (ftnlen)32, (
				    ftnlen)6);
			    slarhs_(path, xtype, uplo, " ", &n, &n, &kd, &kd, 
				    nrhs, &a[1], &ldab, &xact[1], &lda, &b[1], 
				     &lda, iseed, &info);
			    *(unsigned char *)xtype = 'C';
			    slacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], &
				    lda);

			    if (nofact) {

/*                          --- Test SPBSV  --- */

/*                          Compute the L*L' or U'*U factorization of the */
/*                          matrix and solve the system. */

				i__5 = kd + 1;
				slacpy_("Full", &i__5, &n, &a[1], &ldab, &
					afac[1], &ldab);
				slacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], 
					&lda);

				s_copy(srnamc_1.srnamt, "SPBSV ", (ftnlen)32, 
					(ftnlen)6);
				spbsv_(uplo, &n, &kd, nrhs, &afac[1], &ldab, &
					x[1], &lda, &info);

/*                          Check error code from SPBSV . */

				if (info != izero) {
				    alaerh_(path, "SPBSV ", &info, &izero, 
					    uplo, &n, &n, &kd, &kd, nrhs, &
					    imat, &nfail, &nerrs, nout);
				    goto L40;
				} else if (info != 0) {
				    goto L40;
				}

/*                          Reconstruct matrix from factors and compute */
/*                          residual. */

				spbt01_(uplo, &n, &kd, &a[1], &ldab, &afac[1], 
					 &ldab, &rwork[1], result);

/*                          Compute residual of the computed solution. */

				slacpy_("Full", &n, nrhs, &b[1], &lda, &work[
					1], &lda);
				spbt02_(uplo, &n, &kd, nrhs, &a[1], &ldab, &x[
					1], &lda, &work[1], &lda, &rwork[1], &
					result[1]);

/*                          Check solution from generated exact solution. */

				sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, 
					 &rcondc, &result[2]);
				nt = 3;

/*                          Print information about the tests that did */
/*                          not pass the threshold. */

				i__5 = nt;
				for (k = 1; k <= i__5; ++k) {
				    if (result[k - 1] >= *thresh) {
					if (nfail == 0 && nerrs == 0) {
					    aladhd_(nout, path);
					}
					io___57.ciunit = *nout;
					s_wsfe(&io___57);
					do_fio(&c__1, "SPBSV ", (ftnlen)6);
					do_fio(&c__1, uplo, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&kd, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(real));
					e_wsfe();
					++nfail;
				    }
/* L30: */
				}
				nrun += nt;
L40:
				;
			    }

/*                       --- Test SPBSVX --- */

			    if (! prefac) {
				i__5 = kd + 1;
				slaset_("Full", &i__5, &n, &c_b45, &c_b45, &
					afac[1], &ldab);
			    }
			    slaset_("Full", &n, nrhs, &c_b45, &c_b45, &x[1], &
				    lda);
			    if (iequed > 1 && n > 0) {

/*                          Equilibrate the matrix if FACT='F' and */
/*                          EQUED='Y' */

				slaqsb_(uplo, &n, &kd, &a[1], &ldab, &s[1], &
					scond, &amax, equed);
			    }

/*                       Solve the system and compute the condition */
/*                       number and error bounds using SPBSVX. */

			    s_copy(srnamc_1.srnamt, "SPBSVX", (ftnlen)32, (
				    ftnlen)6);
			    spbsvx_(fact, uplo, &n, &kd, nrhs, &a[1], &ldab, &
				    afac[1], &ldab, equed, &s[1], &b[1], &lda, 
				     &x[1], &lda, &rcond, &rwork[1], &rwork[*
				    nrhs + 1], &work[1], &iwork[1], &info);

/*                       Check the error code from SPBSVX. */

			    if (info != izero) {
/* Writing concatenation */
				i__7[0] = 1, a__1[0] = fact;
				i__7[1] = 1, a__1[1] = uplo;
				s_cat(ch__1, a__1, i__7, &c__2, (ftnlen)2);
				alaerh_(path, "SPBSVX", &info, &izero, ch__1, 
					&n, &n, &kd, &kd, nrhs, &imat, &nfail, 
					 &nerrs, nout);
				goto L60;
			    }

			    if (info == 0) {
				if (! prefac) {

/*                             Reconstruct matrix from factors and */
/*                             compute residual. */

				    spbt01_(uplo, &n, &kd, &a[1], &ldab, &
					    afac[1], &ldab, &rwork[(*nrhs << 
					    1) + 1], result);
				    k1 = 1;
				} else {
				    k1 = 2;
				}

/*                          Compute residual of the computed solution. */

				slacpy_("Full", &n, nrhs, &bsav[1], &lda, &
					work[1], &lda);
				spbt02_(uplo, &n, &kd, nrhs, &asav[1], &ldab, 
					&x[1], &lda, &work[1], &lda, &rwork[(*
					nrhs << 1) + 1], &result[1]);

/*                          Check solution from generated exact solution. */

				if (nofact || prefac && lsame_(equed, "N")) {
				    sget04_(&n, nrhs, &x[1], &lda, &xact[1], &
					    lda, &rcondc, &result[2]);
				} else {
				    sget04_(&n, nrhs, &x[1], &lda, &xact[1], &
					    lda, &roldc, &result[2]);
				}

/*                          Check the error bounds from iterative */
/*                          refinement. */

				spbt05_(uplo, &n, &kd, nrhs, &asav[1], &ldab, 
					&b[1], &lda, &x[1], &lda, &xact[1], &
					lda, &rwork[1], &rwork[*nrhs + 1], &
					result[3]);
			    } else {
				k1 = 6;
			    }

/*                       Compare RCOND from SPBSVX with the computed */
/*                       value in RCONDC. */

			    result[5] = sget06_(&rcond, &rcondc);

/*                       Print information about the tests that did not */
/*                       pass the threshold. */

			    for (k = k1; k <= 6; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					aladhd_(nout, path);
				    }
				    if (prefac) {
					io___60.ciunit = *nout;
					s_wsfe(&io___60);
					do_fio(&c__1, "SPBSVX", (ftnlen)6);
					do_fio(&c__1, fact, (ftnlen)1);
					do_fio(&c__1, uplo, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&kd, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, equed, (ftnlen)1);
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(real));
					e_wsfe();
				    } else {
					io___61.ciunit = *nout;
					s_wsfe(&io___61);
					do_fio(&c__1, "SPBSVX", (ftnlen)6);
					do_fio(&c__1, fact, (ftnlen)1);
					do_fio(&c__1, uplo, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&kd, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(real));
					e_wsfe();
				    }
				    ++nfail;
				}
/* L50: */
			    }
			    nrun = nrun + 7 - k1;
L60:
			    ;
			}
/* L70: */
		    }
L80:
		    ;
		}
/* L90: */
	    }
/* L100: */
	}
/* L110: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of SDRVPB */

} /* sdrvpb_ */
예제 #12
0
/* Subroutine */ int sdrvgb_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, real *thresh, logical *tsterr, real *a, integer *la, 
	real *afb, integer *lafb, real *asav, real *b, real *bsav, real *x, 
	real *xact, real *s, real *work, real *rwork, integer *iwork, integer 
	*nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char transs[1*3] = "N" "T" "C";
    static char facts[1*3] = "F" "N" "E";
    static char equeds[1*4] = "N" "R" "C" "B";

    /* Format strings */
    static char fmt_9999[] = "(\002 *** In SDRVGB, LA=\002,i5,\002 is too sm"
	    "all for N=\002,i5,\002, KU=\002,i5,\002, KL=\002,i5,/\002 ==> In"
	    "crease LA to at least \002,i5)";
    static char fmt_9998[] = "(\002 *** In SDRVGB, LAFB=\002,i5,\002 is too "
	    "small for N=\002,i5,\002, KU=\002,i5,\002, KL=\002,i5,/\002 ==> "
	    "Increase LAFB to at least \002,i5)";
    static char fmt_9997[] = "(1x,a,\002, N=\002,i5,\002, KL=\002,i5,\002, K"
	    "U=\002,i5,\002, type \002,i1,\002, test(\002,i1,\002)=\002,g12.5)"
	    ;
    static char fmt_9995[] = "(1x,a,\002( '\002,a1,\002','\002,a1,\002',\002"
	    ",i5,\002,\002,i5,\002,\002,i5,\002,...), EQUED='\002,a1,\002', t"
	    "ype \002,i1,\002, test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9996[] = "(1x,a,\002( '\002,a1,\002','\002,a1,\002',\002"
	    ",i5,\002,\002,i5,\002,\002,i5,\002,...), type \002,i1,\002, test("
	    "\002,i1,\002)=\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5, i__6, i__7, i__8, i__9, i__10, 
	    i__11[2];
    real r__1, r__2, r__3;
    char ch__1[2];

    /* Local variables */
    integer i__, j, k, n, i1, i2, k1, nb, in, kl, ku, nt, lda, ldb, ikl, nkl, 
	    iku, nku;
    char fact[1];
    integer ioff, mode;
    real amax;
    char path[3];
    integer imat, info;
    char dist[1], type__[1];
    integer nrun, ldafb, ifact, nfail, iseed[4], nfact;
    char equed[1];
    integer nbmin;
    real rcond, roldc;
    integer nimat;
    real roldi;
    real anorm;
    integer itran;
    logical equil;
    real roldo;
    char trans[1];
    integer izero, nerrs;
    logical zerot;
    char xtype[1];
    logical prefac;
    real colcnd;
    real rcondc;
    logical nofact;
    integer iequed;
    real rcondi;
    real cndnum, anormi, rcondo, ainvnm;
    logical trfcon;
    real anormo, rowcnd;
    real anrmpv;
    real result[7], rpvgrw;

    /* Fortran I/O blocks */
    static cilist io___26 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___27 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___65 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___72 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___73 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___74 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___75 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___76 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___77 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___78 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___79 = { 0, 0, 0, fmt_9996, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SDRVGB tests the driver routines SGBSV and -SVX. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix column dimension N. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors to be generated for */
/*          each linear system. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  A       (workspace) REAL array, dimension (LA) */

/*  LA      (input) INTEGER */
/*          The length of the array A.  LA >= (2*NMAX-1)*NMAX */
/*          where NMAX is the largest entry in NVAL. */

/*  AFB     (workspace) REAL array, dimension (LAFB) */

/*  LAFB    (input) INTEGER */
/*          The length of the array AFB.  LAFB >= (3*NMAX-2)*NMAX */
/*          where NMAX is the largest entry in NVAL. */

/*  ASAV    (workspace) REAL array, dimension (LA) */

/*  B       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  BSAV    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  X       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  S       (workspace) REAL array, dimension (2*NMAX) */

/*  WORK    (workspace) REAL array, dimension */
/*                      (NMAX*max(3,NRHS,NMAX)) */

/*  RWORK   (workspace) REAL array, dimension */
/*                      (max(NMAX,2*NRHS)) */

/*  IWORK   (workspace) INTEGER array, dimension (2*NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --s;
    --xact;
    --x;
    --bsav;
    --b;
    --asav;
    --afb;
    --a;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "GB", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	serrvx_(path, nout);
    }
    infoc_1.infot = 0;

/*     Set the block size and minimum block size for testing. */

    nb = 1;
    nbmin = 2;
    xlaenv_(&c__1, &nb);
    xlaenv_(&c__2, &nbmin);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	ldb = max(n,1);
	*(unsigned char *)xtype = 'N';

/*        Set limits on the number of loop iterations. */

/* Computing MAX */
	i__2 = 1, i__3 = min(n,4);
	nkl = max(i__2,i__3);
	if (n == 0) {
	    nkl = 1;
	}
	nku = nkl;
	nimat = 8;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nkl;
	for (ikl = 1; ikl <= i__2; ++ikl) {

/*           Do for KL = 0, N-1, (3N-1)/4, and (N+1)/4. This order makes */
/*           it easier to skip redundant values for small values of N. */

	    if (ikl == 1) {
		kl = 0;
	    } else if (ikl == 2) {
/* Computing MAX */
		i__3 = n - 1;
		kl = max(i__3,0);
	    } else if (ikl == 3) {
		kl = (n * 3 - 1) / 4;
	    } else if (ikl == 4) {
		kl = (n + 1) / 4;
	    }
	    i__3 = nku;
	    for (iku = 1; iku <= i__3; ++iku) {

/*              Do for KU = 0, N-1, (3N-1)/4, and (N+1)/4. This order */
/*              makes it easier to skip redundant values for small */
/*              values of N. */

		if (iku == 1) {
		    ku = 0;
		} else if (iku == 2) {
/* Computing MAX */
		    i__4 = n - 1;
		    ku = max(i__4,0);
		} else if (iku == 3) {
		    ku = (n * 3 - 1) / 4;
		} else if (iku == 4) {
		    ku = (n + 1) / 4;
		}

/*              Check that A and AFB are big enough to generate this */
/*              matrix. */

		lda = kl + ku + 1;
		ldafb = (kl << 1) + ku + 1;
		if (lda * n > *la || ldafb * n > *lafb) {
		    if (nfail == 0 && nerrs == 0) {
			aladhd_(nout, path);
		    }
		    if (lda * n > *la) {
			io___26.ciunit = *nout;
			s_wsfe(&io___26);
			do_fio(&c__1, (char *)&(*la), (ftnlen)sizeof(integer))
				;
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer));
			i__4 = n * (kl + ku + 1);
			do_fio(&c__1, (char *)&i__4, (ftnlen)sizeof(integer));
			e_wsfe();
			++nerrs;
		    }
		    if (ldafb * n > *lafb) {
			io___27.ciunit = *nout;
			s_wsfe(&io___27);
			do_fio(&c__1, (char *)&(*lafb), (ftnlen)sizeof(
				integer));
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer));
			i__4 = n * ((kl << 1) + ku + 1);
			do_fio(&c__1, (char *)&i__4, (ftnlen)sizeof(integer));
			e_wsfe();
			++nerrs;
		    }
		    goto L130;
		}

		i__4 = nimat;
		for (imat = 1; imat <= i__4; ++imat) {

/*                 Do the tests only if DOTYPE( IMAT ) is true. */

		    if (! dotype[imat]) {
			goto L120;
		    }

/*                 Skip types 2, 3, or 4 if the matrix is too small. */

		    zerot = imat >= 2 && imat <= 4;
		    if (zerot && n < imat - 1) {
			goto L120;
		    }

/*                 Set up parameters with SLATB4 and generate a */
/*                 test matrix with SLATMS. */

		    slatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &
			    mode, &cndnum, dist);
		    rcondc = 1.f / cndnum;

		    s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)32, (ftnlen)6);
		    slatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			    cndnum, &anorm, &kl, &ku, "Z", &a[1], &lda, &work[
			    1], &info);

/*                 Check the error code from SLATMS. */

		    if (info != 0) {
			alaerh_(path, "SLATMS", &info, &c__0, " ", &n, &n, &
				kl, &ku, &c_n1, &imat, &nfail, &nerrs, nout);
			goto L120;
		    }

/*                 For types 2, 3, and 4, zero one or more columns of */
/*                 the matrix to test that INFO is returned correctly. */

		    izero = 0;
		    if (zerot) {
			if (imat == 2) {
			    izero = 1;
			} else if (imat == 3) {
			    izero = n;
			} else {
			    izero = n / 2 + 1;
			}
			ioff = (izero - 1) * lda;
			if (imat < 4) {
/* Computing MAX */
			    i__5 = 1, i__6 = ku + 2 - izero;
			    i1 = max(i__5,i__6);
/* Computing MIN */
			    i__5 = kl + ku + 1, i__6 = ku + 1 + (n - izero);
			    i2 = min(i__5,i__6);
			    i__5 = i2;
			    for (i__ = i1; i__ <= i__5; ++i__) {
				a[ioff + i__] = 0.f;
/* L20: */
			    }
			} else {
			    i__5 = n;
			    for (j = izero; j <= i__5; ++j) {
/* Computing MAX */
				i__6 = 1, i__7 = ku + 2 - j;
/* Computing MIN */
				i__9 = kl + ku + 1, i__10 = ku + 1 + (n - j);
				i__8 = min(i__9,i__10);
				for (i__ = max(i__6,i__7); i__ <= i__8; ++i__)
					 {
				    a[ioff + i__] = 0.f;
/* L30: */
				}
				ioff += lda;
/* L40: */
			    }
			}
		    }

/*                 Save a copy of the matrix A in ASAV. */

		    i__5 = kl + ku + 1;
		    slacpy_("Full", &i__5, &n, &a[1], &lda, &asav[1], &lda);

		    for (iequed = 1; iequed <= 4; ++iequed) {
			*(unsigned char *)equed = *(unsigned char *)&equeds[
				iequed - 1];
			if (iequed == 1) {
			    nfact = 3;
			} else {
			    nfact = 1;
			}

			i__5 = nfact;
			for (ifact = 1; ifact <= i__5; ++ifact) {
			    *(unsigned char *)fact = *(unsigned char *)&facts[
				    ifact - 1];
			    prefac = lsame_(fact, "F");
			    nofact = lsame_(fact, "N");
			    equil = lsame_(fact, "E");

			    if (zerot) {
				if (prefac) {
				    goto L100;
				}
				rcondo = 0.f;
				rcondi = 0.f;

			    } else if (! nofact) {

/*                          Compute the condition number for comparison */
/*                          with the value returned by SGESVX (FACT = */
/*                          'N' reuses the condition number from the */
/*                          previous iteration with FACT = 'F'). */

				i__8 = kl + ku + 1;
				slacpy_("Full", &i__8, &n, &asav[1], &lda, &
					afb[kl + 1], &ldafb);
				if (equil || iequed > 1) {

/*                             Compute row and column scale factors to */
/*                             equilibrate the matrix A. */

				    sgbequ_(&n, &n, &kl, &ku, &afb[kl + 1], &
					    ldafb, &s[1], &s[n + 1], &rowcnd, 
					    &colcnd, &amax, &info);
				    if (info == 0 && n > 0) {
					if (lsame_(equed, "R")) {
					    rowcnd = 0.f;
					    colcnd = 1.f;
					} else if (lsame_(equed, "C")) {
					    rowcnd = 1.f;
					    colcnd = 0.f;
					} else if (lsame_(equed, "B")) {
					    rowcnd = 0.f;
					    colcnd = 0.f;
					}

/*                                Equilibrate the matrix. */

					slaqgb_(&n, &n, &kl, &ku, &afb[kl + 1]
, &ldafb, &s[1], &s[n + 1], &
						rowcnd, &colcnd, &amax, equed);
				    }
				}

/*                          Save the condition number of the */
/*                          non-equilibrated system for use in SGET04. */

				if (equil) {
				    roldo = rcondo;
				    roldi = rcondi;
				}

/*                          Compute the 1-norm and infinity-norm of A. */

				anormo = slangb_("1", &n, &kl, &ku, &afb[kl + 
					1], &ldafb, &rwork[1]);
				anormi = slangb_("I", &n, &kl, &ku, &afb[kl + 
					1], &ldafb, &rwork[1]);

/*                          Factor the matrix A. */

				sgbtrf_(&n, &n, &kl, &ku, &afb[1], &ldafb, &
					iwork[1], &info);

/*                          Form the inverse of A. */

				slaset_("Full", &n, &n, &c_b48, &c_b49, &work[
					1], &ldb);
				s_copy(srnamc_1.srnamt, "SGBTRS", (ftnlen)32, 
					(ftnlen)6);
				sgbtrs_("No transpose", &n, &kl, &ku, &n, &
					afb[1], &ldafb, &iwork[1], &work[1], &
					ldb, &info);

/*                          Compute the 1-norm condition number of A. */

				ainvnm = slange_("1", &n, &n, &work[1], &ldb, 
					&rwork[1]);
				if (anormo <= 0.f || ainvnm <= 0.f) {
				    rcondo = 1.f;
				} else {
				    rcondo = 1.f / anormo / ainvnm;
				}

/*                          Compute the infinity-norm condition number */
/*                          of A. */

				ainvnm = slange_("I", &n, &n, &work[1], &ldb, 
					&rwork[1]);
				if (anormi <= 0.f || ainvnm <= 0.f) {
				    rcondi = 1.f;
				} else {
				    rcondi = 1.f / anormi / ainvnm;
				}
			    }

			    for (itran = 1; itran <= 3; ++itran) {

/*                          Do for each value of TRANS. */

				*(unsigned char *)trans = *(unsigned char *)&
					transs[itran - 1];
				if (itran == 1) {
				    rcondc = rcondo;
				} else {
				    rcondc = rcondi;
				}

/*                          Restore the matrix A. */

				i__8 = kl + ku + 1;
				slacpy_("Full", &i__8, &n, &asav[1], &lda, &a[
					1], &lda);

/*                          Form an exact solution and set the right hand */
/*                          side. */

				s_copy(srnamc_1.srnamt, "SLARHS", (ftnlen)32, 
					(ftnlen)6);
				slarhs_(path, xtype, "Full", trans, &n, &n, &
					kl, &ku, nrhs, &a[1], &lda, &xact[1], 
					&ldb, &b[1], &ldb, iseed, &info);
				*(unsigned char *)xtype = 'C';
				slacpy_("Full", &n, nrhs, &b[1], &ldb, &bsav[
					1], &ldb);

				if (nofact && itran == 1) {

/*                             --- Test SGBSV  --- */

/*                             Compute the LU factorization of the matrix */
/*                             and solve the system. */

				    i__8 = kl + ku + 1;
				    slacpy_("Full", &i__8, &n, &a[1], &lda, &
					    afb[kl + 1], &ldafb);
				    slacpy_("Full", &n, nrhs, &b[1], &ldb, &x[
					    1], &ldb);

				    s_copy(srnamc_1.srnamt, "SGBSV ", (ftnlen)
					    32, (ftnlen)6);
				    sgbsv_(&n, &kl, &ku, nrhs, &afb[1], &
					    ldafb, &iwork[1], &x[1], &ldb, &
					    info);

/*                             Check error code from SGBSV . */

				    if (info != izero) {
					alaerh_(path, "SGBSV ", &info, &izero, 
						 " ", &n, &n, &kl, &ku, nrhs, 
						&imat, &nfail, &nerrs, nout);
				    }

/*                             Reconstruct matrix from factors and */
/*                             compute residual. */

				    sgbt01_(&n, &n, &kl, &ku, &a[1], &lda, &
					    afb[1], &ldafb, &iwork[1], &work[
					    1], result);
				    nt = 1;
				    if (izero == 0) {

/*                                Compute residual of the computed */
/*                                solution. */

					slacpy_("Full", &n, nrhs, &b[1], &ldb, 
						 &work[1], &ldb);
					sgbt02_("No transpose", &n, &n, &kl, &
						ku, nrhs, &a[1], &lda, &x[1], 
						&ldb, &work[1], &ldb, &result[
						1]);

/*                                Check solution from generated exact */
/*                                solution. */

					sget04_(&n, nrhs, &x[1], &ldb, &xact[
						1], &ldb, &rcondc, &result[2])
						;
					nt = 3;
				    }

/*                             Print information about the tests that did */
/*                             not pass the threshold. */

				    i__8 = nt;
				    for (k = 1; k <= i__8; ++k) {
					if (result[k - 1] >= *thresh) {
					    if (nfail == 0 && nerrs == 0) {
			  aladhd_(nout, path);
					    }
					    io___65.ciunit = *nout;
					    s_wsfe(&io___65);
					    do_fio(&c__1, "SGBSV ", (ftnlen)6)
						    ;
					    do_fio(&c__1, (char *)&n, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&kl, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&ku, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&imat, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&k, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&result[k - 
						    1], (ftnlen)sizeof(real));
					    e_wsfe();
					    ++nfail;
					}
/* L50: */
				    }
				    nrun += nt;
				}

/*                          --- Test SGBSVX --- */

				if (! prefac) {
				    i__8 = (kl << 1) + ku + 1;
				    slaset_("Full", &i__8, &n, &c_b48, &c_b48, 
					     &afb[1], &ldafb);
				}
				slaset_("Full", &n, nrhs, &c_b48, &c_b48, &x[
					1], &ldb);
				if (iequed > 1 && n > 0) {

/*                             Equilibrate the matrix if FACT = 'F' and */
/*                             EQUED = 'R', 'C', or 'B'. */

				    slaqgb_(&n, &n, &kl, &ku, &a[1], &lda, &s[
					    1], &s[n + 1], &rowcnd, &colcnd, &
					    amax, equed);
				}

/*                          Solve the system and compute the condition */
/*                          number and error bounds using SGBSVX. */

				s_copy(srnamc_1.srnamt, "SGBSVX", (ftnlen)32, 
					(ftnlen)6);
				sgbsvx_(fact, trans, &n, &kl, &ku, nrhs, &a[1]
, &lda, &afb[1], &ldafb, &iwork[1], 
					equed, &s[1], &s[n + 1], &b[1], &ldb, 
					&x[1], &ldb, &rcond, &rwork[1], &
					rwork[*nrhs + 1], &work[1], &iwork[n 
					+ 1], &info);

/*                          Check the error code from SGBSVX. */

				if (info != izero) {
/* Writing concatenation */
				    i__11[0] = 1, a__1[0] = fact;
				    i__11[1] = 1, a__1[1] = trans;
				    s_cat(ch__1, a__1, i__11, &c__2, (ftnlen)
					    2);
				    alaerh_(path, "SGBSVX", &info, &izero, 
					    ch__1, &n, &n, &kl, &ku, nrhs, &
					    imat, &nfail, &nerrs, nout);
				}

/*                          Compare WORK(1) from SGBSVX with the computed */
/*                          reciprocal pivot growth factor RPVGRW */

				if (info != 0) {
				    anrmpv = 0.f;
				    i__8 = info;
				    for (j = 1; j <= i__8; ++j) {
/* Computing MAX */
					i__6 = ku + 2 - j;
/* Computing MIN */
					i__9 = n + ku + 1 - j, i__10 = kl + 
						ku + 1;
					i__7 = min(i__9,i__10);
					for (i__ = max(i__6,1); i__ <= i__7; 
						++i__) {
/* Computing MAX */
					    r__2 = anrmpv, r__3 = (r__1 = a[
						    i__ + (j - 1) * lda], 
						    dabs(r__1));
					    anrmpv = dmax(r__2,r__3);
/* L60: */
					}
/* L70: */
				    }
/* Computing MIN */
				    i__7 = info - 1, i__6 = kl + ku;
				    i__8 = min(i__7,i__6);
/* Computing MAX */
				    i__9 = 1, i__10 = kl + ku + 2 - info;
				    rpvgrw = slantb_("M", "U", "N", &info, &
					    i__8, &afb[max(i__9, i__10)], &
					    ldafb, &work[1]);
				    if (rpvgrw == 0.f) {
					rpvgrw = 1.f;
				    } else {
					rpvgrw = anrmpv / rpvgrw;
				    }
				} else {
				    i__8 = kl + ku;
				    rpvgrw = slantb_("M", "U", "N", &n, &i__8, 
					     &afb[1], &ldafb, &work[1]);
				    if (rpvgrw == 0.f) {
					rpvgrw = 1.f;
				    } else {
					rpvgrw = slangb_("M", &n, &kl, &ku, &
						a[1], &lda, &work[1]) / rpvgrw;
				    }
				}
				result[6] = (r__1 = rpvgrw - work[1], dabs(
					r__1)) / dmax(work[1],rpvgrw) / 
					slamch_("E");

				if (! prefac) {

/*                             Reconstruct matrix from factors and */
/*                             compute residual. */

				    sgbt01_(&n, &n, &kl, &ku, &a[1], &lda, &
					    afb[1], &ldafb, &iwork[1], &work[
					    1], result);
				    k1 = 1;
				} else {
				    k1 = 2;
				}

				if (info == 0) {
				    trfcon = FALSE_;

/*                             Compute residual of the computed solution. */

				    slacpy_("Full", &n, nrhs, &bsav[1], &ldb, 
					    &work[1], &ldb);
				    sgbt02_(trans, &n, &n, &kl, &ku, nrhs, &
					    asav[1], &lda, &x[1], &ldb, &work[
					    1], &ldb, &result[1]);

/*                             Check solution from generated exact */
/*                             solution. */

				    if (nofact || prefac && lsame_(equed, 
					    "N")) {
					sget04_(&n, nrhs, &x[1], &ldb, &xact[
						1], &ldb, &rcondc, &result[2])
						;
				    } else {
					if (itran == 1) {
					    roldc = roldo;
					} else {
					    roldc = roldi;
					}
					sget04_(&n, nrhs, &x[1], &ldb, &xact[
						1], &ldb, &roldc, &result[2]);
				    }

/*                             Check the error bounds from iterative */
/*                             refinement. */

				    sgbt05_(trans, &n, &kl, &ku, nrhs, &asav[
					    1], &lda, &b[1], &ldb, &x[1], &
					    ldb, &xact[1], &ldb, &rwork[1], &
					    rwork[*nrhs + 1], &result[3]);
				} else {
				    trfcon = TRUE_;
				}

/*                          Compare RCOND from SGBSVX with the computed */
/*                          value in RCONDC. */

				result[5] = sget06_(&rcond, &rcondc);

/*                          Print information about the tests that did */
/*                          not pass the threshold. */

				if (! trfcon) {
				    for (k = k1; k <= 7; ++k) {
					if (result[k - 1] >= *thresh) {
					    if (nfail == 0 && nerrs == 0) {
			  aladhd_(nout, path);
					    }
					    if (prefac) {
			  io___72.ciunit = *nout;
			  s_wsfe(&io___72);
			  do_fio(&c__1, "SGBSVX", (ftnlen)6);
			  do_fio(&c__1, fact, (ftnlen)1);
			  do_fio(&c__1, trans, (ftnlen)1);
			  do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			  do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer));
			  do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer));
			  do_fio(&c__1, equed, (ftnlen)1);
			  do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)
				  );
			  do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			  do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				  sizeof(real));
			  e_wsfe();
					    } else {
			  io___73.ciunit = *nout;
			  s_wsfe(&io___73);
			  do_fio(&c__1, "SGBSVX", (ftnlen)6);
			  do_fio(&c__1, fact, (ftnlen)1);
			  do_fio(&c__1, trans, (ftnlen)1);
			  do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			  do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer));
			  do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer));
			  do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)
				  );
			  do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			  do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				  sizeof(real));
			  e_wsfe();
					    }
					    ++nfail;
					}
/* L80: */
				    }
				    nrun = nrun + 7 - k1;
				} else {
				    if (result[0] >= *thresh && ! prefac) {
					if (nfail == 0 && nerrs == 0) {
					    aladhd_(nout, path);
					}
					if (prefac) {
					    io___74.ciunit = *nout;
					    s_wsfe(&io___74);
					    do_fio(&c__1, "SGBSVX", (ftnlen)6)
						    ;
					    do_fio(&c__1, fact, (ftnlen)1);
					    do_fio(&c__1, trans, (ftnlen)1);
					    do_fio(&c__1, (char *)&n, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&kl, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&ku, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, equed, (ftnlen)1);
					    do_fio(&c__1, (char *)&imat, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&c__1, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&result[0], 
						    (ftnlen)sizeof(real));
					    e_wsfe();
					} else {
					    io___75.ciunit = *nout;
					    s_wsfe(&io___75);
					    do_fio(&c__1, "SGBSVX", (ftnlen)6)
						    ;
					    do_fio(&c__1, fact, (ftnlen)1);
					    do_fio(&c__1, trans, (ftnlen)1);
					    do_fio(&c__1, (char *)&n, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&kl, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&ku, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&imat, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&c__1, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&result[0], 
						    (ftnlen)sizeof(real));
					    e_wsfe();
					}
					++nfail;
					++nrun;
				    }
				    if (result[5] >= *thresh) {
					if (nfail == 0 && nerrs == 0) {
					    aladhd_(nout, path);
					}
					if (prefac) {
					    io___76.ciunit = *nout;
					    s_wsfe(&io___76);
					    do_fio(&c__1, "SGBSVX", (ftnlen)6)
						    ;
					    do_fio(&c__1, fact, (ftnlen)1);
					    do_fio(&c__1, trans, (ftnlen)1);
					    do_fio(&c__1, (char *)&n, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&kl, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&ku, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, equed, (ftnlen)1);
					    do_fio(&c__1, (char *)&imat, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&c__6, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&result[5], 
						    (ftnlen)sizeof(real));
					    e_wsfe();
					} else {
					    io___77.ciunit = *nout;
					    s_wsfe(&io___77);
					    do_fio(&c__1, "SGBSVX", (ftnlen)6)
						    ;
					    do_fio(&c__1, fact, (ftnlen)1);
					    do_fio(&c__1, trans, (ftnlen)1);
					    do_fio(&c__1, (char *)&n, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&kl, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&ku, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&imat, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&c__6, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&result[5], 
						    (ftnlen)sizeof(real));
					    e_wsfe();
					}
					++nfail;
					++nrun;
				    }
				    if (result[6] >= *thresh) {
					if (nfail == 0 && nerrs == 0) {
					    aladhd_(nout, path);
					}
					if (prefac) {
					    io___78.ciunit = *nout;
					    s_wsfe(&io___78);
					    do_fio(&c__1, "SGBSVX", (ftnlen)6)
						    ;
					    do_fio(&c__1, fact, (ftnlen)1);
					    do_fio(&c__1, trans, (ftnlen)1);
					    do_fio(&c__1, (char *)&n, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&kl, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&ku, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, equed, (ftnlen)1);
					    do_fio(&c__1, (char *)&imat, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&c__7, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&result[6], 
						    (ftnlen)sizeof(real));
					    e_wsfe();
					} else {
					    io___79.ciunit = *nout;
					    s_wsfe(&io___79);
					    do_fio(&c__1, "SGBSVX", (ftnlen)6)
						    ;
					    do_fio(&c__1, fact, (ftnlen)1);
					    do_fio(&c__1, trans, (ftnlen)1);
					    do_fio(&c__1, (char *)&n, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&kl, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&ku, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&imat, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&c__7, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&result[6], 
						    (ftnlen)sizeof(real));
					    e_wsfe();
					}
					++nfail;
					++nrun;
				    }

				}
/* L90: */
			    }
L100:
			    ;
			}
/* L110: */
		    }
L120:
		    ;
		}
L130:
		;
	    }
/* L140: */
	}
/* L150: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);


    return 0;

/*     End of SDRVGB */

} /* sdrvgb_ */
예제 #13
0
파일: schkbd.c 프로젝트: kstraube/hysim
/* Subroutine */ int schkbd_(integer *nsizes, integer *mval, integer *nval, 
	integer *ntypes, logical *dotype, integer *nrhs, integer *iseed, real 
	*thresh, real *a, integer *lda, real *bd, real *be, real *s1, real *
	s2, real *x, integer *ldx, real *y, real *z__, real *q, integer *ldq, 
	real *pt, integer *ldpt, real *u, real *vt, real *work, integer *
	lwork, integer *iwork, integer *nout, integer *info)
{
    /* Initialized data */

    static integer ktype[16] = { 1,2,4,4,4,4,4,6,6,6,6,6,9,9,9,10 };
    static integer kmagn[16] = { 1,1,1,1,1,2,3,1,1,1,2,3,1,2,3,0 };
    static integer kmode[16] = { 0,0,4,3,1,4,4,4,3,1,4,4,0,0,0,0 };

    /* Format strings */
    static char fmt_9998[] = "(\002 SCHKBD: \002,a,\002 returned INFO=\002,i"
	    "6,\002.\002,/9x,\002M=\002,i6,\002, N=\002,i6,\002, JTYPE=\002,i"
	    "6,\002, ISEED=(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9999[] = "(\002 M=\002,i5,\002, N=\002,i5,\002, type "
	    "\002,i2,\002, seed=\002,4(i4,\002,\002),\002 test(\002,i2,\002)"
	    "=\002,g11.4)";

    /* System generated locals */
    integer a_dim1, a_offset, pt_dim1, pt_offset, q_dim1, q_offset, u_dim1, 
	    u_offset, vt_dim1, vt_offset, x_dim1, x_offset, y_dim1, y_offset, 
	    z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7;
    real r__1, r__2, r__3, r__4, r__5, r__6, r__7;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    double log(doublereal), sqrt(doublereal), exp(doublereal);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, j, m, n, mq;
    real dum[1], ulp, cond;
    integer jcol;
    char path[3];
    integer idum[1], mmax, nmax;
    real unfl, ovfl;
    char uplo[1];
    real temp1, temp2;
    logical badmm, badnn;
    integer nfail, imode;
    extern /* Subroutine */ int sbdt01_(integer *, integer *, integer *, real 
	    *, integer *, real *, integer *, real *, real *, real *, integer *
, real *, real *), sbdt02_(integer *, integer *, real *, integer *
, real *, integer *, real *, integer *, real *, real *), sbdt03_(
	    char *, integer *, integer *, real *, real *, real *, integer *, 
	    real *, real *, integer *, real *, real *);
    real dumma[1];
    integer iinfo;
    extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, 
	    integer *, real *, real *, integer *, real *, integer *, real *, 
	    real *, integer *);
    real anorm;
    integer mnmin, mnmax, jsize;
    extern /* Subroutine */ int sort01_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *, real *);
    integer itype, jtype, ntest;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *), slahd2_(integer *, char *);
    integer log2ui;
    logical bidiag;
    extern /* Subroutine */ int slabad_(real *, real *), sbdsdc_(char *, char 
	    *, integer *, real *, real *, real *, integer *, real *, integer *
, real *, integer *, real *, integer *, integer *)
	    , sgebrd_(integer *, integer *, real *, integer *, real *, real *, 
	     real *, real *, real *, integer *, integer *);
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    integer ioldsd[4];
    extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer 
	    *, integer *);
    extern doublereal slarnd_(integer *, integer *);
    real amninv;
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *), slaset_(char *, integer *, 
	    integer *, real *, real *, real *, integer *), sbdsqr_(
	    char *, integer *, integer *, integer *, integer *, real *, real *
, real *, integer *, real *, integer *, real *, integer *, real *, 
	     integer *), sorgbr_(char *, integer *, integer *, 
	    integer *, real *, integer *, real *, real *, integer *, integer *
), slatmr_(integer *, integer *, char *, integer *, char *
, real *, integer *, real *, real *, char *, char *, real *, 
	    integer *, real *, real *, integer *, real *, char *, integer *, 
	    integer *, integer *, real *, real *, char *, real *, integer *, 
	    integer *, integer *), slatms_(integer *, integer *, char *, integer *, char *, 
	    real *, integer *, real *, real *, integer *, integer *, char *, 
	    real *, integer *, real *, integer *);
    integer minwrk;
    real rtunfl, rtovfl, ulpinv, result[19];
    integer mtypes;

    /* Fortran I/O blocks */
    static cilist io___39 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___40 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___42 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___43 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___44 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___51 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___52 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___53 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SCHKBD checks the singular value decomposition (SVD) routines. */

/*  SGEBRD reduces a real general m by n matrix A to upper or lower */
/*  bidiagonal form B by an orthogonal transformation:  Q' * A * P = B */
/*  (or A = Q * B * P').  The matrix B is upper bidiagonal if m >= n */
/*  and lower bidiagonal if m < n. */

/*  SORGBR generates the orthogonal matrices Q and P' from SGEBRD. */
/*  Note that Q and P are not necessarily square. */

/*  SBDSQR computes the singular value decomposition of the bidiagonal */
/*  matrix B as B = U S V'.  It is called three times to compute */
/*     1)  B = U S1 V', where S1 is the diagonal matrix of singular */
/*         values and the columns of the matrices U and V are the left */
/*         and right singular vectors, respectively, of B. */
/*     2)  Same as 1), but the singular values are stored in S2 and the */
/*         singular vectors are not computed. */
/*     3)  A = (UQ) S (P'V'), the SVD of the original matrix A. */
/*  In addition, SBDSQR has an option to apply the left orthogonal matrix */
/*  U to a matrix X, useful in least squares applications. */

/*  SBDSDC computes the singular value decomposition of the bidiagonal */
/*  matrix B as B = U S V' using divide-and-conquer. It is called twice */
/*  to compute */
/*     1) B = U S1 V', where S1 is the diagonal matrix of singular */
/*         values and the columns of the matrices U and V are the left */
/*         and right singular vectors, respectively, of B. */
/*     2) Same as 1), but the singular values are stored in S2 and the */
/*         singular vectors are not computed. */

/*  For each pair of matrix dimensions (M,N) and each selected matrix */
/*  type, an M by N matrix A and an M by NRHS matrix X are generated. */
/*  The problem dimensions are as follows */
/*     A:          M x N */
/*     Q:          M x min(M,N) (but M x M if NRHS > 0) */
/*     P:          min(M,N) x N */
/*     B:          min(M,N) x min(M,N) */
/*     U, V:       min(M,N) x min(M,N) */
/*     S1, S2      diagonal, order min(M,N) */
/*     X:          M x NRHS */

/*  For each generated matrix, 14 tests are performed: */

/*  Test SGEBRD and SORGBR */

/*  (1)   | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P' */

/*  (2)   | I - Q' Q | / ( M ulp ) */

/*  (3)   | I - PT PT' | / ( N ulp ) */

/*  Test SBDSQR on bidiagonal matrix B */

/*  (4)   | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V' */

/*  (5)   | Y - U Z | / ( |Y| max(min(M,N),k) ulp ), where Y = Q' X */
/*                                                   and   Z = U' Y. */
/*  (6)   | I - U' U | / ( min(M,N) ulp ) */

/*  (7)   | I - VT VT' | / ( min(M,N) ulp ) */

/*  (8)   S1 contains min(M,N) nonnegative values in decreasing order. */
/*        (Return 0 if true, 1/ULP if false.) */

/*  (9)   | S1 - S2 | / ( |S1| ulp ), where S2 is computed without */
/*                                    computing U and V. */

/*  (10)  0 if the true singular values of B are within THRESH of */
/*        those in S1.  2*THRESH if they are not.  (Tested using */
/*        SSVDCH) */

/*  Test SBDSQR on matrix A */

/*  (11)  | A - (QU) S (VT PT) | / ( |A| max(M,N) ulp ) */

/*  (12)  | X - (QU) Z | / ( |X| max(M,k) ulp ) */

/*  (13)  | I - (QU)'(QU) | / ( M ulp ) */

/*  (14)  | I - (VT PT) (PT'VT') | / ( N ulp ) */

/*  Test SBDSDC on bidiagonal matrix B */

/*  (15)  | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V' */

/*  (16)  | I - U' U | / ( min(M,N) ulp ) */

/*  (17)  | I - VT VT' | / ( min(M,N) ulp ) */

/*  (18)  S1 contains min(M,N) nonnegative values in decreasing order. */
/*        (Return 0 if true, 1/ULP if false.) */

/*  (19)  | S1 - S2 | / ( |S1| ulp ), where S2 is computed without */
/*                                    computing U and V. */
/*  The possible matrix types are */

/*  (1)  The zero matrix. */
/*  (2)  The identity matrix. */

/*  (3)  A diagonal matrix with evenly spaced entries */
/*       1, ..., ULP  and random signs. */
/*       (ULP = (first number larger than 1) - 1 ) */
/*  (4)  A diagonal matrix with geometrically spaced entries */
/*       1, ..., ULP  and random signs. */
/*  (5)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP */
/*       and random signs. */

/*  (6)  Same as (3), but multiplied by SQRT( overflow threshold ) */
/*  (7)  Same as (3), but multiplied by SQRT( underflow threshold ) */

/*  (8)  A matrix of the form  U D V, where U and V are orthogonal and */
/*       D has evenly spaced entries 1, ..., ULP with random signs */
/*       on the diagonal. */

/*  (9)  A matrix of the form  U D V, where U and V are orthogonal and */
/*       D has geometrically spaced entries 1, ..., ULP with random */
/*       signs on the diagonal. */

/*  (10) A matrix of the form  U D V, where U and V are orthogonal and */
/*       D has "clustered" entries 1, ULP,..., ULP with random */
/*       signs on the diagonal. */

/*  (11) Same as (8), but multiplied by SQRT( overflow threshold ) */
/*  (12) Same as (8), but multiplied by SQRT( underflow threshold ) */

/*  (13) Rectangular matrix with random entries chosen from (-1,1). */
/*  (14) Same as (13), but multiplied by SQRT( overflow threshold ) */
/*  (15) Same as (13), but multiplied by SQRT( underflow threshold ) */

/*  Special case: */
/*  (16) A bidiagonal matrix with random entries chosen from a */
/*       logarithmic distribution on [ulp^2,ulp^(-2)]  (I.e., each */
/*       entry is  e^x, where x is chosen uniformly on */
/*       [ 2 log(ulp), -2 log(ulp) ] .)  For *this* type: */
/*       (a) SGEBRD is not called to reduce it to bidiagonal form. */
/*       (b) the bidiagonal is  min(M,N) x min(M,N); if M<N, the */
/*           matrix will be lower bidiagonal, otherwise upper. */
/*       (c) only tests 5--8 and 14 are performed. */

/*  A subset of the full set of matrix types may be selected through */
/*  the logical array DOTYPE. */

/*  Arguments */
/*  ========== */

/*  NSIZES  (input) INTEGER */
/*          The number of values of M and N contained in the vectors */
/*          MVAL and NVAL.  The matrix sizes are used in pairs (M,N). */

/*  MVAL    (input) INTEGER array, dimension (NM) */
/*          The values of the matrix row dimension M. */

/*  NVAL    (input) INTEGER array, dimension (NM) */
/*          The values of the matrix column dimension N. */

/*  NTYPES  (input) INTEGER */
/*          The number of elements in DOTYPE.   If it is zero, SCHKBD */
/*          does nothing.  It must be at least zero.  If it is MAXTYP+1 */
/*          and NSIZES is 1, then an additional type, MAXTYP+1 is */
/*          defined, which is to use whatever matrices are in A and B. */
/*          This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and */
/*          DOTYPE(MAXTYP+1) is .TRUE. . */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          If DOTYPE(j) is .TRUE., then for each size (m,n), a matrix */
/*          of type j will be generated.  If NTYPES is smaller than the */
/*          maximum number of types defined (PARAMETER MAXTYP), then */
/*          types NTYPES+1 through MAXTYP will not be generated.  If */
/*          NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through */
/*          DOTYPE(NTYPES) will be ignored. */

/*  NRHS    (input) INTEGER */
/*          The number of columns in the "right-hand side" matrices X, Y, */
/*          and Z, used in testing SBDSQR.  If NRHS = 0, then the */
/*          operations on the right-hand side will not be tested. */
/*          NRHS must be at least 0. */

/*  ISEED   (input/output) INTEGER array, dimension (4) */
/*          On entry ISEED specifies the seed of the random number */
/*          generator. The array elements should be between 0 and 4095; */
/*          if not they will be reduced mod 4096.  Also, ISEED(4) must */
/*          be odd.  The values of ISEED are changed on exit, and can be */
/*          used in the next call to SCHKBD to continue the same random */
/*          number sequence. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0.  Note that the */
/*          expected value of the test ratios is O(1), so THRESH should */
/*          be a reasonably small multiple of 1, e.g., 10 or 100. */

/*  A       (workspace) REAL array, dimension (LDA,NMAX) */
/*          where NMAX is the maximum value of N in NVAL. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,MMAX), */
/*          where MMAX is the maximum value of M in MVAL. */

/*  BD      (workspace) REAL array, dimension */
/*                      (max(min(MVAL(j),NVAL(j)))) */

/*  BE      (workspace) REAL array, dimension */
/*                      (max(min(MVAL(j),NVAL(j)))) */

/*  S1      (workspace) REAL array, dimension */
/*                      (max(min(MVAL(j),NVAL(j)))) */

/*  S2      (workspace) REAL array, dimension */
/*                      (max(min(MVAL(j),NVAL(j)))) */

/*  X       (workspace) REAL array, dimension (LDX,NRHS) */

/*  LDX     (input) INTEGER */
/*          The leading dimension of the arrays X, Y, and Z. */
/*          LDX >= max(1,MMAX) */

/*  Y       (workspace) REAL array, dimension (LDX,NRHS) */

/*  Z       (workspace) REAL array, dimension (LDX,NRHS) */

/*  Q       (workspace) REAL array, dimension (LDQ,MMAX) */

/*  LDQ     (input) INTEGER */
/*          The leading dimension of the array Q.  LDQ >= max(1,MMAX). */

/*  PT      (workspace) REAL array, dimension (LDPT,NMAX) */

/*  LDPT    (input) INTEGER */
/*          The leading dimension of the arrays PT, U, and V. */
/*          LDPT >= max(1, max(min(MVAL(j),NVAL(j)))). */

/*  U       (workspace) REAL array, dimension */
/*                      (LDPT,max(min(MVAL(j),NVAL(j)))) */

/*  V       (workspace) REAL array, dimension */
/*                      (LDPT,max(min(MVAL(j),NVAL(j)))) */

/*  WORK    (workspace) REAL array, dimension (LWORK) */

/*  LWORK   (input) INTEGER */
/*          The number of entries in WORK.  This must be at least */
/*          3(M+N) and  M(M + max(M,N,k) + 1) + N*min(M,N)  for all */
/*          pairs  (M,N)=(MM(j),NN(j)) */

/*  IWORK   (workspace) INTEGER array, dimension at least 8*min(M,N) */

/*  NOUT    (input) INTEGER */
/*          The FORTRAN unit number for printing out error messages */
/*          (e.g., if a routine returns IINFO not equal to 0.) */

/*  INFO    (output) INTEGER */
/*          If 0, then everything ran OK. */
/*           -1: NSIZES < 0 */
/*           -2: Some MM(j) < 0 */
/*           -3: Some NN(j) < 0 */
/*           -4: NTYPES < 0 */
/*           -6: NRHS  < 0 */
/*           -8: THRESH < 0 */
/*          -11: LDA < 1 or LDA < MMAX, where MMAX is max( MM(j) ). */
/*          -17: LDB < 1 or LDB < MMAX. */
/*          -21: LDQ < 1 or LDQ < MMAX. */
/*          -23: LDPT< 1 or LDPT< MNMAX. */
/*          -27: LWORK too small. */
/*          If  SLATMR, SLATMS, SGEBRD, SORGBR, or SBDSQR, */
/*              returns an error code, the */
/*              absolute value of it is returned. */

/* ----------------------------------------------------------------------- */

/*     Some Local Variables and Parameters: */
/*     ---- ----- --------- --- ---------- */

/*     ZERO, ONE       Real 0 and 1. */
/*     MAXTYP          The number of types defined. */
/*     NTEST           The number of tests performed, or which can */
/*                     be performed so far, for the current matrix. */
/*     MMAX            Largest value in NN. */
/*     NMAX            Largest value in NN. */
/*     MNMIN           min(MM(j), NN(j)) (the dimension of the bidiagonal */
/*                     matrix.) */
/*     MNMAX           The maximum value of MNMIN for j=1,...,NSIZES. */
/*     NFAIL           The number of tests which have exceeded THRESH */
/*     COND, IMODE     Values to be passed to the matrix generators. */
/*     ANORM           Norm of A; passed to matrix generators. */

/*     OVFL, UNFL      Overflow and underflow thresholds. */
/*     RTOVFL, RTUNFL  Square roots of the previous 2 values. */
/*     ULP, ULPINV     Finest relative precision and its inverse. */

/*             The following four arrays decode JTYPE: */
/*     KTYPE(j)        The general type (1-10) for type "j". */
/*     KMODE(j)        The MODE value to be passed to the matrix */
/*                     generator for type "j". */
/*     KMAGN(j)        The order of magnitude ( O(1), */
/*                     O(overflow^(1/2) ), O(underflow^(1/2) ) */

/* ====================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --mval;
    --nval;
    --dotype;
    --iseed;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --bd;
    --be;
    --s1;
    --s2;
    z_dim1 = *ldx;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    y_dim1 = *ldx;
    y_offset = 1 + y_dim1;
    y -= y_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    vt_dim1 = *ldpt;
    vt_offset = 1 + vt_dim1;
    vt -= vt_offset;
    u_dim1 = *ldpt;
    u_offset = 1 + u_dim1;
    u -= u_offset;
    pt_dim1 = *ldpt;
    pt_offset = 1 + pt_dim1;
    pt -= pt_offset;
    --work;
    --iwork;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Check for errors */

    *info = 0;

    badmm = FALSE_;
    badnn = FALSE_;
    mmax = 1;
    nmax = 1;
    mnmax = 1;
    minwrk = 1;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = mmax, i__3 = mval[j];
	mmax = max(i__2,i__3);
	if (mval[j] < 0) {
	    badmm = TRUE_;
	}
/* Computing MAX */
	i__2 = nmax, i__3 = nval[j];
	nmax = max(i__2,i__3);
	if (nval[j] < 0) {
	    badnn = TRUE_;
	}
/* Computing MAX */
/* Computing MIN */
	i__4 = mval[j], i__5 = nval[j];
	i__2 = mnmax, i__3 = min(i__4,i__5);
	mnmax = max(i__2,i__3);
/* Computing MAX */
/* Computing MAX */
	i__4 = mval[j], i__5 = nval[j], i__4 = max(i__4,i__5);
/* Computing MIN */
	i__6 = nval[j], i__7 = mval[j];
	i__2 = minwrk, i__3 = (mval[j] + nval[j]) * 3, i__2 = max(i__2,i__3), 
		i__3 = mval[j] * (mval[j] + max(i__4,*nrhs) + 1) + nval[j] * 
		min(i__6,i__7);
	minwrk = max(i__2,i__3);
/* L10: */
    }

/*     Check for errors */

    if (*nsizes < 0) {
	*info = -1;
    } else if (badmm) {
	*info = -2;
    } else if (badnn) {
	*info = -3;
    } else if (*ntypes < 0) {
	*info = -4;
    } else if (*nrhs < 0) {
	*info = -6;
    } else if (*lda < mmax) {
	*info = -11;
    } else if (*ldx < mmax) {
	*info = -17;
    } else if (*ldq < mmax) {
	*info = -21;
    } else if (*ldpt < mnmax) {
	*info = -23;
    } else if (minwrk > *lwork) {
	*info = -27;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SCHKBD", &i__1);
	return 0;
    }

/*     Initialize constants */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "BD", (ftnlen)2, (ftnlen)2);
    nfail = 0;
    ntest = 0;
    unfl = slamch_("Safe minimum");
    ovfl = slamch_("Overflow");
    slabad_(&unfl, &ovfl);
    ulp = slamch_("Precision");
    ulpinv = 1.f / ulp;
    log2ui = (integer) (log(ulpinv) / log(2.f));
    rtunfl = sqrt(unfl);
    rtovfl = sqrt(ovfl);
    infoc_1.infot = 0;

/*     Loop over sizes, types */

    i__1 = *nsizes;
    for (jsize = 1; jsize <= i__1; ++jsize) {
	m = mval[jsize];
	n = nval[jsize];
	mnmin = min(m,n);
/* Computing MAX */
	i__2 = max(m,n);
	amninv = 1.f / max(i__2,1);

	if (*nsizes != 1) {
	    mtypes = min(16,*ntypes);
	} else {
	    mtypes = min(17,*ntypes);
	}

	i__2 = mtypes;
	for (jtype = 1; jtype <= i__2; ++jtype) {
	    if (! dotype[jtype]) {
		goto L190;
	    }

	    for (j = 1; j <= 4; ++j) {
		ioldsd[j - 1] = iseed[j];
/* L20: */
	    }

	    for (j = 1; j <= 14; ++j) {
		result[j - 1] = -1.f;
/* L30: */
	    }

	    *(unsigned char *)uplo = ' ';

/*           Compute "A" */

/*           Control parameters: */

/*           KMAGN  KMODE        KTYPE */
/*       =1  O(1)   clustered 1  zero */
/*       =2  large  clustered 2  identity */
/*       =3  small  exponential  (none) */
/*       =4         arithmetic   diagonal, (w/ eigenvalues) */
/*       =5         random       symmetric, w/ eigenvalues */
/*       =6                      nonsymmetric, w/ singular values */
/*       =7                      random diagonal */
/*       =8                      random symmetric */
/*       =9                      random nonsymmetric */
/*       =10                     random bidiagonal (log. distrib.) */

	    if (mtypes > 16) {
		goto L100;
	    }

	    itype = ktype[jtype - 1];
	    imode = kmode[jtype - 1];

/*           Compute norm */

	    switch (kmagn[jtype - 1]) {
		case 1:  goto L40;
		case 2:  goto L50;
		case 3:  goto L60;
	    }

L40:
	    anorm = 1.f;
	    goto L70;

L50:
	    anorm = rtovfl * ulp * amninv;
	    goto L70;

L60:
	    anorm = rtunfl * max(m,n) * ulpinv;
	    goto L70;

L70:

	    slaset_("Full", lda, &n, &c_b20, &c_b20, &a[a_offset], lda);
	    iinfo = 0;
	    cond = ulpinv;

	    bidiag = FALSE_;
	    if (itype == 1) {

/*              Zero matrix */

		iinfo = 0;

	    } else if (itype == 2) {

/*              Identity */

		i__3 = mnmin;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    a[jcol + jcol * a_dim1] = anorm;
/* L80: */
		}

	    } else if (itype == 4) {

/*              Diagonal Matrix, [Eigen]values Specified */

		slatms_(&mnmin, &mnmin, "S", &iseed[1], "N", &work[1], &imode, 
			 &cond, &anorm, &c__0, &c__0, "N", &a[a_offset], lda, 
			&work[mnmin + 1], &iinfo);

	    } else if (itype == 5) {

/*              Symmetric, eigenvalues specified */

		slatms_(&mnmin, &mnmin, "S", &iseed[1], "S", &work[1], &imode, 
			 &cond, &anorm, &m, &n, "N", &a[a_offset], lda, &work[
			mnmin + 1], &iinfo);

	    } else if (itype == 6) {

/*              Nonsymmetric, singular values specified */

		slatms_(&m, &n, "S", &iseed[1], "N", &work[1], &imode, &cond, 
			&anorm, &m, &n, "N", &a[a_offset], lda, &work[mnmin + 
			1], &iinfo);

	    } else if (itype == 7) {

/*              Diagonal, random entries */

		slatmr_(&mnmin, &mnmin, "S", &iseed[1], "N", &work[1], &c__6, 
			&c_b37, &c_b37, "T", "N", &work[mnmin + 1], &c__1, &
			c_b37, &work[(mnmin << 1) + 1], &c__1, &c_b37, "N", &
			iwork[1], &c__0, &c__0, &c_b20, &anorm, "NO", &a[
			a_offset], lda, &iwork[1], &iinfo);

	    } else if (itype == 8) {

/*              Symmetric, random entries */

		slatmr_(&mnmin, &mnmin, "S", &iseed[1], "S", &work[1], &c__6, 
			&c_b37, &c_b37, "T", "N", &work[mnmin + 1], &c__1, &
			c_b37, &work[m + mnmin + 1], &c__1, &c_b37, "N", &
			iwork[1], &m, &n, &c_b20, &anorm, "NO", &a[a_offset], 
			lda, &iwork[1], &iinfo);

	    } else if (itype == 9) {

/*              Nonsymmetric, random entries */

		slatmr_(&m, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b37, 
			&c_b37, "T", "N", &work[mnmin + 1], &c__1, &c_b37, &
			work[m + mnmin + 1], &c__1, &c_b37, "N", &iwork[1], &
			m, &n, &c_b20, &anorm, "NO", &a[a_offset], lda, &
			iwork[1], &iinfo);

	    } else if (itype == 10) {

/*              Bidiagonal, random entries */

		temp1 = log(ulp) * -2.f;
		i__3 = mnmin;
		for (j = 1; j <= i__3; ++j) {
		    bd[j] = exp(temp1 * slarnd_(&c__2, &iseed[1]));
		    if (j < mnmin) {
			be[j] = exp(temp1 * slarnd_(&c__2, &iseed[1]));
		    }
/* L90: */
		}

		iinfo = 0;
		bidiag = TRUE_;
		if (m >= n) {
		    *(unsigned char *)uplo = 'U';
		} else {
		    *(unsigned char *)uplo = 'L';
		}
	    } else {
		iinfo = 1;
	    }

	    if (iinfo == 0) {

/*              Generate Right-Hand Side */

		if (bidiag) {
		    slatmr_(&mnmin, nrhs, "S", &iseed[1], "N", &work[1], &
			    c__6, &c_b37, &c_b37, "T", "N", &work[mnmin + 1], 
			    &c__1, &c_b37, &work[(mnmin << 1) + 1], &c__1, &
			    c_b37, "N", &iwork[1], &mnmin, nrhs, &c_b20, &
			    c_b37, "NO", &y[y_offset], ldx, &iwork[1], &iinfo);
		} else {
		    slatmr_(&m, nrhs, "S", &iseed[1], "N", &work[1], &c__6, &
			    c_b37, &c_b37, "T", "N", &work[m + 1], &c__1, &
			    c_b37, &work[(m << 1) + 1], &c__1, &c_b37, "N", &
			    iwork[1], &m, nrhs, &c_b20, &c_b37, "NO", &x[
			    x_offset], ldx, &iwork[1], &iinfo);
		}
	    }

/*           Error Exit */

	    if (iinfo != 0) {
		io___39.ciunit = *nout;
		s_wsfe(&io___39);
		do_fio(&c__1, "Generator", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		return 0;
	    }

L100:

/*           Call SGEBRD and SORGBR to compute B, Q, and P, do tests. */

	    if (! bidiag) {

/*              Compute transformations to reduce A to bidiagonal form: */
/*              B := Q' * A * P. */

		slacpy_(" ", &m, &n, &a[a_offset], lda, &q[q_offset], ldq);
		i__3 = *lwork - (mnmin << 1);
		sgebrd_(&m, &n, &q[q_offset], ldq, &bd[1], &be[1], &work[1], &
			work[mnmin + 1], &work[(mnmin << 1) + 1], &i__3, &
			iinfo);

/*              Check error code from SGEBRD. */

		if (iinfo != 0) {
		    io___40.ciunit = *nout;
		    s_wsfe(&io___40);
		    do_fio(&c__1, "SGEBRD", (ftnlen)6);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    return 0;
		}

		slacpy_(" ", &m, &n, &q[q_offset], ldq, &pt[pt_offset], ldpt);
		if (m >= n) {
		    *(unsigned char *)uplo = 'U';
		} else {
		    *(unsigned char *)uplo = 'L';
		}

/*              Generate Q */

		mq = m;
		if (*nrhs <= 0) {
		    mq = mnmin;
		}
		i__3 = *lwork - (mnmin << 1);
		sorgbr_("Q", &m, &mq, &n, &q[q_offset], ldq, &work[1], &work[(
			mnmin << 1) + 1], &i__3, &iinfo);

/*              Check error code from SORGBR. */

		if (iinfo != 0) {
		    io___42.ciunit = *nout;
		    s_wsfe(&io___42);
		    do_fio(&c__1, "SORGBR(Q)", (ftnlen)9);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    return 0;
		}

/*              Generate P' */

		i__3 = *lwork - (mnmin << 1);
		sorgbr_("P", &mnmin, &n, &m, &pt[pt_offset], ldpt, &work[
			mnmin + 1], &work[(mnmin << 1) + 1], &i__3, &iinfo);

/*              Check error code from SORGBR. */

		if (iinfo != 0) {
		    io___43.ciunit = *nout;
		    s_wsfe(&io___43);
		    do_fio(&c__1, "SORGBR(P)", (ftnlen)9);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    return 0;
		}

/*              Apply Q' to an M by NRHS matrix X:  Y := Q' * X. */

		sgemm_("Transpose", "No transpose", &m, nrhs, &m, &c_b37, &q[
			q_offset], ldq, &x[x_offset], ldx, &c_b20, &y[
			y_offset], ldx);

/*              Test 1:  Check the decomposition A := Q * B * PT */
/*                   2:  Check the orthogonality of Q */
/*                   3:  Check the orthogonality of PT */

		sbdt01_(&m, &n, &c__1, &a[a_offset], lda, &q[q_offset], ldq, &
			bd[1], &be[1], &pt[pt_offset], ldpt, &work[1], result)
			;
		sort01_("Columns", &m, &mq, &q[q_offset], ldq, &work[1], 
			lwork, &result[1]);
		sort01_("Rows", &mnmin, &n, &pt[pt_offset], ldpt, &work[1], 
			lwork, &result[2]);
	    }

/*           Use SBDSQR to form the SVD of the bidiagonal matrix B: */
/*           B := U * S1 * VT, and compute Z = U' * Y. */

	    scopy_(&mnmin, &bd[1], &c__1, &s1[1], &c__1);
	    if (mnmin > 0) {
		i__3 = mnmin - 1;
		scopy_(&i__3, &be[1], &c__1, &work[1], &c__1);
	    }
	    slacpy_(" ", &m, nrhs, &y[y_offset], ldx, &z__[z_offset], ldx);
	    slaset_("Full", &mnmin, &mnmin, &c_b20, &c_b37, &u[u_offset], 
		    ldpt);
	    slaset_("Full", &mnmin, &mnmin, &c_b20, &c_b37, &vt[vt_offset], 
		    ldpt);

	    sbdsqr_(uplo, &mnmin, &mnmin, &mnmin, nrhs, &s1[1], &work[1], &vt[
		    vt_offset], ldpt, &u[u_offset], ldpt, &z__[z_offset], ldx, 
		     &work[mnmin + 1], &iinfo);

/*           Check error code from SBDSQR. */

	    if (iinfo != 0) {
		io___44.ciunit = *nout;
		s_wsfe(&io___44);
		do_fio(&c__1, "SBDSQR(vects)", (ftnlen)13);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    return 0;
		} else {
		    result[3] = ulpinv;
		    goto L170;
		}
	    }

/*           Use SBDSQR to compute only the singular values of the */
/*           bidiagonal matrix B;  U, VT, and Z should not be modified. */

	    scopy_(&mnmin, &bd[1], &c__1, &s2[1], &c__1);
	    if (mnmin > 0) {
		i__3 = mnmin - 1;
		scopy_(&i__3, &be[1], &c__1, &work[1], &c__1);
	    }

	    sbdsqr_(uplo, &mnmin, &c__0, &c__0, &c__0, &s2[1], &work[1], &vt[
		    vt_offset], ldpt, &u[u_offset], ldpt, &z__[z_offset], ldx, 
		     &work[mnmin + 1], &iinfo);

/*           Check error code from SBDSQR. */

	    if (iinfo != 0) {
		io___45.ciunit = *nout;
		s_wsfe(&io___45);
		do_fio(&c__1, "SBDSQR(values)", (ftnlen)14);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    return 0;
		} else {
		    result[8] = ulpinv;
		    goto L170;
		}
	    }

/*           Test 4:  Check the decomposition B := U * S1 * VT */
/*                5:  Check the computation Z := U' * Y */
/*                6:  Check the orthogonality of U */
/*                7:  Check the orthogonality of VT */

	    sbdt03_(uplo, &mnmin, &c__1, &bd[1], &be[1], &u[u_offset], ldpt, &
		    s1[1], &vt[vt_offset], ldpt, &work[1], &result[3]);
	    sbdt02_(&mnmin, nrhs, &y[y_offset], ldx, &z__[z_offset], ldx, &u[
		    u_offset], ldpt, &work[1], &result[4]);
	    sort01_("Columns", &mnmin, &mnmin, &u[u_offset], ldpt, &work[1], 
		    lwork, &result[5]);
	    sort01_("Rows", &mnmin, &mnmin, &vt[vt_offset], ldpt, &work[1], 
		    lwork, &result[6]);

/*           Test 8:  Check that the singular values are sorted in */
/*                    non-increasing order and are non-negative */

	    result[7] = 0.f;
	    i__3 = mnmin - 1;
	    for (i__ = 1; i__ <= i__3; ++i__) {
		if (s1[i__] < s1[i__ + 1]) {
		    result[7] = ulpinv;
		}
		if (s1[i__] < 0.f) {
		    result[7] = ulpinv;
		}
/* L110: */
	    }
	    if (mnmin >= 1) {
		if (s1[mnmin] < 0.f) {
		    result[7] = ulpinv;
		}
	    }

/*           Test 9:  Compare SBDSQR with and without singular vectors */

	    temp2 = 0.f;

	    i__3 = mnmin;
	    for (j = 1; j <= i__3; ++j) {
/* Computing MAX */
/* Computing MAX */
		r__6 = (r__1 = s1[j], dabs(r__1)), r__7 = (r__2 = s2[j], dabs(
			r__2));
		r__4 = sqrt(unfl) * dmax(s1[1],1.f), r__5 = ulp * dmax(r__6,
			r__7);
		temp1 = (r__3 = s1[j] - s2[j], dabs(r__3)) / dmax(r__4,r__5);
		temp2 = dmax(temp1,temp2);
/* L120: */
	    }

	    result[8] = temp2;

/*           Test 10:  Sturm sequence test of singular values */
/*                     Go up by factors of two until it succeeds */

	    temp1 = *thresh * (.5f - ulp);

	    i__3 = log2ui;
	    for (j = 0; j <= i__3; ++j) {
/*               CALL SSVDCH( MNMIN, BD, BE, S1, TEMP1, IINFO ) */
		if (iinfo == 0) {
		    goto L140;
		}
		temp1 *= 2.f;
/* L130: */
	    }

L140:
	    result[9] = temp1;

/*           Use SBDSQR to form the decomposition A := (QU) S (VT PT) */
/*           from the bidiagonal form A := Q B PT. */

	    if (! bidiag) {
		scopy_(&mnmin, &bd[1], &c__1, &s2[1], &c__1);
		if (mnmin > 0) {
		    i__3 = mnmin - 1;
		    scopy_(&i__3, &be[1], &c__1, &work[1], &c__1);
		}

		sbdsqr_(uplo, &mnmin, &n, &m, nrhs, &s2[1], &work[1], &pt[
			pt_offset], ldpt, &q[q_offset], ldq, &y[y_offset], 
			ldx, &work[mnmin + 1], &iinfo);

/*              Test 11:  Check the decomposition A := Q*U * S2 * VT*PT */
/*                   12:  Check the computation Z := U' * Q' * X */
/*                   13:  Check the orthogonality of Q*U */
/*                   14:  Check the orthogonality of VT*PT */

		sbdt01_(&m, &n, &c__0, &a[a_offset], lda, &q[q_offset], ldq, &
			s2[1], dumma, &pt[pt_offset], ldpt, &work[1], &result[
			10]);
		sbdt02_(&m, nrhs, &x[x_offset], ldx, &y[y_offset], ldx, &q[
			q_offset], ldq, &work[1], &result[11]);
		sort01_("Columns", &m, &mq, &q[q_offset], ldq, &work[1], 
			lwork, &result[12]);
		sort01_("Rows", &mnmin, &n, &pt[pt_offset], ldpt, &work[1], 
			lwork, &result[13]);
	    }

/*           Use SBDSDC to form the SVD of the bidiagonal matrix B: */
/*           B := U * S1 * VT */

	    scopy_(&mnmin, &bd[1], &c__1, &s1[1], &c__1);
	    if (mnmin > 0) {
		i__3 = mnmin - 1;
		scopy_(&i__3, &be[1], &c__1, &work[1], &c__1);
	    }
	    slaset_("Full", &mnmin, &mnmin, &c_b20, &c_b37, &u[u_offset], 
		    ldpt);
	    slaset_("Full", &mnmin, &mnmin, &c_b20, &c_b37, &vt[vt_offset], 
		    ldpt);

	    sbdsdc_(uplo, "I", &mnmin, &s1[1], &work[1], &u[u_offset], ldpt, &
		    vt[vt_offset], ldpt, dum, idum, &work[mnmin + 1], &iwork[
		    1], &iinfo);

/*           Check error code from SBDSDC. */

	    if (iinfo != 0) {
		io___51.ciunit = *nout;
		s_wsfe(&io___51);
		do_fio(&c__1, "SBDSDC(vects)", (ftnlen)13);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    return 0;
		} else {
		    result[14] = ulpinv;
		    goto L170;
		}
	    }

/*           Use SBDSDC to compute only the singular values of the */
/*           bidiagonal matrix B;  U and VT should not be modified. */

	    scopy_(&mnmin, &bd[1], &c__1, &s2[1], &c__1);
	    if (mnmin > 0) {
		i__3 = mnmin - 1;
		scopy_(&i__3, &be[1], &c__1, &work[1], &c__1);
	    }

	    sbdsdc_(uplo, "N", &mnmin, &s2[1], &work[1], dum, &c__1, dum, &
		    c__1, dum, idum, &work[mnmin + 1], &iwork[1], &iinfo);

/*           Check error code from SBDSDC. */

	    if (iinfo != 0) {
		io___52.ciunit = *nout;
		s_wsfe(&io___52);
		do_fio(&c__1, "SBDSDC(values)", (ftnlen)14);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    return 0;
		} else {
		    result[17] = ulpinv;
		    goto L170;
		}
	    }

/*           Test 15:  Check the decomposition B := U * S1 * VT */
/*                16:  Check the orthogonality of U */
/*                17:  Check the orthogonality of VT */

	    sbdt03_(uplo, &mnmin, &c__1, &bd[1], &be[1], &u[u_offset], ldpt, &
		    s1[1], &vt[vt_offset], ldpt, &work[1], &result[14]);
	    sort01_("Columns", &mnmin, &mnmin, &u[u_offset], ldpt, &work[1], 
		    lwork, &result[15]);
	    sort01_("Rows", &mnmin, &mnmin, &vt[vt_offset], ldpt, &work[1], 
		    lwork, &result[16]);

/*           Test 18:  Check that the singular values are sorted in */
/*                     non-increasing order and are non-negative */

	    result[17] = 0.f;
	    i__3 = mnmin - 1;
	    for (i__ = 1; i__ <= i__3; ++i__) {
		if (s1[i__] < s1[i__ + 1]) {
		    result[17] = ulpinv;
		}
		if (s1[i__] < 0.f) {
		    result[17] = ulpinv;
		}
/* L150: */
	    }
	    if (mnmin >= 1) {
		if (s1[mnmin] < 0.f) {
		    result[17] = ulpinv;
		}
	    }

/*           Test 19:  Compare SBDSQR with and without singular vectors */

	    temp2 = 0.f;

	    i__3 = mnmin;
	    for (j = 1; j <= i__3; ++j) {
/* Computing MAX */
/* Computing MAX */
		r__4 = dabs(s1[1]), r__5 = dabs(s2[1]);
		r__2 = sqrt(unfl) * dmax(s1[1],1.f), r__3 = ulp * dmax(r__4,
			r__5);
		temp1 = (r__1 = s1[j] - s2[j], dabs(r__1)) / dmax(r__2,r__3);
		temp2 = dmax(temp1,temp2);
/* L160: */
	    }

	    result[18] = temp2;

/*           End of Loop -- Check for RESULT(j) > THRESH */

L170:
	    for (j = 1; j <= 19; ++j) {
		if (result[j - 1] >= *thresh) {
		    if (nfail == 0) {
			slahd2_(nout, path);
		    }
		    io___53.ciunit = *nout;
		    s_wsfe(&io___53);
		    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&result[j - 1], (ftnlen)sizeof(real)
			    );
		    e_wsfe();
		    ++nfail;
		}
/* L180: */
	    }
	    if (! bidiag) {
		ntest += 19;
	    } else {
		ntest += 5;
	    }

L190:
	    ;
	}
/* L200: */
    }

/*     Summary */

    alasum_(path, nout, &nfail, &ntest, &c__0);

    return 0;

/*     End of SCHKBD */


} /* schkbd_ */
예제 #14
0
파일: sdrvgt.c 프로젝트: 3deggi/levmar-ndk
/* Subroutine */ int sdrvgt_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, real *thresh, logical *tsterr, real *a, real *af, real 
	*b, real *x, real *xact, real *work, real *rwork, integer *iwork, 
	integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 0,0,0,1 };
    static char transs[1*3] = "N" "T" "C";

    /* Format strings */
    static char fmt_9999[] = "(1x,a,\002, N =\002,i5,\002, type \002,i2,\002"
	    ", test \002,i2,\002, ratio = \002,g12.5)";
    static char fmt_9998[] = "(1x,a,\002, FACT='\002,a1,\002', TRANS='\002,a"
	    "1,\002', N =\002,i5,\002, type \002,i2,\002, test \002,i2,\002, "
	    "ratio = \002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5[2];
    real r__1, r__2;
    char ch__1[2];

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    integer i__, j, k, m, n;
    real z__[3];
    integer k1, in, kl, ku, ix, nt, lda;
    char fact[1];
    real cond;
    integer mode, koff, imat, info;
    char path[3], dist[1], type__[1];
    integer nrun, ifact, nfail, iseed[4];
    real rcond;
    extern /* Subroutine */ int sget04_(integer *, integer *, real *, integer 
	    *, real *, integer *, real *, real *), sscal_(integer *, real *, 
	    real *, integer *);
    integer nimat;
    extern doublereal sget06_(real *, real *);
    real anorm;
    integer itran;
    extern /* Subroutine */ int sgtt01_(integer *, real *, real *, real *, 
	    real *, real *, real *, real *, integer *, real *, integer *, 
	    real *, real *), sgtt02_(char *, integer *, integer *, real *, 
	    real *, real *, real *, integer *, real *, integer *, real *, 
	    real *), sgtt05_(char *, integer *, integer *, real *, 
	    real *, real *, real *, integer *, real *, integer *, real *, 
	    integer *, real *, real *, real *);
    char trans[1];
    integer izero, nerrs;
    extern doublereal sasum_(integer *, real *, integer *);
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *);
    logical zerot;
    extern /* Subroutine */ int sgtsv_(integer *, integer *, real *, real *, 
	    real *, real *, integer *, integer *), slatb4_(char *, integer *, 
	    integer *, integer *, char *, integer *, integer *, real *, 
	    integer *, real *, char *), aladhd_(
	    integer *, char *), alaerh_(char *, char *, integer *, 
	    integer *, char *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *, integer *);
    real rcondc, rcondi;
    extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer 
	    *, integer *);
    real rcondo, anormi;
    extern /* Subroutine */ int slagtm_(char *, integer *, integer *, real *, 
	    real *, real *, real *, real *, integer *, real *, real *, 
	    integer *);
    real ainvnm;
    extern doublereal slangt_(char *, integer *, real *, real *, real *);
    logical trfcon;
    real anormo;
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *), slaset_(char *, integer *, 
	    integer *, real *, real *, real *, integer *), slatms_(
	    integer *, integer *, char *, integer *, char *, real *, integer *
, real *, real *, integer *, integer *, char *, real *, integer *, 
	     real *, integer *), slarnv_(integer *, 
	    integer *, integer *, real *), sgttrf_(integer *, real *, real *, 
	    real *, real *, integer *, integer *);
    real result[6];
    extern /* Subroutine */ int sgttrs_(char *, integer *, integer *, real *, 
	    real *, real *, real *, integer *, real *, integer *, integer *), serrvx_(char *, integer *), sgtsvx_(char *, char 
	    *, integer *, integer *, real *, real *, real *, real *, real *, 
	    real *, real *, integer *, real *, integer *, real *, integer *, 
	    real *, real *, real *, real *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___42 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___46 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___47 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SDRVGT tests SGTSV and -SVX. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  A       (workspace) REAL array, dimension (NMAX*4) */

/*  AF      (workspace) REAL array, dimension (NMAX*4) */

/*  B       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  X       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  WORK    (workspace) REAL array, dimension */
/*                      (NMAX*max(3,NRHS)) */

/*  RWORK   (workspace) REAL array, dimension */
/*                      (max(NMAX,2*NRHS)) */

/*  IWORK   (workspace) INTEGER array, dimension (2*NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --af;
    --a;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "GT", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	serrvx_(path, nout);
    }
    infoc_1.infot = 0;

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {

/*        Do for each value of N in NVAL. */

	n = nval[in];
/* Computing MAX */
	i__2 = n - 1;
	m = max(i__2,0);
	lda = max(1,n);
	nimat = 12;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L130;
	    }

/*           Set up parameters with SLATB4. */

	    slatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &
		    cond, dist);

	    zerot = imat >= 8 && imat <= 10;
	    if (imat <= 6) {

/*              Types 1-6:  generate matrices of known condition number. */

/* Computing MAX */
		i__3 = 2 - ku, i__4 = 3 - max(1,n);
		koff = max(i__3,i__4);
		s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)32, (ftnlen)6);
		slatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cond, 
			&anorm, &kl, &ku, "Z", &af[koff], &c__3, &work[1], &
			info);

/*              Check the error code from SLATMS. */

		if (info != 0) {
		    alaerh_(path, "SLATMS", &info, &c__0, " ", &n, &n, &kl, &
			    ku, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L130;
		}
		izero = 0;

		if (n > 1) {
		    i__3 = n - 1;
		    scopy_(&i__3, &af[4], &c__3, &a[1], &c__1);
		    i__3 = n - 1;
		    scopy_(&i__3, &af[3], &c__3, &a[n + m + 1], &c__1);
		}
		scopy_(&n, &af[2], &c__3, &a[m + 1], &c__1);
	    } else {

/*              Types 7-12:  generate tridiagonal matrices with */
/*              unknown condition numbers. */

		if (! zerot || ! dotype[7]) {

/*                 Generate a matrix with elements from [-1,1]. */

		    i__3 = n + (m << 1);
		    slarnv_(&c__2, iseed, &i__3, &a[1]);
		    if (anorm != 1.f) {
			i__3 = n + (m << 1);
			sscal_(&i__3, &anorm, &a[1], &c__1);
		    }
		} else if (izero > 0) {

/*                 Reuse the last matrix by copying back the zeroed out */
/*                 elements. */

		    if (izero == 1) {
			a[n] = z__[1];
			if (n > 1) {
			    a[1] = z__[2];
			}
		    } else if (izero == n) {
			a[n * 3 - 2] = z__[0];
			a[(n << 1) - 1] = z__[1];
		    } else {
			a[(n << 1) - 2 + izero] = z__[0];
			a[n - 1 + izero] = z__[1];
			a[izero] = z__[2];
		    }
		}

/*              If IMAT > 7, set one column of the matrix to 0. */

		if (! zerot) {
		    izero = 0;
		} else if (imat == 8) {
		    izero = 1;
		    z__[1] = a[n];
		    a[n] = 0.f;
		    if (n > 1) {
			z__[2] = a[1];
			a[1] = 0.f;
		    }
		} else if (imat == 9) {
		    izero = n;
		    z__[0] = a[n * 3 - 2];
		    z__[1] = a[(n << 1) - 1];
		    a[n * 3 - 2] = 0.f;
		    a[(n << 1) - 1] = 0.f;
		} else {
		    izero = (n + 1) / 2;
		    i__3 = n - 1;
		    for (i__ = izero; i__ <= i__3; ++i__) {
			a[(n << 1) - 2 + i__] = 0.f;
			a[n - 1 + i__] = 0.f;
			a[i__] = 0.f;
/* L20: */
		    }
		    a[n * 3 - 2] = 0.f;
		    a[(n << 1) - 1] = 0.f;
		}
	    }

	    for (ifact = 1; ifact <= 2; ++ifact) {
		if (ifact == 1) {
		    *(unsigned char *)fact = 'F';
		} else {
		    *(unsigned char *)fact = 'N';
		}

/*              Compute the condition number for comparison with */
/*              the value returned by SGTSVX. */

		if (zerot) {
		    if (ifact == 1) {
			goto L120;
		    }
		    rcondo = 0.f;
		    rcondi = 0.f;

		} else if (ifact == 1) {
		    i__3 = n + (m << 1);
		    scopy_(&i__3, &a[1], &c__1, &af[1], &c__1);

/*                 Compute the 1-norm and infinity-norm of A. */

		    anormo = slangt_("1", &n, &a[1], &a[m + 1], &a[n + m + 1]);
		    anormi = slangt_("I", &n, &a[1], &a[m + 1], &a[n + m + 1]);

/*                 Factor the matrix A. */

		    sgttrf_(&n, &af[1], &af[m + 1], &af[n + m + 1], &af[n + (
			    m << 1) + 1], &iwork[1], &info);

/*                 Use SGTTRS to solve for one column at a time of */
/*                 inv(A), computing the maximum column sum as we go. */

		    ainvnm = 0.f;
		    i__3 = n;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			i__4 = n;
			for (j = 1; j <= i__4; ++j) {
			    x[j] = 0.f;
/* L30: */
			}
			x[i__] = 1.f;
			sgttrs_("No transpose", &n, &c__1, &af[1], &af[m + 1], 
				 &af[n + m + 1], &af[n + (m << 1) + 1], &
				iwork[1], &x[1], &lda, &info);
/* Computing MAX */
			r__1 = ainvnm, r__2 = sasum_(&n, &x[1], &c__1);
			ainvnm = dmax(r__1,r__2);
/* L40: */
		    }

/*                 Compute the 1-norm condition number of A. */

		    if (anormo <= 0.f || ainvnm <= 0.f) {
			rcondo = 1.f;
		    } else {
			rcondo = 1.f / anormo / ainvnm;
		    }

/*                 Use SGTTRS to solve for one column at a time of */
/*                 inv(A'), computing the maximum column sum as we go. */

		    ainvnm = 0.f;
		    i__3 = n;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			i__4 = n;
			for (j = 1; j <= i__4; ++j) {
			    x[j] = 0.f;
/* L50: */
			}
			x[i__] = 1.f;
			sgttrs_("Transpose", &n, &c__1, &af[1], &af[m + 1], &
				af[n + m + 1], &af[n + (m << 1) + 1], &iwork[
				1], &x[1], &lda, &info);
/* Computing MAX */
			r__1 = ainvnm, r__2 = sasum_(&n, &x[1], &c__1);
			ainvnm = dmax(r__1,r__2);
/* L60: */
		    }

/*                 Compute the infinity-norm condition number of A. */

		    if (anormi <= 0.f || ainvnm <= 0.f) {
			rcondi = 1.f;
		    } else {
			rcondi = 1.f / anormi / ainvnm;
		    }
		}

		for (itran = 1; itran <= 3; ++itran) {
		    *(unsigned char *)trans = *(unsigned char *)&transs[itran 
			    - 1];
		    if (itran == 1) {
			rcondc = rcondo;
		    } else {
			rcondc = rcondi;
		    }

/*                 Generate NRHS random solution vectors. */

		    ix = 1;
		    i__3 = *nrhs;
		    for (j = 1; j <= i__3; ++j) {
			slarnv_(&c__2, iseed, &n, &xact[ix]);
			ix += lda;
/* L70: */
		    }

/*                 Set the right hand side. */

		    slagtm_(trans, &n, nrhs, &c_b43, &a[1], &a[m + 1], &a[n + 
			    m + 1], &xact[1], &lda, &c_b44, &b[1], &lda);

		    if (ifact == 2 && itran == 1) {

/*                    --- Test SGTSV  --- */

/*                    Solve the system using Gaussian elimination with */
/*                    partial pivoting. */

			i__3 = n + (m << 1);
			scopy_(&i__3, &a[1], &c__1, &af[1], &c__1);
			slacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda);

			s_copy(srnamc_1.srnamt, "SGTSV ", (ftnlen)32, (ftnlen)
				6);
			sgtsv_(&n, nrhs, &af[1], &af[m + 1], &af[n + m + 1], &
				x[1], &lda, &info);

/*                    Check error code from SGTSV . */

			if (info != izero) {
			    alaerh_(path, "SGTSV ", &info, &izero, " ", &n, &
				    n, &c__1, &c__1, nrhs, &imat, &nfail, &
				    nerrs, nout);
			}
			nt = 1;
			if (izero == 0) {

/*                       Check residual of computed solution. */

			    slacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &
				    lda);
			    sgtt02_(trans, &n, nrhs, &a[1], &a[m + 1], &a[n + 
				    m + 1], &x[1], &lda, &work[1], &lda, &
				    rwork[1], &result[1]);

/*                       Check solution from generated exact solution. */

			    sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				    rcondc, &result[2]);
			    nt = 3;
			}

/*                    Print information about the tests that did not pass */
/*                    the threshold. */

			i__3 = nt;
			for (k = 2; k <= i__3; ++k) {
			    if (result[k - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				io___42.ciunit = *nout;
				s_wsfe(&io___42);
				do_fio(&c__1, "SGTSV ", (ftnlen)6);
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
					sizeof(real));
				e_wsfe();
				++nfail;
			    }
/* L80: */
			}
			nrun = nrun + nt - 1;
		    }

/*                 --- Test SGTSVX --- */

		    if (ifact > 1) {

/*                    Initialize AF to zero. */

			i__3 = n * 3 - 2;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    af[i__] = 0.f;
/* L90: */
			}
		    }
		    slaset_("Full", &n, nrhs, &c_b44, &c_b44, &x[1], &lda);

/*                 Solve the system and compute the condition number and */
/*                 error bounds using SGTSVX. */

		    s_copy(srnamc_1.srnamt, "SGTSVX", (ftnlen)32, (ftnlen)6);
		    sgtsvx_(fact, trans, &n, nrhs, &a[1], &a[m + 1], &a[n + m 
			    + 1], &af[1], &af[m + 1], &af[n + m + 1], &af[n + 
			    (m << 1) + 1], &iwork[1], &b[1], &lda, &x[1], &
			    lda, &rcond, &rwork[1], &rwork[*nrhs + 1], &work[
			    1], &iwork[n + 1], &info);

/*                 Check the error code from SGTSVX. */

		    if (info != izero) {
/* Writing concatenation */
			i__5[0] = 1, a__1[0] = fact;
			i__5[1] = 1, a__1[1] = trans;
			s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2);
			alaerh_(path, "SGTSVX", &info, &izero, ch__1, &n, &n, 
				&c__1, &c__1, nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }

		    if (ifact >= 2) {

/*                    Reconstruct matrix from factors and compute */
/*                    residual. */

			sgtt01_(&n, &a[1], &a[m + 1], &a[n + m + 1], &af[1], &
				af[m + 1], &af[n + m + 1], &af[n + (m << 1) + 
				1], &iwork[1], &work[1], &lda, &rwork[1], 
				result);
			k1 = 1;
		    } else {
			k1 = 2;
		    }

		    if (info == 0) {
			trfcon = FALSE_;

/*                    Check residual of computed solution. */

			slacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			sgtt02_(trans, &n, nrhs, &a[1], &a[m + 1], &a[n + m + 
				1], &x[1], &lda, &work[1], &lda, &rwork[1], &
				result[1]);

/*                    Check solution from generated exact solution. */

			sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);

/*                    Check the error bounds from iterative refinement. */

			sgtt05_(trans, &n, nrhs, &a[1], &a[m + 1], &a[n + m + 
				1], &b[1], &lda, &x[1], &lda, &xact[1], &lda, 
				&rwork[1], &rwork[*nrhs + 1], &result[3]);
			nt = 5;
		    }

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    i__3 = nt;
		    for (k = k1; k <= i__3; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				aladhd_(nout, path);
			    }
			    io___46.ciunit = *nout;
			    s_wsfe(&io___46);
			    do_fio(&c__1, "SGTSVX", (ftnlen)6);
			    do_fio(&c__1, fact, (ftnlen)1);
			    do_fio(&c__1, trans, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(real));
			    e_wsfe();
			    ++nfail;
			}
/* L100: */
		    }

/*                 Check the reciprocal of the condition number. */

		    result[5] = sget06_(&rcond, &rcondc);
		    if (result[5] >= *thresh) {
			if (nfail == 0 && nerrs == 0) {
			    aladhd_(nout, path);
			}
			io___47.ciunit = *nout;
			s_wsfe(&io___47);
			do_fio(&c__1, "SGTSVX", (ftnlen)6);
			do_fio(&c__1, fact, (ftnlen)1);
			do_fio(&c__1, trans, (ftnlen)1);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(
				real));
			e_wsfe();
			++nfail;
		    }
		    nrun = nrun + nt - k1 + 2;

/* L110: */
		}
L120:
		;
	    }
L130:
	    ;
	}
/* L140: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of SDRVGT */

} /* sdrvgt_ */
예제 #15
0
/* Subroutine */ int schklq_(logical *dotype, integer *nm, integer *mval, 
	integer *nn, integer *nval, integer *nnb, integer *nbval, integer *
	nxval, integer *nrhs, real *thresh, logical *tsterr, integer *nmax, 
	real *a, real *af, real *aq, real *al, real *ac, real *b, real *x, 
	real *xact, real *tau, real *work, real *rwork, integer *iwork, 
	integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };

    /* Format strings */
    static char fmt_9999[] = "(\002 M=\002,i5,\002, N=\002,i5,\002, K=\002,i"
	    "5,\002, NB=\002,i4,\002, NX=\002,i5,\002, type \002,i2,\002, tes"
	    "t(\002,i2,\002)=\002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;

    /* Local variables */
    integer i__, k, m, n, nb, ik, im, in, kl, nk, ku, nt, nx, lda, inb, mode, 
	    imat, info;
    char path[3];
    integer kval[4];
    char dist[1], type__[1];
    integer nrun;
    integer nfail, iseed[4];
    real anorm;
    integer minmn;
    integer nerrs, lwork;
    real cndnum;
    real result[8];

    /* Fortran I/O blocks */
    static cilist io___33 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SCHKLQ tests SGELQF, SORGLQ and SORMLQ. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NM      (input) INTEGER */
/*          The number of values of M contained in the vector MVAL. */

/*  MVAL    (input) INTEGER array, dimension (NM) */
/*          The values of the matrix row dimension M. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix column dimension N. */

/*  NNB     (input) INTEGER */
/*          The number of values of NB and NX contained in the */
/*          vectors NBVAL and NXVAL.  The blocking parameters are used */
/*          in pairs (NB,NX). */

/*  NBVAL   (input) INTEGER array, dimension (NNB) */
/*          The values of the blocksize NB. */

/*  NXVAL   (input) INTEGER array, dimension (NNB) */
/*          The values of the crossover point NX. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors to be generated for */
/*          each linear system. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for M or N, used in dimensioning */
/*          the work arrays. */

/*  A       (workspace) REAL array, dimension (NMAX*NMAX) */

/*  AF      (workspace) REAL array, dimension (NMAX*NMAX) */

/*  AQ      (workspace) REAL array, dimension (NMAX*NMAX) */

/*  AL      (workspace) REAL array, dimension (NMAX*NMAX) */

/*  AC      (workspace) REAL array, dimension (NMAX*NMAX) */

/*  B       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  X       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  TAU     (workspace) REAL array, dimension (NMAX) */

/*  WORK    (workspace) REAL array, dimension (NMAX*NMAX) */

/*  RWORK   (workspace) REAL array, dimension (NMAX) */

/*  IWORK   (workspace) INTEGER array, dimension (NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --tau;
    --xact;
    --x;
    --b;
    --ac;
    --al;
    --aq;
    --af;
    --a;
    --nxval;
    --nbval;
    --nval;
    --mval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "LQ", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	serrlq_(path, nout);
    }
    infoc_1.infot = 0;
    xlaenv_(&c__2, &c__2);

    lda = *nmax;
    lwork = *nmax * max(*nmax,*nrhs);

/*     Do for each value of M in MVAL. */

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {
	m = mval[im];

/*        Do for each value of N in NVAL. */

	i__2 = *nn;
	for (in = 1; in <= i__2; ++in) {
	    n = nval[in];
	    minmn = min(m,n);
	    for (imat = 1; imat <= 8; ++imat) {

/*              Do the tests only if DOTYPE( IMAT ) is true. */

		if (! dotype[imat]) {
		    goto L50;
		}

/*              Set up parameters with SLATB4 and generate a test matrix */
/*              with SLATMS. */

		slatb4_(path, &imat, &m, &n, type__, &kl, &ku, &anorm, &mode, 
			&cndnum, dist);

		s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)32, (ftnlen)6);
		slatms_(&m, &n, dist, iseed, type__, &rwork[1], &mode, &
			cndnum, &anorm, &kl, &ku, "No packing", &a[1], &lda, &
			work[1], &info);

/*              Check error code from SLATMS. */

		if (info != 0) {
		    alaerh_(path, "SLATMS", &info, &c__0, " ", &m, &n, &c_n1, 
			    &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L50;
		}

/*              Set some values for K: the first value must be MINMN, */
/*              corresponding to the call of SLQT01; other values are */
/*              used in the calls of SLQT02, and must not exceed MINMN. */

		kval[0] = minmn;
		kval[1] = 0;
		kval[2] = 1;
		kval[3] = minmn / 2;
		if (minmn == 0) {
		    nk = 1;
		} else if (minmn == 1) {
		    nk = 2;
		} else if (minmn <= 3) {
		    nk = 3;
		} else {
		    nk = 4;
		}

/*              Do for each value of K in KVAL */

		i__3 = nk;
		for (ik = 1; ik <= i__3; ++ik) {
		    k = kval[ik - 1];

/*                 Do for each pair of values (NB,NX) in NBVAL and NXVAL. */

		    i__4 = *nnb;
		    for (inb = 1; inb <= i__4; ++inb) {
			nb = nbval[inb];
			xlaenv_(&c__1, &nb);
			nx = nxval[inb];
			xlaenv_(&c__3, &nx);
			for (i__ = 1; i__ <= 8; ++i__) {
			    result[i__ - 1] = 0.f;
			}
			nt = 2;
			if (ik == 1) {

/*                       Test SGELQF */

			    slqt01_(&m, &n, &a[1], &af[1], &aq[1], &al[1], &
				    lda, &tau[1], &work[1], &lwork, &rwork[1], 
				     result);
			    if (! sgennd_(&m, &n, &af[1], &lda)) {
				result[7] = *thresh * 2;
			    }
			    ++nt;
			} else if (m <= n) {

/*                       Test SORGLQ, using factorization */
/*                       returned by SLQT01 */

			    slqt02_(&m, &n, &k, &a[1], &af[1], &aq[1], &al[1], 
				     &lda, &tau[1], &work[1], &lwork, &rwork[
				    1], result);
			}
			if (m >= k) {

/*                       Test SORMLQ, using factorization returned */
/*                       by SLQT01 */

			    slqt03_(&m, &n, &k, &af[1], &ac[1], &al[1], &aq[1]
, &lda, &tau[1], &work[1], &lwork, &rwork[
				    1], &result[2]);
			    nt += 4;

/*                       If M>=N and K=N, call SGELQS to solve a system */
/*                       with NRHS right hand sides and compute the */
/*                       residual. */

			    if (k == m && inb == 1) {

/*                          Generate a solution and set the right */
/*                          hand side. */

				s_copy(srnamc_1.srnamt, "SLARHS", (ftnlen)32, 
					(ftnlen)6);
				slarhs_(path, "New", "Full", "No transpose", &
					m, &n, &c__0, &c__0, nrhs, &a[1], &
					lda, &xact[1], &lda, &b[1], &lda, 
					iseed, &info);

				slacpy_("Full", &m, nrhs, &b[1], &lda, &x[1], 
					&lda);
				s_copy(srnamc_1.srnamt, "SGELQS", (ftnlen)32, 
					(ftnlen)6);
				sgelqs_(&m, &n, nrhs, &af[1], &lda, &tau[1], &
					x[1], &lda, &work[1], &lwork, &info);

/*                          Check error code from SGELQS. */

				if (info != 0) {
				    alaerh_(path, "SGELQS", &info, &c__0, 
					    " ", &m, &n, nrhs, &c_n1, &nb, &
					    imat, &nfail, &nerrs, nout);
				}

				sget02_("No transpose", &m, &n, nrhs, &a[1], &
					lda, &x[1], &lda, &b[1], &lda, &rwork[
					1], &result[6]);
				++nt;
			    }
			}

/*                    Print information about the tests that did not */
/*                    pass the threshold. */

			for (i__ = 1; i__ <= 8; ++i__) {
			    if (result[i__ - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    alahd_(nout, path);
				}
				io___33.ciunit = *nout;
				s_wsfe(&io___33);
				do_fio(&c__1, (char *)&m, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&nx, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[i__ - 1], (
					ftnlen)sizeof(real));
				e_wsfe();
				++nfail;
			    }
/* L20: */
			}
			nrun += nt;
/* L30: */
		    }
/* L40: */
		}
L50:
		;
	    }
/* L60: */
	}
/* L70: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of SCHKLQ */

} /* schklq_ */
예제 #16
0
파일: schkgb.c 프로젝트: kstraube/hysim
/* Subroutine */ int schkgb_(logical *dotype, integer *nm, integer *mval, 
	integer *nn, integer *nval, integer *nnb, integer *nbval, integer *
	nns, integer *nsval, real *thresh, logical *tsterr, real *a, integer *
	la, real *afac, integer *lafac, real *b, real *x, real *xact, real *
	work, real *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char transs[1*3] = "N" "T" "C";

    /* Format strings */
    static char fmt_9999[] = "(\002 *** In SCHKGB, LA=\002,i5,\002 is too sm"
	    "all for M=\002,i5,\002, N=\002,i5,\002, KL=\002,i4,\002, KU=\002"
	    ",i4,/\002 ==> Increase LA to at least \002,i5)";
    static char fmt_9998[] = "(\002 *** In SCHKGB, LAFAC=\002,i5,\002 is too"
	    " small for M=\002,i5,\002, N=\002,i5,\002, KL=\002,i4,\002, KU"
	    "=\002,i4,/\002 ==> Increase LAFAC to at least \002,i5)";
    static char fmt_9997[] = "(\002 M =\002,i5,\002, N =\002,i5,\002, KL="
	    "\002,i5,\002, KU=\002,i5,\002, NB =\002,i4,\002, type \002,i1"
	    ",\002, test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9996[] = "(\002 TRANS='\002,a1,\002', N=\002,i5,\002, "
	    "KL=\002,i5,\002, KU=\002,i5,\002, NRHS=\002,i3,\002, type \002,i"
	    "1,\002, test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9995[] = "(\002 NORM ='\002,a1,\002', N=\002,i5,\002, "
	    "KL=\002,i5,\002, KU=\002,i5,\002,\002,10x,\002 type \002,i1,\002"
	    ", test(\002,i1,\002)=\002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4, i__5, i__6, i__7, i__8, i__9, i__10, 
	    i__11;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, j, k, m, n, i1, i2, nb, im, in, kl, ku, lda, ldb, inb, ikl, 
	    nkl, iku, nku, ioff, mode, koff, imat, info;
    char path[3], dist[1];
    integer irhs, nrhs;
    char norm[1], type__[1];
    integer nrun;
    extern /* Subroutine */ int alahd_(integer *, char *);
    integer nfail, iseed[4];
    extern /* Subroutine */ int sgbt01_(integer *, integer *, integer *, 
	    integer *, real *, integer *, real *, integer *, integer *, real *
, real *), sgbt02_(char *, integer *, integer *, integer *, 
	    integer *, integer *, real *, integer *, real *, integer *, real *
, integer *, real *), sgbt05_(char *, integer *, integer *
, integer *, integer *, real *, integer *, real *, integer *, 
	    real *, integer *, real *, integer *, real *, real *, real *);
    real rcond;
    extern /* Subroutine */ int sget04_(integer *, integer *, real *, integer 
	    *, real *, integer *, real *, real *);
    integer nimat, klval[4];
    extern doublereal sget06_(real *, real *);
    real anorm;
    integer itran, kuval[4];
    char trans[1];
    integer izero, nerrs;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *);
    logical zerot;
    char xtype[1];
    extern /* Subroutine */ int slatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, real *, integer *, real *, char *
);
    integer ldafac;
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *);
    extern doublereal slangb_(char *, integer *, integer *, integer *, real *, 
	     integer *, real *);
    real rcondc;
    extern doublereal slange_(char *, integer *, integer *, real *, integer *, 
	     real *);
    extern /* Subroutine */ int sgbcon_(char *, integer *, integer *, integer 
	    *, real *, integer *, integer *, real *, real *, real *, integer *
, integer *);
    real rcondi;
    extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer 
	    *, integer *);
    real cndnum, anormi, rcondo;
    extern /* Subroutine */ int serrge_(char *, integer *);
    real ainvnm;
    extern /* Subroutine */ int sgbrfs_(char *, integer *, integer *, integer 
	    *, integer *, real *, integer *, real *, integer *, integer *, 
	    real *, integer *, real *, integer *, real *, real *, real *, 
	    integer *, integer *), sgbtrf_(integer *, integer *, 
	    integer *, integer *, real *, integer *, integer *, integer *);
    logical trfcon;
    real anormo;
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *), slarhs_(char *, char *, 
	    char *, char *, integer *, integer *, integer *, integer *, 
	    integer *, real *, integer *, real *, integer *, real *, integer *
, integer *, integer *), slaset_(
	    char *, integer *, integer *, real *, real *, real *, integer *), xlaenv_(integer *, integer *), slatms_(integer *, 
	    integer *, char *, integer *, char *, real *, integer *, real *, 
	    real *, integer *, integer *, char *, real *, integer *, real *, 
	    integer *), sgbtrs_(char *, integer *, 
	    integer *, integer *, integer *, real *, integer *, integer *, 
	    real *, integer *, integer *);
    real result[7];

    /* Fortran I/O blocks */
    static cilist io___25 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___26 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___59 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___61 = { 0, 0, 0, fmt_9995, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SCHKGB tests SGBTRF, -TRS, -RFS, and -CON */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NM      (input) INTEGER */
/*          The number of values of M contained in the vector MVAL. */

/*  MVAL    (input) INTEGER array, dimension (NM) */
/*          The values of the matrix row dimension M. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix column dimension N. */

/*  NNB     (input) INTEGER */
/*          The number of values of NB contained in the vector NBVAL. */

/*  NBVAL   (input) INTEGER array, dimension (NNB) */
/*          The values of the blocksize NB. */

/*  NNS     (input) INTEGER */
/*          The number of values of NRHS contained in the vector NSVAL. */

/*  NSVAL   (input) INTEGER array, dimension (NNS) */
/*          The values of the number of right hand sides NRHS. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  A       (workspace) REAL array, dimension (LA) */

/*  LA      (input) INTEGER */
/*          The length of the array A.  LA >= (KLMAX+KUMAX+1)*NMAX */
/*          where KLMAX is the largest entry in the local array KLVAL, */
/*                KUMAX is the largest entry in the local array KUVAL and */
/*                NMAX is the largest entry in the input array NVAL. */

/*  AFAC    (workspace) REAL array, dimension (LAFAC) */

/*  LAFAC   (input) INTEGER */
/*          The length of the array AFAC. LAFAC >= (2*KLMAX+KUMAX+1)*NMAX */
/*          where KLMAX is the largest entry in the local array KLVAL, */
/*                KUMAX is the largest entry in the local array KUVAL and */
/*                NMAX is the largest entry in the input array NVAL. */

/*  B       (workspace) REAL array, dimension (NMAX*NSMAX) */
/*          where NSMAX is the largest entry in NSVAL. */

/*  X       (workspace) REAL array, dimension (NMAX*NSMAX) */

/*  XACT    (workspace) REAL array, dimension (NMAX*NSMAX) */

/*  WORK    (workspace) REAL array, dimension */
/*                      (NMAX*max(3,NSMAX,NMAX)) */

/*  RWORK   (workspace) REAL array, dimension */
/*                      (max(NMAX,2*NSMAX)) */

/*  IWORK   (workspace) INTEGER array, dimension (2*NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --afac;
    --a;
    --nsval;
    --nbval;
    --nval;
    --mval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "GB", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	serrge_(path, nout);
    }
    infoc_1.infot = 0;
    xlaenv_(&c__2, &c__2);

/*     Initialize the first value for the lower and upper bandwidths. */

    klval[0] = 0;
    kuval[0] = 0;

/*     Do for each value of M in MVAL */

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {
	m = mval[im];

/*        Set values to use for the lower bandwidth. */

	klval[1] = m + (m + 1) / 4;

/*        KLVAL( 2 ) = MAX( M-1, 0 ) */

	klval[2] = (m * 3 - 1) / 4;
	klval[3] = (m + 1) / 4;

/*        Do for each value of N in NVAL */

	i__2 = *nn;
	for (in = 1; in <= i__2; ++in) {
	    n = nval[in];
	    *(unsigned char *)xtype = 'N';

/*           Set values to use for the upper bandwidth. */

	    kuval[1] = n + (n + 1) / 4;

/*           KUVAL( 2 ) = MAX( N-1, 0 ) */

	    kuval[2] = (n * 3 - 1) / 4;
	    kuval[3] = (n + 1) / 4;

/*           Set limits on the number of loop iterations. */

/* Computing MIN */
	    i__3 = m + 1;
	    nkl = min(i__3,4);
	    if (n == 0) {
		nkl = 2;
	    }
/* Computing MIN */
	    i__3 = n + 1;
	    nku = min(i__3,4);
	    if (m == 0) {
		nku = 2;
	    }
	    nimat = 8;
	    if (m <= 0 || n <= 0) {
		nimat = 1;
	    }

	    i__3 = nkl;
	    for (ikl = 1; ikl <= i__3; ++ikl) {

/*              Do for KL = 0, (5*M+1)/4, (3M-1)/4, and (M+1)/4. This */
/*              order makes it easier to skip redundant values for small */
/*              values of M. */

		kl = klval[ikl - 1];
		i__4 = nku;
		for (iku = 1; iku <= i__4; ++iku) {

/*                 Do for KU = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This */
/*                 order makes it easier to skip redundant values for */
/*                 small values of N. */

		    ku = kuval[iku - 1];

/*                 Check that A and AFAC are big enough to generate this */
/*                 matrix. */

		    lda = kl + ku + 1;
		    ldafac = (kl << 1) + ku + 1;
		    if (lda * n > *la || ldafac * n > *lafac) {
			if (nfail == 0 && nerrs == 0) {
			    alahd_(nout, path);
			}
			if (n * (kl + ku + 1) > *la) {
			    io___25.ciunit = *nout;
			    s_wsfe(&io___25);
			    do_fio(&c__1, (char *)&(*la), (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer)
				    );
			    do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer)
				    );
			    i__5 = n * (kl + ku + 1);
			    do_fio(&c__1, (char *)&i__5, (ftnlen)sizeof(
				    integer));
			    e_wsfe();
			    ++nerrs;
			}
			if (n * ((kl << 1) + ku + 1) > *lafac) {
			    io___26.ciunit = *nout;
			    s_wsfe(&io___26);
			    do_fio(&c__1, (char *)&(*lafac), (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer)
				    );
			    do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer)
				    );
			    i__5 = n * ((kl << 1) + ku + 1);
			    do_fio(&c__1, (char *)&i__5, (ftnlen)sizeof(
				    integer));
			    e_wsfe();
			    ++nerrs;
			}
			goto L130;
		    }

		    i__5 = nimat;
		    for (imat = 1; imat <= i__5; ++imat) {

/*                    Do the tests only if DOTYPE( IMAT ) is true. */

			if (! dotype[imat]) {
			    goto L120;
			}

/*                    Skip types 2, 3, or 4 if the matrix size is too */
/*                    small. */

			zerot = imat >= 2 && imat <= 4;
			if (zerot && n < imat - 1) {
			    goto L120;
			}

			if (! zerot || ! dotype[1]) {

/*                       Set up parameters with SLATB4 and generate a */
/*                       test matrix with SLATMS. */

			    slatb4_(path, &imat, &m, &n, type__, &kl, &ku, &
				    anorm, &mode, &cndnum, dist);

/* Computing MAX */
			    i__6 = 1, i__7 = ku + 2 - n;
			    koff = max(i__6,i__7);
			    i__6 = koff - 1;
			    for (i__ = 1; i__ <= i__6; ++i__) {
				a[i__] = 0.f;
/* L20: */
			    }
			    s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)6, (
				    ftnlen)6);
			    slatms_(&m, &n, dist, iseed, type__, &rwork[1], &
				    mode, &cndnum, &anorm, &kl, &ku, "Z", &a[
				    koff], &lda, &work[1], &info);

/*                       Check the error code from SLATMS. */

			    if (info != 0) {
				alaerh_(path, "SLATMS", &info, &c__0, " ", &m, 
					 &n, &kl, &ku, &c_n1, &imat, &nfail, &
					nerrs, nout);
				goto L120;
			    }
			} else if (izero > 0) {

/*                       Use the same matrix for types 3 and 4 as for */
/*                       type 2 by copying back the zeroed out column. */

			    i__6 = i2 - i1 + 1;
			    scopy_(&i__6, &b[1], &c__1, &a[ioff + i1], &c__1);
			}

/*                    For types 2, 3, and 4, zero one or more columns of */
/*                    the matrix to test that INFO is returned correctly. */

			izero = 0;
			if (zerot) {
			    if (imat == 2) {
				izero = 1;
			    } else if (imat == 3) {
				izero = min(m,n);
			    } else {
				izero = min(m,n) / 2 + 1;
			    }
			    ioff = (izero - 1) * lda;
			    if (imat < 4) {

/*                          Store the column to be zeroed out in B. */

/* Computing MAX */
				i__6 = 1, i__7 = ku + 2 - izero;
				i1 = max(i__6,i__7);
/* Computing MIN */
				i__6 = kl + ku + 1, i__7 = ku + 1 + (m - 
					izero);
				i2 = min(i__6,i__7);
				i__6 = i2 - i1 + 1;
				scopy_(&i__6, &a[ioff + i1], &c__1, &b[1], &
					c__1);

				i__6 = i2;
				for (i__ = i1; i__ <= i__6; ++i__) {
				    a[ioff + i__] = 0.f;
/* L30: */
				}
			    } else {
				i__6 = n;
				for (j = izero; j <= i__6; ++j) {
/* Computing MAX */
				    i__7 = 1, i__8 = ku + 2 - j;
/* Computing MIN */
				    i__10 = kl + ku + 1, i__11 = ku + 1 + (m 
					    - j);
				    i__9 = min(i__10,i__11);
				    for (i__ = max(i__7,i__8); i__ <= i__9; 
					    ++i__) {
					a[ioff + i__] = 0.f;
/* L40: */
				    }
				    ioff += lda;
/* L50: */
				}
			    }
			}

/*                    These lines, if used in place of the calls in the */
/*                    loop over INB, cause the code to bomb on a Sun */
/*                    SPARCstation. */

/*                     ANORMO = SLANGB( 'O', N, KL, KU, A, LDA, RWORK ) */
/*                     ANORMI = SLANGB( 'I', N, KL, KU, A, LDA, RWORK ) */

/*                    Do for each blocksize in NBVAL */

			i__6 = *nnb;
			for (inb = 1; inb <= i__6; ++inb) {
			    nb = nbval[inb];
			    xlaenv_(&c__1, &nb);

/*                       Compute the LU factorization of the band matrix. */

			    if (m > 0 && n > 0) {
				i__9 = kl + ku + 1;
				slacpy_("Full", &i__9, &n, &a[1], &lda, &afac[
					kl + 1], &ldafac);
			    }
			    s_copy(srnamc_1.srnamt, "SGBTRF", (ftnlen)6, (
				    ftnlen)6);
			    sgbtrf_(&m, &n, &kl, &ku, &afac[1], &ldafac, &
				    iwork[1], &info);

/*                       Check error code from SGBTRF. */

			    if (info != izero) {
				alaerh_(path, "SGBTRF", &info, &izero, " ", &
					m, &n, &kl, &ku, &nb, &imat, &nfail, &
					nerrs, nout);
			    }
			    trfcon = FALSE_;

/* +    TEST 1 */
/*                       Reconstruct matrix from factors and compute */
/*                       residual. */

			    sgbt01_(&m, &n, &kl, &ku, &a[1], &lda, &afac[1], &
				    ldafac, &iwork[1], &work[1], result);

/*                       Print information about the tests so far that */
/*                       did not pass the threshold. */

			    if (result[0] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    alahd_(nout, path);
				}
				io___45.ciunit = *nout;
				s_wsfe(&io___45);
				do_fio(&c__1, (char *)&m, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&c__1, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[0], (ftnlen)
					sizeof(real));
				e_wsfe();
				++nfail;
			    }
			    ++nrun;

/*                       Skip the remaining tests if this is not the */
/*                       first block size or if M .ne. N. */

			    if (inb > 1 || m != n) {
				goto L110;
			    }

			    anormo = slangb_("O", &n, &kl, &ku, &a[1], &lda, &
				    rwork[1]);
			    anormi = slangb_("I", &n, &kl, &ku, &a[1], &lda, &
				    rwork[1]);

			    if (info == 0) {

/*                          Form the inverse of A so we can get a good */
/*                          estimate of CNDNUM = norm(A) * norm(inv(A)). */

				ldb = max(1,n);
				slaset_("Full", &n, &n, &c_b63, &c_b64, &work[
					1], &ldb);
				s_copy(srnamc_1.srnamt, "SGBTRS", (ftnlen)6, (
					ftnlen)6);
				sgbtrs_("No transpose", &n, &kl, &ku, &n, &
					afac[1], &ldafac, &iwork[1], &work[1], 
					 &ldb, &info);

/*                          Compute the 1-norm condition number of A. */

				ainvnm = slange_("O", &n, &n, &work[1], &ldb, 
					&rwork[1]);
				if (anormo <= 0.f || ainvnm <= 0.f) {
				    rcondo = 1.f;
				} else {
				    rcondo = 1.f / anormo / ainvnm;
				}

/*                          Compute the infinity-norm condition number of */
/*                          A. */

				ainvnm = slange_("I", &n, &n, &work[1], &ldb, 
					&rwork[1]);
				if (anormi <= 0.f || ainvnm <= 0.f) {
				    rcondi = 1.f;
				} else {
				    rcondi = 1.f / anormi / ainvnm;
				}
			    } else {

/*                          Do only the condition estimate if INFO.NE.0. */

				trfcon = TRUE_;
				rcondo = 0.f;
				rcondi = 0.f;
			    }

/*                       Skip the solve tests if the matrix is singular. */

			    if (trfcon) {
				goto L90;
			    }

			    i__9 = *nns;
			    for (irhs = 1; irhs <= i__9; ++irhs) {
				nrhs = nsval[irhs];
				*(unsigned char *)xtype = 'N';

				for (itran = 1; itran <= 3; ++itran) {
				    *(unsigned char *)trans = *(unsigned char 
					    *)&transs[itran - 1];
				    if (itran == 1) {
					rcondc = rcondo;
					*(unsigned char *)norm = 'O';
				    } else {
					rcondc = rcondi;
					*(unsigned char *)norm = 'I';
				    }

/* +    TEST 2: */
/*                             Solve and compute residual for A * X = B. */

				    s_copy(srnamc_1.srnamt, "SLARHS", (ftnlen)
					    6, (ftnlen)6);
				    slarhs_(path, xtype, " ", trans, &n, &n, &
					    kl, &ku, &nrhs, &a[1], &lda, &
					    xact[1], &ldb, &b[1], &ldb, iseed, 
					     &info);
				    *(unsigned char *)xtype = 'C';
				    slacpy_("Full", &n, &nrhs, &b[1], &ldb, &
					    x[1], &ldb);

				    s_copy(srnamc_1.srnamt, "SGBTRS", (ftnlen)
					    6, (ftnlen)6);
				    sgbtrs_(trans, &n, &kl, &ku, &nrhs, &afac[
					    1], &ldafac, &iwork[1], &x[1], &
					    ldb, &info);

/*                             Check error code from SGBTRS. */

				    if (info != 0) {
					alaerh_(path, "SGBTRS", &info, &c__0, 
						trans, &n, &n, &kl, &ku, &
						c_n1, &imat, &nfail, &nerrs, 
						nout);
				    }

				    slacpy_("Full", &n, &nrhs, &b[1], &ldb, &
					    work[1], &ldb);
				    sgbt02_(trans, &m, &n, &kl, &ku, &nrhs, &
					    a[1], &lda, &x[1], &ldb, &work[1], 
					     &ldb, &result[1]);

/* +    TEST 3: */
/*                             Check solution from generated exact */
/*                             solution. */

				    sget04_(&n, &nrhs, &x[1], &ldb, &xact[1], 
					    &ldb, &rcondc, &result[2]);

/* +    TESTS 4, 5, 6: */
/*                             Use iterative refinement to improve the */
/*                             solution. */

				    s_copy(srnamc_1.srnamt, "SGBRFS", (ftnlen)
					    6, (ftnlen)6);
				    sgbrfs_(trans, &n, &kl, &ku, &nrhs, &a[1], 
					     &lda, &afac[1], &ldafac, &iwork[
					    1], &b[1], &ldb, &x[1], &ldb, &
					    rwork[1], &rwork[nrhs + 1], &work[
					    1], &iwork[n + 1], &info);

/*                             Check error code from SGBRFS. */

				    if (info != 0) {
					alaerh_(path, "SGBRFS", &info, &c__0, 
						trans, &n, &n, &kl, &ku, &
						nrhs, &imat, &nfail, &nerrs, 
						nout);
				    }

				    sget04_(&n, &nrhs, &x[1], &ldb, &xact[1], 
					    &ldb, &rcondc, &result[3]);
				    sgbt05_(trans, &n, &kl, &ku, &nrhs, &a[1], 
					     &lda, &b[1], &ldb, &x[1], &ldb, &
					    xact[1], &ldb, &rwork[1], &rwork[
					    nrhs + 1], &result[4]);
				    for (k = 2; k <= 6; ++k) {
					if (result[k - 1] >= *thresh) {
					    if (nfail == 0 && nerrs == 0) {
			  alahd_(nout, path);
					    }
					    io___59.ciunit = *nout;
					    s_wsfe(&io___59);
					    do_fio(&c__1, trans, (ftnlen)1);
					    do_fio(&c__1, (char *)&n, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&kl, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&ku, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&nrhs, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&imat, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&k, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&result[k - 
						    1], (ftnlen)sizeof(real));
					    e_wsfe();
					    ++nfail;
					}
/* L60: */
				    }
				    nrun += 5;
/* L70: */
				}
/* L80: */
			    }

/* +    TEST 7: */
/*                          Get an estimate of RCOND = 1/CNDNUM. */

L90:
			    for (itran = 1; itran <= 2; ++itran) {
				if (itran == 1) {
				    anorm = anormo;
				    rcondc = rcondo;
				    *(unsigned char *)norm = 'O';
				} else {
				    anorm = anormi;
				    rcondc = rcondi;
				    *(unsigned char *)norm = 'I';
				}
				s_copy(srnamc_1.srnamt, "SGBCON", (ftnlen)6, (
					ftnlen)6);
				sgbcon_(norm, &n, &kl, &ku, &afac[1], &ldafac, 
					 &iwork[1], &anorm, &rcond, &work[1], 
					&iwork[n + 1], &info);

/*                             Check error code from SGBCON. */

				if (info != 0) {
				    alaerh_(path, "SGBCON", &info, &c__0, 
					    norm, &n, &n, &kl, &ku, &c_n1, &
					    imat, &nfail, &nerrs, nout);
				}

				result[6] = sget06_(&rcond, &rcondc);

/*                          Print information about the tests that did */
/*                          not pass the threshold. */

				if (result[6] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					alahd_(nout, path);
				    }
				    io___61.ciunit = *nout;
				    s_wsfe(&io___61);
				    do_fio(&c__1, norm, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__7, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[6], (ftnlen)
					    sizeof(real));
				    e_wsfe();
				    ++nfail;
				}
				++nrun;
/* L100: */
			    }

L110:
			    ;
			}
L120:
			;
		    }
L130:
		    ;
		}
/* L140: */
	    }
/* L150: */
	}
/* L160: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);


    return 0;

/*     End of SCHKGB */

} /* schkgb_ */
예제 #17
0
/* Subroutine */ int sdrvsy_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, real *thresh, logical *tsterr, integer *nmax, real *a, 
	real *afac, real *ainv, real *b, real *x, real *xact, real *work, 
	real *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char uplos[1*2] = "U" "L";
    static char facts[1*2] = "F" "N";

    /* Format strings */
    static char fmt_9999[] = "(1x,a,\002, UPLO='\002,a1,\002', N =\002,i5"
	    ",\002, type \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)";
    static char fmt_9998[] = "(1x,a,\002, FACT='\002,a1,\002', UPLO='\002,"
	    "a1,\002', N =\002,i5,\002, type \002,i2,\002, test \002,i2,\002,"
	    " ratio =\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5[2];
    char ch__1[2];

    /* Local variables */
    integer i__, j, k, n, i1, i2, k1, nb, in, kl, ku, nt, lda;
    char fact[1];
    integer ioff, mode, imat, info;
    char path[3], dist[1], uplo[1], type__[1];
    integer nrun, ifact, nfail, iseed[4], nbmin;
    real rcond;
    integer nimat;
    real anorm;
    integer iuplo, izero, nerrs;
    integer lwork;
    logical zerot;
    char xtype[1];
    real rcondc;
    real cndnum, ainvnm;
    real result[6];

    /* Fortran I/O blocks */
    static cilist io___42 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SDRVSY tests the driver routines SSYSV and -SVX. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors to be generated for */
/*          each linear system. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for N, used in dimensioning the */
/*          work arrays. */

/*  A       (workspace) REAL array, dimension (NMAX*NMAX) */

/*  AFAC    (workspace) REAL array, dimension (NMAX*NMAX) */

/*  AINV    (workspace) REAL array, dimension (NMAX*NMAX) */

/*  B       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  X       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  WORK    (workspace) REAL array, dimension */
/*                      (NMAX*max(2,NRHS)) */

/*  RWORK   (workspace) REAL array, dimension (NMAX+2*NRHS) */

/*  IWORK   (workspace) INTEGER array, dimension (2*NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --ainv;
    --afac;
    --a;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "SY", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }
/* Computing MAX */
    i__1 = *nmax << 1, i__2 = *nmax * *nrhs;
    lwork = max(i__1,i__2);

/*     Test the error exits */

    if (*tsterr) {
	serrvx_(path, nout);
    }
    infoc_1.infot = 0;

/*     Set the block size and minimum block size for testing. */

    nb = 1;
    nbmin = 2;
    xlaenv_(&c__1, &nb);
    xlaenv_(&c__2, &nbmin);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';
	nimat = 10;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L170;
	    }

/*           Skip types 3, 4, 5, or 6 if the matrix size is too small. */

	    zerot = imat >= 3 && imat <= 6;
	    if (zerot && n < imat - 2) {
		goto L170;
	    }

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		*(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1];

/*              Set up parameters with SLATB4 and generate a test matrix */
/*              with SLATMS. */

		slatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, 
			&cndnum, dist);

		s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)32, (ftnlen)6);
		slatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			cndnum, &anorm, &kl, &ku, uplo, &a[1], &lda, &work[1], 
			 &info);

/*              Check error code from SLATMS. */

		if (info != 0) {
		    alaerh_(path, "SLATMS", &info, &c__0, uplo, &n, &n, &c_n1, 
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L160;
		}

/*              For types 3-6, zero one or more rows and columns of the */
/*              matrix to test that INFO is returned correctly. */

		if (zerot) {
		    if (imat == 3) {
			izero = 1;
		    } else if (imat == 4) {
			izero = n;
		    } else {
			izero = n / 2 + 1;
		    }

		    if (imat < 6) {

/*                    Set row and column IZERO to zero. */

			if (iuplo == 1) {
			    ioff = (izero - 1) * lda;
			    i__3 = izero - 1;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				a[ioff + i__] = 0.f;
/* L20: */
			    }
			    ioff += izero;
			    i__3 = n;
			    for (i__ = izero; i__ <= i__3; ++i__) {
				a[ioff] = 0.f;
				ioff += lda;
/* L30: */
			    }
			} else {
			    ioff = izero;
			    i__3 = izero - 1;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				a[ioff] = 0.f;
				ioff += lda;
/* L40: */
			    }
			    ioff -= izero;
			    i__3 = n;
			    for (i__ = izero; i__ <= i__3; ++i__) {
				a[ioff + i__] = 0.f;
/* L50: */
			    }
			}
		    } else {
			ioff = 0;
			if (iuplo == 1) {

/*                       Set the first IZERO rows and columns to zero. */

			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
				i2 = min(j,izero);
				i__4 = i2;
				for (i__ = 1; i__ <= i__4; ++i__) {
				    a[ioff + i__] = 0.f;
/* L60: */
				}
				ioff += lda;
/* L70: */
			    }
			} else {

/*                       Set the last IZERO rows and columns to zero. */

			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
				i1 = max(j,izero);
				i__4 = n;
				for (i__ = i1; i__ <= i__4; ++i__) {
				    a[ioff + i__] = 0.f;
/* L80: */
				}
				ioff += lda;
/* L90: */
			    }
			}
		    }
		} else {
		    izero = 0;
		}

		for (ifact = 1; ifact <= 2; ++ifact) {

/*                 Do first for FACT = 'F', then for other values. */

		    *(unsigned char *)fact = *(unsigned char *)&facts[ifact - 
			    1];

/*                 Compute the condition number for comparison with */
/*                 the value returned by SSYSVX. */

		    if (zerot) {
			if (ifact == 1) {
			    goto L150;
			}
			rcondc = 0.f;

		    } else if (ifact == 1) {

/*                    Compute the 1-norm of A. */

			anorm = slansy_("1", uplo, &n, &a[1], &lda, &rwork[1]);

/*                    Factor the matrix A. */

			slacpy_(uplo, &n, &n, &a[1], &lda, &afac[1], &lda);
			ssytrf_(uplo, &n, &afac[1], &lda, &iwork[1], &work[1], 
				 &lwork, &info);

/*                    Compute inv(A) and take its norm. */

			slacpy_(uplo, &n, &n, &afac[1], &lda, &ainv[1], &lda);
			ssytri_(uplo, &n, &ainv[1], &lda, &iwork[1], &work[1], 
				 &info);
			ainvnm = slansy_("1", uplo, &n, &ainv[1], &lda, &
				rwork[1]);

/*                    Compute the 1-norm condition number of A. */

			if (anorm <= 0.f || ainvnm <= 0.f) {
			    rcondc = 1.f;
			} else {
			    rcondc = 1.f / anorm / ainvnm;
			}
		    }

/*                 Form an exact solution and set the right hand side. */

		    s_copy(srnamc_1.srnamt, "SLARHS", (ftnlen)32, (ftnlen)6);
		    slarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, nrhs, &
			    a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, &
			    info);
		    *(unsigned char *)xtype = 'C';

/*                 --- Test SSYSV  --- */

		    if (ifact == 2) {
			slacpy_(uplo, &n, &n, &a[1], &lda, &afac[1], &lda);
			slacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda);

/*                    Factor the matrix and solve the system using SSYSV. */

			s_copy(srnamc_1.srnamt, "SSYSV ", (ftnlen)32, (ftnlen)
				6);
			ssysv_(uplo, &n, nrhs, &afac[1], &lda, &iwork[1], &x[
				1], &lda, &work[1], &lwork, &info);

/*                    Adjust the expected value of INFO to account for */
/*                    pivoting. */

			k = izero;
			if (k > 0) {
L100:
			    if (iwork[k] < 0) {
				if (iwork[k] != -k) {
				    k = -iwork[k];
				    goto L100;
				}
			    } else if (iwork[k] != k) {
				k = iwork[k];
				goto L100;
			    }
			}

/*                    Check error code from SSYSV . */

			if (info != k) {
			    alaerh_(path, "SSYSV ", &info, &k, uplo, &n, &n, &
				    c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, 
				    nout);
			    goto L120;
			} else if (info != 0) {
			    goto L120;
			}

/*                    Reconstruct matrix from factors and compute */
/*                    residual. */

			ssyt01_(uplo, &n, &a[1], &lda, &afac[1], &lda, &iwork[
				1], &ainv[1], &lda, &rwork[1], result);

/*                    Compute residual of the computed solution. */

			slacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			spot02_(uplo, &n, nrhs, &a[1], &lda, &x[1], &lda, &
				work[1], &lda, &rwork[1], &result[1]);

/*                    Check solution from generated exact solution. */

			sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);
			nt = 3;

/*                    Print information about the tests that did not pass */
/*                    the threshold. */

			i__3 = nt;
			for (k = 1; k <= i__3; ++k) {
			    if (result[k - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				io___42.ciunit = *nout;
				s_wsfe(&io___42);
				do_fio(&c__1, "SSYSV ", (ftnlen)6);
				do_fio(&c__1, uplo, (ftnlen)1);
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
					sizeof(real));
				e_wsfe();
				++nfail;
			    }
/* L110: */
			}
			nrun += nt;
L120:
			;
		    }

/*                 --- Test SSYSVX --- */

		    if (ifact == 2) {
			slaset_(uplo, &n, &n, &c_b49, &c_b49, &afac[1], &lda);
		    }
		    slaset_("Full", &n, nrhs, &c_b49, &c_b49, &x[1], &lda);

/*                 Solve the system and compute the condition number and */
/*                 error bounds using SSYSVX. */

		    s_copy(srnamc_1.srnamt, "SSYSVX", (ftnlen)32, (ftnlen)6);
		    ssysvx_(fact, uplo, &n, nrhs, &a[1], &lda, &afac[1], &lda, 
			     &iwork[1], &b[1], &lda, &x[1], &lda, &rcond, &
			    rwork[1], &rwork[*nrhs + 1], &work[1], &lwork, &
			    iwork[n + 1], &info);

/*                 Adjust the expected value of INFO to account for */
/*                 pivoting. */

		    k = izero;
		    if (k > 0) {
L130:
			if (iwork[k] < 0) {
			    if (iwork[k] != -k) {
				k = -iwork[k];
				goto L130;
			    }
			} else if (iwork[k] != k) {
			    k = iwork[k];
			    goto L130;
			}
		    }

/*                 Check the error code from SSYSVX. */

		    if (info != k) {
/* Writing concatenation */
			i__5[0] = 1, a__1[0] = fact;
			i__5[1] = 1, a__1[1] = uplo;
			s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2);
			alaerh_(path, "SSYSVX", &info, &k, ch__1, &n, &n, &
				c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, 
				nout);
			goto L150;
		    }

		    if (info == 0) {
			if (ifact >= 2) {

/*                       Reconstruct matrix from factors and compute */
/*                       residual. */

			    ssyt01_(uplo, &n, &a[1], &lda, &afac[1], &lda, &
				    iwork[1], &ainv[1], &lda, &rwork[(*nrhs <<
				     1) + 1], result);
			    k1 = 1;
			} else {
			    k1 = 2;
			}

/*                    Compute residual of the computed solution. */

			slacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			spot02_(uplo, &n, nrhs, &a[1], &lda, &x[1], &lda, &
				work[1], &lda, &rwork[(*nrhs << 1) + 1], &
				result[1]);

/*                    Check solution from generated exact solution. */

			sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);

/*                    Check the error bounds from iterative refinement. */

			spot05_(uplo, &n, nrhs, &a[1], &lda, &b[1], &lda, &x[
				1], &lda, &xact[1], &lda, &rwork[1], &rwork[*
				nrhs + 1], &result[3]);
		    } else {
			k1 = 6;
		    }

/*                 Compare RCOND from SSYSVX with the computed value */
/*                 in RCONDC. */

		    result[5] = sget06_(&rcond, &rcondc);

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    for (k = k1; k <= 6; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				aladhd_(nout, path);
			    }
			    io___45.ciunit = *nout;
			    s_wsfe(&io___45);
			    do_fio(&c__1, "SSYSVX", (ftnlen)6);
			    do_fio(&c__1, fact, (ftnlen)1);
			    do_fio(&c__1, uplo, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(real));
			    e_wsfe();
			    ++nfail;
			}
/* L140: */
		    }
		    nrun = nrun + 7 - k1;

L150:
		    ;
		}

L160:
		;
	    }
L170:
	    ;
	}
/* L180: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of SDRVSY */

} /* sdrvsy_ */
예제 #18
0
파일: stimqp.c 프로젝트: zangel/uquad
/* Subroutine */ int stimqp_(char *line, integer *nm, integer *mval, integer *
	nval, integer *nlda, integer *ldaval, real *timmin, real *a, real *
	copya, real *tau, real *work, integer *iwork, real *reslts, integer *
	ldr1, integer *ldr2, integer *nout, ftnlen line_len)
{
    /* Initialized data */

    static char subnam[6*1] = "SGEQPF";
    static integer modes[2] = { 2,3 };
    static integer iseed[4] = { 0,0,0,1 };

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002 timing run not attempted\002,/)";
    static char fmt_9998[] = "(/\002 *** Speed of \002,a6,\002 in megaflops "
	    "***\002)";
    static char fmt_9997[] = "(5x,\002line \002,i2,\002 with LDA = \002,i5)";

    /* System generated locals */
    integer reslts_dim1, reslts_dim2, reslts_offset, i__1, i__2, i__3;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void),
	     s_wsle(cilist *), e_wsle(void);

    /* Local variables */
    static integer ilda;
    static real cond;
    static integer mode;
    static real dmax__;
    static integer info;
    static char path[3];
    static real time;
    static integer i__, m, n;
    static char cname[6];
    static integer imode, minmn;
    extern doublereal sopla_(char *, integer *, integer *, integer *, integer 
	    *, integer *);
    extern /* Subroutine */ int icopy_(integer *, integer *, integer *, 
	    integer *, integer *);
    static real s1, s2;
    static integer ic;
    extern /* Subroutine */ int sprtb5_(char *, char *, char *, integer *, 
	    integer *, integer *, integer *, integer *, integer *, real *, 
	    integer *, integer *, integer *, ftnlen, ftnlen, ftnlen);
    static integer im;
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int atimck_(integer *, char *, integer *, integer 
	    *, integer *, integer *, integer *, integer *, ftnlen);
    extern doublereal second_(void);
    extern /* Subroutine */ int atimin_(char *, char *, integer *, char *, 
	    logical *, integer *, integer *, ftnlen, ftnlen, ftnlen), sgeqpf_(
	    integer *, integer *, real *, integer *, integer *, real *, real *
	    , integer *), slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *);
    extern doublereal smflop_(real *, real *, integer *);
    static real untime;
    static logical timsub[1];
    extern /* Subroutine */ int slatms_(integer *, integer *, char *, integer 
	    *, char *, real *, integer *, real *, real *, integer *, integer *
	    , char *, real *, integer *, real *, integer *);
    static integer lda, icl;
    static real ops;

    /* Fortran I/O blocks */
    static cilist io___8 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___27 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___28 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___29 = { 0, 0, 0, 0, 0 };



#define subnam_ref(a_0,a_1) &subnam[(a_1)*6 + a_0 - 6]
#define reslts_ref(a_1,a_2,a_3) reslts[((a_3)*reslts_dim2 + (a_2))*\
reslts_dim1 + a_1]


/*  -- LAPACK timing routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    STIMQP times the LAPACK routines to perform the QR factorization with   
    column pivoting of a REAL general matrix.   

    Two matrix types may be used for timing.  The number of types is   
    set in the parameter NMODE and the matrix types are set in the vector   
    MODES, using the following key:   
       2.  BREAK1    D(1:N-1)=1 and D(N)=1.0/COND in SLATMS   
       3.  GEOM      D(I)=COND**(-(I-1)/(N-1)) in SLATMS   
    These numbers are chosen to correspond with the matrix types in the   
    test code.   

    Arguments   
    =========   

    LINE    (input) CHARACTER*80   
            The input line that requested this routine.  The first six   
            characters contain either the name of a subroutine or a   
            generic path name.  The remaining characters may be used to   
            specify the individual routines to be timed.  See ATIMIN for   
            a full description of the format of the input line.   

    NM      (input) INTEGER   
            The number of values of M and N contained in the vectors   
            MVAL and NVAL.  The matrix sizes are used in pairs (M,N).   

    MVAL    (input) INTEGER array, dimension (NM)   
            The values of the matrix row dimension M.   

    NVAL    (input) INTEGER array, dimension (NM)   
            The values of the matrix column dimension N.   

    NLDA    (input) INTEGER   
            The number of values of LDA contained in the vector LDAVAL.   

    LDAVAL  (input) INTEGER array, dimension (NLDA)   
            The values of the leading dimension of the array A.   

    TIMMIN  (input) REAL   
            The minimum time a subroutine will be timed.   

    A       (workspace) REAL array, dimension (LDAMAX*NMAX)   
            where LDAMAX and NMAX are the maximum values of LDA and N.   

    COPYA   (workspace) REAL array, dimension (LDAMAX*NMAX)   

    TAU     (workspace) REAL array, dimension (min(M,N))   

    WORK    (workspace) REAL array, dimension (3*NMAX)   

    IWORK   (workspace) INTEGER array, dimension (2*NMAX)   

    RESLTS  (workspace) REAL array, dimension   
                        (LDR1,LDR2,NLDA)   
            The timing results for each subroutine over the relevant   
            values of MODE, (M,N), and LDA.   

    LDR1    (input) INTEGER   
            The first dimension of RESLTS.  LDR1 >= max(1,NM).   

    LDR2    (input) INTEGER   
            The second dimension of RESLTS.  LDR2 >= max(1,NM).   

    NOUT    (input) INTEGER   
            The unit number for output.   

    =====================================================================   

       Parameter adjustments */
    --mval;
    --nval;
    --ldaval;
    --a;
    --copya;
    --tau;
    --work;
    --iwork;
    reslts_dim1 = *ldr1;
    reslts_dim2 = *ldr2;
    reslts_offset = 1 + reslts_dim1 * (1 + reslts_dim2 * 1);
    reslts -= reslts_offset;

    /* Function Body   

       Extract the timing request from the input line. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "QP", (ftnlen)2, (ftnlen)2);
    atimin_(path, line, &c__1, subnam, timsub, nout, &info, (ftnlen)3, (
	    ftnlen)80, (ftnlen)6);
    if (! timsub[0] || info != 0) {
	goto L80;
    }

/*     Check that M <= LDA for the input values. */

    s_copy(cname, line, (ftnlen)6, (ftnlen)6);
    atimck_(&c__1, cname, nm, &mval[1], nlda, &ldaval[1], nout, &info, (
	    ftnlen)6);
    if (info > 0) {
	io___8.ciunit = *nout;
	s_wsfe(&io___8);
	do_fio(&c__1, cname, (ftnlen)6);
	e_wsfe();
	goto L80;
    }

/*     Set the condition number and scaling factor for the matrices   
       to be generated. */

    dmax__ = 1.f;
    cond = 1.f / slamch_("Precision");

/*     Do for each pair of values (M,N): */

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {
	m = mval[im];
	n = nval[im];
	minmn = min(m,n);

/*        Do for each value of LDA: */

	i__2 = *nlda;
	for (ilda = 1; ilda <= i__2; ++ilda) {
	    lda = ldaval[ilda];
	    for (imode = 1; imode <= 2; ++imode) {
		mode = modes[imode - 1];

/*              Generate a test matrix of size m by n using the   
                singular value distribution indicated by MODE. */

		i__3 = n;
		for (i__ = 1; i__ <= i__3; ++i__) {
		    iwork[n + i__] = 0;
/* L10: */
		}
		slatms_(&m, &n, "Uniform", iseed, "Nonsymm", &tau[1], &mode, &
			cond, &dmax__, &m, &n, "No packing", &copya[1], &lda, 
			&work[1], &info);

/*              SGEQPF:  QR factorization with column pivoting */

		slacpy_("All", &m, &n, &copya[1], &lda, &a[1], &lda);
		icopy_(&n, &iwork[n + 1], &c__1, &iwork[1], &c__1);
		ic = 0;
		s1 = second_();
L20:
		sgeqpf_(&m, &n, &a[1], &lda, &iwork[1], &tau[1], &work[1], &
			info);
		s2 = second_();
		time = s2 - s1;
		++ic;
		if (time < *timmin) {
		    slacpy_("All", &m, &n, &copya[1], &lda, &a[1], &lda);
		    icopy_(&n, &iwork[n + 1], &c__1, &iwork[1], &c__1);
		    goto L20;
		}

/*              Subtract the time used in SLACPY and ICOPY. */

		icl = 1;
		s1 = second_();
L30:
		s2 = second_();
		untime = s2 - s1;
		++icl;
		if (icl <= ic) {
		    slacpy_("All", &m, &n, &copya[1], &lda, &a[1], &lda);
		    icopy_(&n, &iwork[n + 1], &c__1, &iwork[1], &c__1);
		    goto L30;
		}

		time = (time - untime) / (real) ic;
		ops = sopla_("SGEQPF", &m, &n, &c__0, &c__0, &c__1)
			;
		reslts_ref(imode, im, ilda) = smflop_(&ops, &time, &info);

/* L40: */
	    }
/* L50: */
	}
/* L60: */
    }

/*     Print tables of results */

    io___27.ciunit = *nout;
    s_wsfe(&io___27);
    do_fio(&c__1, subnam_ref(0, 1), (ftnlen)6);
    e_wsfe();
    if (*nlda > 1) {
	i__1 = *nlda;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    io___28.ciunit = *nout;
	    s_wsfe(&io___28);
	    do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer));
	    do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)sizeof(integer));
	    e_wsfe();
/* L70: */
	}
    }
    io___29.ciunit = *nout;
    s_wsle(&io___29);
    e_wsle();
    sprtb5_("Type", "M", "N", &c__2, modes, nm, &mval[1], &nval[1], nlda, &
	    reslts[reslts_offset], ldr1, ldr2, nout, (ftnlen)4, (ftnlen)1, (
	    ftnlen)1);
L80:
    return 0;

/*     End of STIMQP */

} /* stimqp_ */
예제 #19
0
/* Subroutine */ int schkgt_(logical *dotype, integer *nn, integer *nval, 
	integer *nns, integer *nsval, real *thresh, logical *tsterr, real *a, 
	real *af, real *b, real *x, real *xact, real *work, real *rwork, 
	integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 0,0,0,1 };
    static char transs[1*3] = "N" "T" "C";

    /* Format strings */
    static char fmt_9999[] = "(12x,\002N =\002,i5,\002,\002,10x,\002 type"
	    " \002,i2,\002, test(\002,i2,\002) = \002,g12.5)";
    static char fmt_9997[] = "(\002 NORM ='\002,a1,\002', N =\002,i5,\002"
	    ",\002,10x,\002 type \002,i2,\002, test(\002,i2,\002) = \002,g12."
	    "5)";
    static char fmt_9998[] = "(\002 TRANS='\002,a1,\002', N =\002,i5,\002, N"
	    "RHS=\002,i3,\002, type \002,i2,\002, test(\002,i2,\002) = \002,g"
	    "12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;
    real r__1, r__2;

    /* Local variables */
    integer i__, j, k, m, n;
    real z__[3];
    integer in, kl, ku, ix, lda;
    real cond;
    integer mode, koff, imat, info;
    char path[3], dist[1];
    integer irhs, nrhs;
    char norm[1], type__[1];
    integer nrun;
    integer nfail, iseed[4];
    real rcond;
    integer nimat;
    real anorm;
    integer itran;
    char trans[1];
    integer izero, nerrs;
    logical zerot;
    real rcondc, rcondi, rcondo;
    real ainvnm;
    logical trfcon;
    real result[7];

    /* Fortran I/O blocks */
    static cilist io___29 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___39 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___44 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SCHKGT tests SGTTRF, -TRS, -RFS, and -CON */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  NNS     (input) INTEGER */
/*          The number of values of NRHS contained in the vector NSVAL. */

/*  NSVAL   (input) INTEGER array, dimension (NNS) */
/*          The values of the number of right hand sides NRHS. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  A       (workspace) REAL array, dimension (NMAX*4) */

/*  AF      (workspace) REAL array, dimension (NMAX*4) */

/*  B       (workspace) REAL array, dimension (NMAX*NSMAX) */
/*          where NSMAX is the largest entry in NSVAL. */

/*  X       (workspace) REAL array, dimension (NMAX*NSMAX) */

/*  XACT    (workspace) REAL array, dimension (NMAX*NSMAX) */

/*  WORK    (workspace) REAL array, dimension */
/*                      (NMAX*max(3,NSMAX)) */

/*  RWORK   (workspace) REAL array, dimension */
/*                      (max(NMAX,2*NSMAX)) */

/*  IWORK   (workspace) INTEGER array, dimension (2*NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --af;
    --a;
    --nsval;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "GT", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	serrge_(path, nout);
    }
    infoc_1.infot = 0;

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {

/*        Do for each value of N in NVAL. */

	n = nval[in];
/* Computing MAX */
	i__2 = n - 1;
	m = max(i__2,0);
	lda = max(1,n);
	nimat = 12;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L100;
	    }

/*           Set up parameters with SLATB4. */

	    slatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &
		    cond, dist);

	    zerot = imat >= 8 && imat <= 10;
	    if (imat <= 6) {

/*              Types 1-6:  generate matrices of known condition number. */

/* Computing MAX */
		i__3 = 2 - ku, i__4 = 3 - max(1,n);
		koff = max(i__3,i__4);
		s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)32, (ftnlen)6);
		slatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cond, 
			&anorm, &kl, &ku, "Z", &af[koff], &c__3, &work[1], &
			info);

/*              Check the error code from SLATMS. */

		if (info != 0) {
		    alaerh_(path, "SLATMS", &info, &c__0, " ", &n, &n, &kl, &
			    ku, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L100;
		}
		izero = 0;

		if (n > 1) {
		    i__3 = n - 1;
		    scopy_(&i__3, &af[4], &c__3, &a[1], &c__1);
		    i__3 = n - 1;
		    scopy_(&i__3, &af[3], &c__3, &a[n + m + 1], &c__1);
		}
		scopy_(&n, &af[2], &c__3, &a[m + 1], &c__1);
	    } else {

/*              Types 7-12:  generate tridiagonal matrices with */
/*              unknown condition numbers. */

		if (! zerot || ! dotype[7]) {

/*                 Generate a matrix with elements from [-1,1]. */

		    i__3 = n + (m << 1);
		    slarnv_(&c__2, iseed, &i__3, &a[1]);
		    if (anorm != 1.f) {
			i__3 = n + (m << 1);
			sscal_(&i__3, &anorm, &a[1], &c__1);
		    }
		} else if (izero > 0) {

/*                 Reuse the last matrix by copying back the zeroed out */
/*                 elements. */

		    if (izero == 1) {
			a[n] = z__[1];
			if (n > 1) {
			    a[1] = z__[2];
			}
		    } else if (izero == n) {
			a[n * 3 - 2] = z__[0];
			a[(n << 1) - 1] = z__[1];
		    } else {
			a[(n << 1) - 2 + izero] = z__[0];
			a[n - 1 + izero] = z__[1];
			a[izero] = z__[2];
		    }
		}

/*              If IMAT > 7, set one column of the matrix to 0. */

		if (! zerot) {
		    izero = 0;
		} else if (imat == 8) {
		    izero = 1;
		    z__[1] = a[n];
		    a[n] = 0.f;
		    if (n > 1) {
			z__[2] = a[1];
			a[1] = 0.f;
		    }
		} else if (imat == 9) {
		    izero = n;
		    z__[0] = a[n * 3 - 2];
		    z__[1] = a[(n << 1) - 1];
		    a[n * 3 - 2] = 0.f;
		    a[(n << 1) - 1] = 0.f;
		} else {
		    izero = (n + 1) / 2;
		    i__3 = n - 1;
		    for (i__ = izero; i__ <= i__3; ++i__) {
			a[(n << 1) - 2 + i__] = 0.f;
			a[n - 1 + i__] = 0.f;
			a[i__] = 0.f;
/* L20: */
		    }
		    a[n * 3 - 2] = 0.f;
		    a[(n << 1) - 1] = 0.f;
		}
	    }

/* +    TEST 1 */
/*           Factor A as L*U and compute the ratio */
/*              norm(L*U - A) / (n * norm(A) * EPS ) */

	    i__3 = n + (m << 1);
	    scopy_(&i__3, &a[1], &c__1, &af[1], &c__1);
	    s_copy(srnamc_1.srnamt, "SGTTRF", (ftnlen)32, (ftnlen)6);
	    sgttrf_(&n, &af[1], &af[m + 1], &af[n + m + 1], &af[n + (m << 1) 
		    + 1], &iwork[1], &info);

/*           Check error code from SGTTRF. */

	    if (info != izero) {
		alaerh_(path, "SGTTRF", &info, &izero, " ", &n, &n, &c__1, &
			c__1, &c_n1, &imat, &nfail, &nerrs, nout);
	    }
	    trfcon = info != 0;

	    sgtt01_(&n, &a[1], &a[m + 1], &a[n + m + 1], &af[1], &af[m + 1], &
		    af[n + m + 1], &af[n + (m << 1) + 1], &iwork[1], &work[1], 
		     &lda, &rwork[1], result);

/*           Print the test ratio if it is .GE. THRESH. */

	    if (result[0] >= *thresh) {
		if (nfail == 0 && nerrs == 0) {
		    alahd_(nout, path);
		}
		io___29.ciunit = *nout;
		s_wsfe(&io___29);
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&c__1, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&result[0], (ftnlen)sizeof(real));
		e_wsfe();
		++nfail;
	    }
	    ++nrun;

	    for (itran = 1; itran <= 2; ++itran) {
		*(unsigned char *)trans = *(unsigned char *)&transs[itran - 1]
			;
		if (itran == 1) {
		    *(unsigned char *)norm = 'O';
		} else {
		    *(unsigned char *)norm = 'I';
		}
		anorm = slangt_(norm, &n, &a[1], &a[m + 1], &a[n + m + 1]);

		if (! trfcon) {

/*                 Use SGTTRS to solve for one column at a time of inv(A) */
/*                 or inv(A^T), computing the maximum column sum as we */
/*                 go. */

		    ainvnm = 0.f;
		    i__3 = n;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			i__4 = n;
			for (j = 1; j <= i__4; ++j) {
			    x[j] = 0.f;
/* L30: */
			}
			x[i__] = 1.f;
			sgttrs_(trans, &n, &c__1, &af[1], &af[m + 1], &af[n + 
				m + 1], &af[n + (m << 1) + 1], &iwork[1], &x[
				1], &lda, &info);
/* Computing MAX */
			r__1 = ainvnm, r__2 = sasum_(&n, &x[1], &c__1);
			ainvnm = dmax(r__1,r__2);
/* L40: */
		    }

/*                 Compute RCONDC = 1 / (norm(A) * norm(inv(A)) */

		    if (anorm <= 0.f || ainvnm <= 0.f) {
			rcondc = 1.f;
		    } else {
			rcondc = 1.f / anorm / ainvnm;
		    }
		    if (itran == 1) {
			rcondo = rcondc;
		    } else {
			rcondi = rcondc;
		    }
		} else {
		    rcondc = 0.f;
		}

/* +    TEST 7 */
/*              Estimate the reciprocal of the condition number of the */
/*              matrix. */

		s_copy(srnamc_1.srnamt, "SGTCON", (ftnlen)32, (ftnlen)6);
		sgtcon_(norm, &n, &af[1], &af[m + 1], &af[n + m + 1], &af[n + 
			(m << 1) + 1], &iwork[1], &anorm, &rcond, &work[1], &
			iwork[n + 1], &info);

/*              Check error code from SGTCON. */

		if (info != 0) {
		    alaerh_(path, "SGTCON", &info, &c__0, norm, &n, &n, &c_n1, 
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		}

		result[6] = sget06_(&rcond, &rcondc);

/*              Print the test ratio if it is .GE. THRESH. */

		if (result[6] >= *thresh) {
		    if (nfail == 0 && nerrs == 0) {
			alahd_(nout, path);
		    }
		    io___39.ciunit = *nout;
		    s_wsfe(&io___39);
		    do_fio(&c__1, norm, (ftnlen)1);
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&c__7, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&result[6], (ftnlen)sizeof(real));
		    e_wsfe();
		    ++nfail;
		}
		++nrun;
/* L50: */
	    }

/*           Skip the remaining tests if the matrix is singular. */

	    if (trfcon) {
		goto L100;
	    }

	    i__3 = *nns;
	    for (irhs = 1; irhs <= i__3; ++irhs) {
		nrhs = nsval[irhs];

/*              Generate NRHS random solution vectors. */

		ix = 1;
		i__4 = nrhs;
		for (j = 1; j <= i__4; ++j) {
		    slarnv_(&c__2, iseed, &n, &xact[ix]);
		    ix += lda;
/* L60: */
		}

		for (itran = 1; itran <= 3; ++itran) {
		    *(unsigned char *)trans = *(unsigned char *)&transs[itran 
			    - 1];
		    if (itran == 1) {
			rcondc = rcondo;
		    } else {
			rcondc = rcondi;
		    }

/*                 Set the right hand side. */

		    slagtm_(trans, &n, &nrhs, &c_b63, &a[1], &a[m + 1], &a[n 
			    + m + 1], &xact[1], &lda, &c_b64, &b[1], &lda);

/* +    TEST 2 */
/*                 Solve op(A) * X = B and compute the residual. */

		    slacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda);
		    s_copy(srnamc_1.srnamt, "SGTTRS", (ftnlen)32, (ftnlen)6);
		    sgttrs_(trans, &n, &nrhs, &af[1], &af[m + 1], &af[n + m + 
			    1], &af[n + (m << 1) + 1], &iwork[1], &x[1], &lda, 
			     &info);

/*                 Check error code from SGTTRS. */

		    if (info != 0) {
			alaerh_(path, "SGTTRS", &info, &c__0, trans, &n, &n, &
				c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }

		    slacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], &lda);
		    sgtt02_(trans, &n, &nrhs, &a[1], &a[m + 1], &a[n + m + 1], 
			     &x[1], &lda, &work[1], &lda, &rwork[1], &result[
			    1]);

/* +    TEST 3 */
/*                 Check solution from generated exact solution. */

		    sget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &
			    result[2]);

/* +    TESTS 4, 5, and 6 */
/*                 Use iterative refinement to improve the solution. */

		    s_copy(srnamc_1.srnamt, "SGTRFS", (ftnlen)32, (ftnlen)6);
		    sgtrfs_(trans, &n, &nrhs, &a[1], &a[m + 1], &a[n + m + 1], 
			     &af[1], &af[m + 1], &af[n + m + 1], &af[n + (m <<
			     1) + 1], &iwork[1], &b[1], &lda, &x[1], &lda, &
			    rwork[1], &rwork[nrhs + 1], &work[1], &iwork[n + 
			    1], &info);

/*                 Check error code from SGTRFS. */

		    if (info != 0) {
			alaerh_(path, "SGTRFS", &info, &c__0, trans, &n, &n, &
				c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }

		    sget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &
			    result[3]);
		    sgtt05_(trans, &n, &nrhs, &a[1], &a[m + 1], &a[n + m + 1], 
			     &b[1], &lda, &x[1], &lda, &xact[1], &lda, &rwork[
			    1], &rwork[nrhs + 1], &result[4]);

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    for (k = 2; k <= 6; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___44.ciunit = *nout;
			    s_wsfe(&io___44);
			    do_fio(&c__1, trans, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(real));
			    e_wsfe();
			    ++nfail;
			}
/* L70: */
		    }
		    nrun += 5;
/* L80: */
		}
/* L90: */
	    }

L100:
	    ;
	}
/* L110: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of SCHKGT */

} /* schkgt_ */
예제 #20
0
파일: schkbb.c 프로젝트: 3deggi/levmar-ndk
/* Subroutine */ int schkbb_(integer *nsizes, integer *mval, integer *nval, 
	integer *nwdths, integer *kk, integer *ntypes, logical *dotype, 
	integer *nrhs, integer *iseed, real *thresh, integer *nounit, real *a, 
	 integer *lda, real *ab, integer *ldab, real *bd, real *be, real *q, 
	integer *ldq, real *p, integer *ldp, real *c__, integer *ldc, real *
	cc, real *work, integer *lwork, real *result, integer *info)
{
    /* Initialized data */

    static integer ktype[15] = { 1,2,4,4,4,4,4,6,6,6,6,6,9,9,9 };
    static integer kmagn[15] = { 1,1,1,1,1,2,3,1,1,1,2,3,1,2,3 };
    static integer kmode[15] = { 0,0,4,3,1,4,4,4,3,1,4,4,0,0,0 };

    /* Format strings */
    static char fmt_9999[] = "(\002 SCHKBB: \002,a,\002 returned INFO=\002,i"
	    "5,\002.\002,/9x,\002M=\002,i5,\002 N=\002,i5,\002 K=\002,i5,\002"
	    ", JTYPE=\002,i5,\002, ISEED=(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9998[] = "(\002 M =\002,i4,\002 N=\002,i4,\002, K=\002,i"
	    "3,\002, seed=\002,4(i4,\002,\002),\002 type \002,i2,\002, test"
	    "(\002,i2,\002)=\002,g10.3)";

    /* System generated locals */
    integer a_dim1, a_offset, ab_dim1, ab_offset, c_dim1, c_offset, cc_dim1, 
	    cc_offset, p_dim1, p_offset, q_dim1, q_offset, i__1, i__2, i__3, 
	    i__4, i__5, i__6, i__7, i__8, i__9;

    /* Builtin functions */
    double sqrt(doublereal);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, j, k, m, n, kl, jr, ku;
    real ulp, cond;
    integer jcol, kmax, mmax, nmax;
    real unfl, ovfl;
    logical badmm, badnn;
    integer imode;
    extern /* Subroutine */ int sbdt01_(integer *, integer *, integer *, real 
	    *, integer *, real *, integer *, real *, real *, real *, integer *
, real *, real *), sbdt02_(integer *, integer *, real *, integer *
, real *, integer *, real *, integer *, real *, real *);
    integer iinfo;
    real anorm;
    integer mnmin, mnmax, nmats, jsize;
    extern /* Subroutine */ int sort01_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *, real *);
    integer nerrs, itype, jtype, ntest;
    extern /* Subroutine */ int slahd2_(integer *, char *);
    logical badnnb;
    extern /* Subroutine */ int sgbbrd_(char *, integer *, integer *, integer 
	    *, integer *, integer *, real *, integer *, real *, real *, real *
, integer *, real *, integer *, real *, integer *, real *, 
	    integer *);
    extern doublereal slamch_(char *);
    integer idumma[1];
    extern /* Subroutine */ int xerbla_(char *, integer *);
    integer ioldsd[4];
    real amninv;
    integer jwidth;
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *), slaset_(char *, integer *, 
	    integer *, real *, real *, real *, integer *), slatmr_(
	    integer *, integer *, char *, integer *, char *, real *, integer *
, real *, real *, char *, char *, real *, integer *, real *, real 
	    *, integer *, real *, char *, integer *, integer *, integer *, 
	    real *, real *, char *, real *, integer *, integer *, integer *), slatms_(integer *
, integer *, char *, integer *, char *, real *, integer *, real *, 
	     real *, integer *, integer *, char *, real *, integer *, real *, 
	    integer *), slasum_(char *, integer *, 
	    integer *, integer *);
    real rtunfl, rtovfl, ulpinv;
    integer mtypes, ntestt;

    /* Fortran I/O blocks */
    static cilist io___41 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___43 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (release 2.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SCHKBB tests the reduction of a general real rectangular band */
/*  matrix to bidiagonal form. */

/*  SGBBRD factors a general band matrix A as  Q B P* , where * means */
/*  transpose, B is upper bidiagonal, and Q and P are orthogonal; */
/*  SGBBRD can also overwrite a given matrix C with Q* C . */

/*  For each pair of matrix dimensions (M,N) and each selected matrix */
/*  type, an M by N matrix A and an M by NRHS matrix C are generated. */
/*  The problem dimensions are as follows */
/*     A:          M x N */
/*     Q:          M x M */
/*     P:          N x N */
/*     B:          min(M,N) x min(M,N) */
/*     C:          M x NRHS */

/*  For each generated matrix, 4 tests are performed: */

/*  (1)   | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P' */

/*  (2)   | I - Q' Q | / ( M ulp ) */

/*  (3)   | I - PT PT' | / ( N ulp ) */

/*  (4)   | Y - Q' C | / ( |Y| max(M,NRHS) ulp ), where Y = Q' C. */

/*  The "types" are specified by a logical array DOTYPE( 1:NTYPES ); */
/*  if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. */
/*  Currently, the list of possible types is: */

/*  The possible matrix types are */

/*  (1)  The zero matrix. */
/*  (2)  The identity matrix. */

/*  (3)  A diagonal matrix with evenly spaced entries */
/*       1, ..., ULP  and random signs. */
/*       (ULP = (first number larger than 1) - 1 ) */
/*  (4)  A diagonal matrix with geometrically spaced entries */
/*       1, ..., ULP  and random signs. */
/*  (5)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP */
/*       and random signs. */

/*  (6)  Same as (3), but multiplied by SQRT( overflow threshold ) */
/*  (7)  Same as (3), but multiplied by SQRT( underflow threshold ) */

/*  (8)  A matrix of the form  U D V, where U and V are orthogonal and */
/*       D has evenly spaced entries 1, ..., ULP with random signs */
/*       on the diagonal. */

/*  (9)  A matrix of the form  U D V, where U and V are orthogonal and */
/*       D has geometrically spaced entries 1, ..., ULP with random */
/*       signs on the diagonal. */

/*  (10) A matrix of the form  U D V, where U and V are orthogonal and */
/*       D has "clustered" entries 1, ULP,..., ULP with random */
/*       signs on the diagonal. */

/*  (11) Same as (8), but multiplied by SQRT( overflow threshold ) */
/*  (12) Same as (8), but multiplied by SQRT( underflow threshold ) */

/*  (13) Rectangular matrix with random entries chosen from (-1,1). */
/*  (14) Same as (13), but multiplied by SQRT( overflow threshold ) */
/*  (15) Same as (13), but multiplied by SQRT( underflow threshold ) */

/*  Arguments */
/*  ========= */

/*  NSIZES  (input) INTEGER */
/*          The number of values of M and N contained in the vectors */
/*          MVAL and NVAL.  The matrix sizes are used in pairs (M,N). */
/*          If NSIZES is zero, SCHKBB does nothing.  NSIZES must be at */
/*          least zero. */

/*  MVAL    (input) INTEGER array, dimension (NSIZES) */
/*          The values of the matrix row dimension M. */

/*  NVAL    (input) INTEGER array, dimension (NSIZES) */
/*          The values of the matrix column dimension N. */

/*  NWDTHS  (input) INTEGER */
/*          The number of bandwidths to use.  If it is zero, */
/*          SCHKBB does nothing.  It must be at least zero. */

/*  KK      (input) INTEGER array, dimension (NWDTHS) */
/*          An array containing the bandwidths to be used for the band */
/*          matrices.  The values must be at least zero. */

/*  NTYPES  (input) INTEGER */
/*          The number of elements in DOTYPE.   If it is zero, SCHKBB */
/*          does nothing.  It must be at least zero.  If it is MAXTYP+1 */
/*          and NSIZES is 1, then an additional type, MAXTYP+1 is */
/*          defined, which is to use whatever matrix is in A.  This */
/*          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and */
/*          DOTYPE(MAXTYP+1) is .TRUE. . */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          If DOTYPE(j) is .TRUE., then for each size in NN a */
/*          matrix of that size and of type j will be generated. */
/*          If NTYPES is smaller than the maximum number of types */
/*          defined (PARAMETER MAXTYP), then types NTYPES+1 through */
/*          MAXTYP will not be generated.  If NTYPES is larger */
/*          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) */
/*          will be ignored. */

/*  NRHS    (input) INTEGER */
/*          The number of columns in the "right-hand side" matrix C. */
/*          If NRHS = 0, then the operations on the right-hand side will */
/*          not be tested. NRHS must be at least 0. */

/*  ISEED   (input/output) INTEGER array, dimension (4) */
/*          On entry ISEED specifies the seed of the random number */
/*          generator. The array elements should be between 0 and 4095; */
/*          if not they will be reduced mod 4096.  Also, ISEED(4) must */
/*          be odd.  The random number generator uses a linear */
/*          congruential sequence limited to small integers, and so */
/*          should produce machine independent random numbers. The */
/*          values of ISEED are changed on exit, and can be used in the */
/*          next call to SCHKBB to continue the same random number */
/*          sequence. */

/*  THRESH  (input) REAL */
/*          A test will count as "failed" if the "error", computed as */
/*          described above, exceeds THRESH.  Note that the error */
/*          is scaled to be O(1), so THRESH should be a reasonably */
/*          small multiple of 1, e.g., 10 or 100.  In particular, */
/*          it should not depend on the precision (single vs. double) */
/*          or the size of the matrix.  It must be at least zero. */

/*  NOUNIT  (input) INTEGER */
/*          The FORTRAN unit number for printing out error messages */
/*          (e.g., if a routine returns IINFO not equal to 0.) */

/*  A       (input/workspace) REAL array, dimension */
/*                            (LDA, max(NN)) */
/*          Used to hold the matrix A. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of A.  It must be at least 1 */
/*          and at least max( NN ). */

/*  AB      (workspace) REAL array, dimension (LDAB, max(NN)) */
/*          Used to hold A in band storage format. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of AB.  It must be at least 2 (not 1!) */
/*          and at least max( KK )+1. */

/*  BD      (workspace) REAL array, dimension (max(NN)) */
/*          Used to hold the diagonal of the bidiagonal matrix computed */
/*          by SGBBRD. */

/*  BE      (workspace) REAL array, dimension (max(NN)) */
/*          Used to hold the off-diagonal of the bidiagonal matrix */
/*          computed by SGBBRD. */

/*  Q       (workspace) REAL array, dimension (LDQ, max(NN)) */
/*          Used to hold the orthogonal matrix Q computed by SGBBRD. */

/*  LDQ     (input) INTEGER */
/*          The leading dimension of Q.  It must be at least 1 */
/*          and at least max( NN ). */

/*  P       (workspace) REAL array, dimension (LDP, max(NN)) */
/*          Used to hold the orthogonal matrix P computed by SGBBRD. */

/*  LDP     (input) INTEGER */
/*          The leading dimension of P.  It must be at least 1 */
/*          and at least max( NN ). */

/*  C       (workspace) REAL array, dimension (LDC, max(NN)) */
/*          Used to hold the matrix C updated by SGBBRD. */

/*  LDC     (input) INTEGER */
/*          The leading dimension of U.  It must be at least 1 */
/*          and at least max( NN ). */

/*  CC      (workspace) REAL array, dimension (LDC, max(NN)) */
/*          Used to hold a copy of the matrix C. */

/*  WORK    (workspace) REAL array, dimension (LWORK) */

/*  LWORK   (input) INTEGER */
/*          The number of entries in WORK.  This must be at least */
/*          max( LDA+1, max(NN)+1 )*max(NN). */

/*  RESULT  (output) REAL array, dimension (4) */
/*          The values computed by the tests described above. */
/*          The values are currently limited to 1/ulp, to avoid */
/*          overflow. */

/*  INFO    (output) INTEGER */
/*          If 0, then everything ran OK. */

/* ----------------------------------------------------------------------- */

/*       Some Local Variables and Parameters: */
/*       ---- ----- --------- --- ---------- */
/*       ZERO, ONE       Real 0 and 1. */
/*       MAXTYP          The number of types defined. */
/*       NTEST           The number of tests performed, or which can */
/*                       be performed so far, for the current matrix. */
/*       NTESTT          The total number of tests performed so far. */
/*       NMAX            Largest value in NN. */
/*       NMATS           The number of matrices generated so far. */
/*       NERRS           The number of tests which have exceeded THRESH */
/*                       so far. */
/*       COND, IMODE     Values to be passed to the matrix generators. */
/*       ANORM           Norm of A; passed to matrix generators. */

/*       OVFL, UNFL      Overflow and underflow thresholds. */
/*       ULP, ULPINV     Finest relative precision and its inverse. */
/*       RTOVFL, RTUNFL  Square roots of the previous 2 values. */
/*               The following four arrays decode JTYPE: */
/*       KTYPE(j)        The general type (1-10) for type "j". */
/*       KMODE(j)        The MODE value to be passed to the matrix */
/*                       generator for type "j". */
/*       KMAGN(j)        The order of magnitude ( O(1), */
/*                       O(overflow^(1/2) ), O(underflow^(1/2) ) */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --mval;
    --nval;
    --kk;
    --dotype;
    --iseed;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    --bd;
    --be;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    p_dim1 = *ldp;
    p_offset = 1 + p_dim1;
    p -= p_offset;
    cc_dim1 = *ldc;
    cc_offset = 1 + cc_dim1;
    cc -= cc_offset;
    c_dim1 = *ldc;
    c_offset = 1 + c_dim1;
    c__ -= c_offset;
    --work;
    --result;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Check for errors */

    ntestt = 0;
    *info = 0;

/*     Important constants */

    badmm = FALSE_;
    badnn = FALSE_;
    mmax = 1;
    nmax = 1;
    mnmax = 1;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = mmax, i__3 = mval[j];
	mmax = max(i__2,i__3);
	if (mval[j] < 0) {
	    badmm = TRUE_;
	}
/* Computing MAX */
	i__2 = nmax, i__3 = nval[j];
	nmax = max(i__2,i__3);
	if (nval[j] < 0) {
	    badnn = TRUE_;
	}
/* Computing MAX */
/* Computing MIN */
	i__4 = mval[j], i__5 = nval[j];
	i__2 = mnmax, i__3 = min(i__4,i__5);
	mnmax = max(i__2,i__3);
/* L10: */
    }

    badnnb = FALSE_;
    kmax = 0;
    i__1 = *nwdths;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = kmax, i__3 = kk[j];
	kmax = max(i__2,i__3);
	if (kk[j] < 0) {
	    badnnb = TRUE_;
	}
/* L20: */
    }

/*     Check for errors */

    if (*nsizes < 0) {
	*info = -1;
    } else if (badmm) {
	*info = -2;
    } else if (badnn) {
	*info = -3;
    } else if (*nwdths < 0) {
	*info = -4;
    } else if (badnnb) {
	*info = -5;
    } else if (*ntypes < 0) {
	*info = -6;
    } else if (*nrhs < 0) {
	*info = -8;
    } else if (*lda < nmax) {
	*info = -13;
    } else if (*ldab < (kmax << 1) + 1) {
	*info = -15;
    } else if (*ldq < nmax) {
	*info = -19;
    } else if (*ldp < nmax) {
	*info = -21;
    } else if (*ldc < nmax) {
	*info = -23;
    } else if ((max(*lda,nmax) + 1) * nmax > *lwork) {
	*info = -26;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SCHKBB", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*nsizes == 0 || *ntypes == 0 || *nwdths == 0) {
	return 0;
    }

/*     More Important constants */

    unfl = slamch_("Safe minimum");
    ovfl = 1.f / unfl;
    ulp = slamch_("Epsilon") * slamch_("Base");
    ulpinv = 1.f / ulp;
    rtunfl = sqrt(unfl);
    rtovfl = sqrt(ovfl);

/*     Loop over sizes, widths, types */

    nerrs = 0;
    nmats = 0;

    i__1 = *nsizes;
    for (jsize = 1; jsize <= i__1; ++jsize) {
	m = mval[jsize];
	n = nval[jsize];
	mnmin = min(m,n);
/* Computing MAX */
	i__2 = max(1,m);
	amninv = 1.f / (real) max(i__2,n);

	i__2 = *nwdths;
	for (jwidth = 1; jwidth <= i__2; ++jwidth) {
	    k = kk[jwidth];
	    if (k >= m && k >= n) {
		goto L150;
	    }
/* Computing MAX */
/* Computing MIN */
	    i__5 = m - 1;
	    i__3 = 0, i__4 = min(i__5,k);
	    kl = max(i__3,i__4);
/* Computing MAX */
/* Computing MIN */
	    i__5 = n - 1;
	    i__3 = 0, i__4 = min(i__5,k);
	    ku = max(i__3,i__4);

	    if (*nsizes != 1) {
		mtypes = min(15,*ntypes);
	    } else {
		mtypes = min(16,*ntypes);
	    }

	    i__3 = mtypes;
	    for (jtype = 1; jtype <= i__3; ++jtype) {
		if (! dotype[jtype]) {
		    goto L140;
		}
		++nmats;
		ntest = 0;

		for (j = 1; j <= 4; ++j) {
		    ioldsd[j - 1] = iseed[j];
/* L30: */
		}

/*              Compute "A". */

/*              Control parameters: */

/*                  KMAGN  KMODE        KTYPE */
/*              =1  O(1)   clustered 1  zero */
/*              =2  large  clustered 2  identity */
/*              =3  small  exponential  (none) */
/*              =4         arithmetic   diagonal, (w/ singular values) */
/*              =5         random log   (none) */
/*              =6         random       nonhermitian, w/ singular values */
/*              =7                      (none) */
/*              =8                      (none) */
/*              =9                      random nonhermitian */

		if (mtypes > 15) {
		    goto L90;
		}

		itype = ktype[jtype - 1];
		imode = kmode[jtype - 1];

/*              Compute norm */

		switch (kmagn[jtype - 1]) {
		    case 1:  goto L40;
		    case 2:  goto L50;
		    case 3:  goto L60;
		}

L40:
		anorm = 1.f;
		goto L70;

L50:
		anorm = rtovfl * ulp * amninv;
		goto L70;

L60:
		anorm = rtunfl * max(m,n) * ulpinv;
		goto L70;

L70:

		slaset_("Full", lda, &n, &c_b18, &c_b18, &a[a_offset], lda);
		slaset_("Full", ldab, &n, &c_b18, &c_b18, &ab[ab_offset], 
			ldab);
		iinfo = 0;
		cond = ulpinv;

/*              Special Matrices -- Identity & Jordan block */

/*                 Zero */

		if (itype == 1) {
		    iinfo = 0;

		} else if (itype == 2) {

/*                 Identity */

		    i__4 = n;
		    for (jcol = 1; jcol <= i__4; ++jcol) {
			a[jcol + jcol * a_dim1] = anorm;
/* L80: */
		    }

		} else if (itype == 4) {

/*                 Diagonal Matrix, singular values specified */

		    slatms_(&m, &n, "S", &iseed[1], "N", &work[1], &imode, &
			    cond, &anorm, &c__0, &c__0, "N", &a[a_offset], 
			    lda, &work[m + 1], &iinfo);

		} else if (itype == 6) {

/*                 Nonhermitian, singular values specified */

		    slatms_(&m, &n, "S", &iseed[1], "N", &work[1], &imode, &
			    cond, &anorm, &kl, &ku, "N", &a[a_offset], lda, &
			    work[m + 1], &iinfo);

		} else if (itype == 9) {

/*                 Nonhermitian, random entries */

		    slatmr_(&m, &n, "S", &iseed[1], "N", &work[1], &c__6, &
			    c_b35, &c_b35, "T", "N", &work[n + 1], &c__1, &
			    c_b35, &work[(n << 1) + 1], &c__1, &c_b35, "N", 
			    idumma, &kl, &ku, &c_b18, &anorm, "N", &a[
			    a_offset], lda, idumma, &iinfo);

		} else {

		    iinfo = 1;
		}

/*              Generate Right-Hand Side */

		slatmr_(&m, nrhs, "S", &iseed[1], "N", &work[1], &c__6, &
			c_b35, &c_b35, "T", "N", &work[m + 1], &c__1, &c_b35, 
			&work[(m << 1) + 1], &c__1, &c_b35, "N", idumma, &m, 
			nrhs, &c_b18, &c_b35, "NO", &c__[c_offset], ldc, 
			idumma, &iinfo);

		if (iinfo != 0) {
		    io___41.ciunit = *nounit;
		    s_wsfe(&io___41);
		    do_fio(&c__1, "Generator", (ftnlen)9);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    return 0;
		}

L90:

/*              Copy A to band storage. */

		i__4 = n;
		for (j = 1; j <= i__4; ++j) {
/* Computing MAX */
		    i__5 = 1, i__6 = j - ku;
/* Computing MIN */
		    i__8 = m, i__9 = j + kl;
		    i__7 = min(i__8,i__9);
		    for (i__ = max(i__5,i__6); i__ <= i__7; ++i__) {
			ab[ku + 1 + i__ - j + j * ab_dim1] = a[i__ + j * 
				a_dim1];
/* L100: */
		    }
/* L110: */
		}

/*              Copy C */

		slacpy_("Full", &m, nrhs, &c__[c_offset], ldc, &cc[cc_offset], 
			 ldc);

/*              Call SGBBRD to compute B, Q and P, and to update C. */

		sgbbrd_("B", &m, &n, nrhs, &kl, &ku, &ab[ab_offset], ldab, &
			bd[1], &be[1], &q[q_offset], ldq, &p[p_offset], ldp, &
			cc[cc_offset], ldc, &work[1], &iinfo);

		if (iinfo != 0) {
		    io___43.ciunit = *nounit;
		    s_wsfe(&io___43);
		    do_fio(&c__1, "SGBBRD", (ftnlen)6);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    if (iinfo < 0) {
			return 0;
		    } else {
			result[1] = ulpinv;
			goto L120;
		    }
		}

/*              Test 1:  Check the decomposition A := Q * B * P' */
/*                   2:  Check the orthogonality of Q */
/*                   3:  Check the orthogonality of P */
/*                   4:  Check the computation of Q' * C */

		sbdt01_(&m, &n, &c_n1, &a[a_offset], lda, &q[q_offset], ldq, &
			bd[1], &be[1], &p[p_offset], ldp, &work[1], &result[1]
);
		sort01_("Columns", &m, &m, &q[q_offset], ldq, &work[1], lwork, 
			 &result[2]);
		sort01_("Rows", &n, &n, &p[p_offset], ldp, &work[1], lwork, &
			result[3]);
		sbdt02_(&m, nrhs, &c__[c_offset], ldc, &cc[cc_offset], ldc, &
			q[q_offset], ldq, &work[1], &result[4]);

/*              End of Loop -- Check for RESULT(j) > THRESH */

		ntest = 4;
L120:
		ntestt += ntest;

/*              Print out tests which fail. */

		i__4 = ntest;
		for (jr = 1; jr <= i__4; ++jr) {
		    if (result[jr] >= *thresh) {
			if (nerrs == 0) {
			    slahd2_(nounit, "SBB");
			}
			++nerrs;
			io___45.ciunit = *nounit;
			s_wsfe(&io___45);
			do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__1, (char *)&jr, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[jr], (ftnlen)sizeof(
				real));
			e_wsfe();
		    }
/* L130: */
		}

L140:
		;
	    }
L150:
	    ;
	}
/* L160: */
    }

/*     Summary */

    slasum_("SBB", nounit, &nerrs, &ntestt);
    return 0;


/*     End of SCHKBB */

} /* schkbb_ */
예제 #21
0
/* Subroutine */ int sdrvpt_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, real *thresh, logical *tsterr, real *a, real *d__, 
	real *e, real *b, real *x, real *xact, real *work, real *rwork, 
	integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 0,0,0,1 };

    /* Format strings */
    static char fmt_9999[] = "(1x,a,\002, N =\002,i5,\002, type \002,i2,\002"
	    ", test \002,i2,\002, ratio = \002,g12.5)";
    static char fmt_9998[] = "(1x,a,\002, FACT='\002,a1,\002', N =\002,i5"
	    ",\002, type \002,i2,\002, test \002,i2,\002, ratio = \002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;
    real r__1, r__2, r__3;

    /* Local variables */
    integer i__, j, k, n;
    real z__[3];
    integer k1, ia, in, kl, ku, ix, nt, lda;
    char fact[1];
    real cond;
    integer mode;
    real dmax__;
    integer imat, info;
    char path[3], dist[1], type__[1];
    integer nrun, ifact, nfail, iseed[4];
    real rcond;
    integer nimat;
    real anorm;
    integer izero, nerrs;
    logical zerot;
    real rcondc;
    real ainvnm;
    real result[6];

    /* Fortran I/O blocks */
    static cilist io___35 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___38 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SDRVPT tests SPTSV and -SVX. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors to be generated for */
/*          each linear system. */

/*  THRESH  (input) REAL */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  A       (workspace) REAL array, dimension (NMAX*2) */

/*  D       (workspace) REAL array, dimension (NMAX*2) */

/*  E       (workspace) REAL array, dimension (NMAX*2) */

/*  B       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  X       (workspace) REAL array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) REAL array, dimension (NMAX*NRHS) */

/*  WORK    (workspace) REAL array, dimension */
/*                      (NMAX*max(3,NRHS)) */

/*  RWORK   (workspace) REAL array, dimension */
/*                      (max(NMAX,2*NRHS)) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --e;
    --d__;
    --a;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "PT", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	serrvx_(path, nout);
    }
    infoc_1.infot = 0;

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {

/*        Do for each value of N in NVAL. */

	n = nval[in];
	lda = max(1,n);
	nimat = 12;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (n > 0 && ! dotype[imat]) {
		goto L110;
	    }

/*           Set up parameters with SLATB4. */

	    slatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &
		    cond, dist);

	    zerot = imat >= 8 && imat <= 10;
	    if (imat <= 6) {

/*              Type 1-6:  generate a symmetric tridiagonal matrix of */
/*              known condition number in lower triangular band storage. */

		s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)32, (ftnlen)6);
		slatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cond, 
			&anorm, &kl, &ku, "B", &a[1], &c__2, &work[1], &info);

/*              Check the error code from SLATMS. */

		if (info != 0) {
		    alaerh_(path, "SLATMS", &info, &c__0, " ", &n, &n, &kl, &
			    ku, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L110;
		}
		izero = 0;

/*              Copy the matrix to D and E. */

		ia = 1;
		i__3 = n - 1;
		for (i__ = 1; i__ <= i__3; ++i__) {
		    d__[i__] = a[ia];
		    e[i__] = a[ia + 1];
		    ia += 2;
/* L20: */
		}
		if (n > 0) {
		    d__[n] = a[ia];
		}
	    } else {

/*              Type 7-12:  generate a diagonally dominant matrix with */
/*              unknown condition number in the vectors D and E. */

		if (! zerot || ! dotype[7]) {

/*                 Let D and E have values from [-1,1]. */

		    slarnv_(&c__2, iseed, &n, &d__[1]);
		    i__3 = n - 1;
		    slarnv_(&c__2, iseed, &i__3, &e[1]);

/*                 Make the tridiagonal matrix diagonally dominant. */

		    if (n == 1) {
			d__[1] = dabs(d__[1]);
		    } else {
			d__[1] = dabs(d__[1]) + dabs(e[1]);
			d__[n] = (r__1 = d__[n], dabs(r__1)) + (r__2 = e[n - 
				1], dabs(r__2));
			i__3 = n - 1;
			for (i__ = 2; i__ <= i__3; ++i__) {
			    d__[i__] = (r__1 = d__[i__], dabs(r__1)) + (r__2 =
				     e[i__], dabs(r__2)) + (r__3 = e[i__ - 1],
				     dabs(r__3));
/* L30: */
			}
		    }

/*                 Scale D and E so the maximum element is ANORM. */

		    ix = isamax_(&n, &d__[1], &c__1);
		    dmax__ = d__[ix];
		    r__1 = anorm / dmax__;
		    sscal_(&n, &r__1, &d__[1], &c__1);
		    if (n > 1) {
			i__3 = n - 1;
			r__1 = anorm / dmax__;
			sscal_(&i__3, &r__1, &e[1], &c__1);
		    }

		} else if (izero > 0) {

/*                 Reuse the last matrix by copying back the zeroed out */
/*                 elements. */

		    if (izero == 1) {
			d__[1] = z__[1];
			if (n > 1) {
			    e[1] = z__[2];
			}
		    } else if (izero == n) {
			e[n - 1] = z__[0];
			d__[n] = z__[1];
		    } else {
			e[izero - 1] = z__[0];
			d__[izero] = z__[1];
			e[izero] = z__[2];
		    }
		}

/*              For types 8-10, set one row and column of the matrix to */
/*              zero. */

		izero = 0;
		if (imat == 8) {
		    izero = 1;
		    z__[1] = d__[1];
		    d__[1] = 0.f;
		    if (n > 1) {
			z__[2] = e[1];
			e[1] = 0.f;
		    }
		} else if (imat == 9) {
		    izero = n;
		    if (n > 1) {
			z__[0] = e[n - 1];
			e[n - 1] = 0.f;
		    }
		    z__[1] = d__[n];
		    d__[n] = 0.f;
		} else if (imat == 10) {
		    izero = (n + 1) / 2;
		    if (izero > 1) {
			z__[0] = e[izero - 1];
			z__[2] = e[izero];
			e[izero - 1] = 0.f;
			e[izero] = 0.f;
		    }
		    z__[1] = d__[izero];
		    d__[izero] = 0.f;
		}
	    }

/*           Generate NRHS random solution vectors. */

	    ix = 1;
	    i__3 = *nrhs;
	    for (j = 1; j <= i__3; ++j) {
		slarnv_(&c__2, iseed, &n, &xact[ix]);
		ix += lda;
/* L40: */
	    }

/*           Set the right hand side. */

	    slaptm_(&n, nrhs, &c_b23, &d__[1], &e[1], &xact[1], &lda, &c_b24, 
		    &b[1], &lda);

	    for (ifact = 1; ifact <= 2; ++ifact) {
		if (ifact == 1) {
		    *(unsigned char *)fact = 'F';
		} else {
		    *(unsigned char *)fact = 'N';
		}

/*              Compute the condition number for comparison with */
/*              the value returned by SPTSVX. */

		if (zerot) {
		    if (ifact == 1) {
			goto L100;
		    }
		    rcondc = 0.f;

		} else if (ifact == 1) {

/*                 Compute the 1-norm of A. */

		    anorm = slanst_("1", &n, &d__[1], &e[1]);

		    scopy_(&n, &d__[1], &c__1, &d__[n + 1], &c__1);
		    if (n > 1) {
			i__3 = n - 1;
			scopy_(&i__3, &e[1], &c__1, &e[n + 1], &c__1);
		    }

/*                 Factor the matrix A. */

		    spttrf_(&n, &d__[n + 1], &e[n + 1], &info);

/*                 Use SPTTRS to solve for one column at a time of */
/*                 inv(A), computing the maximum column sum as we go. */

		    ainvnm = 0.f;
		    i__3 = n;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			i__4 = n;
			for (j = 1; j <= i__4; ++j) {
			    x[j] = 0.f;
/* L50: */
			}
			x[i__] = 1.f;
			spttrs_(&n, &c__1, &d__[n + 1], &e[n + 1], &x[1], &
				lda, &info);
/* Computing MAX */
			r__1 = ainvnm, r__2 = sasum_(&n, &x[1], &c__1);
			ainvnm = dmax(r__1,r__2);
/* L60: */
		    }

/*                 Compute the 1-norm condition number of A. */

		    if (anorm <= 0.f || ainvnm <= 0.f) {
			rcondc = 1.f;
		    } else {
			rcondc = 1.f / anorm / ainvnm;
		    }
		}

		if (ifact == 2) {

/*                 --- Test SPTSV -- */

		    scopy_(&n, &d__[1], &c__1, &d__[n + 1], &c__1);
		    if (n > 1) {
			i__3 = n - 1;
			scopy_(&i__3, &e[1], &c__1, &e[n + 1], &c__1);
		    }
		    slacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda);

/*                 Factor A as L*D*L' and solve the system A*X = B. */

		    s_copy(srnamc_1.srnamt, "SPTSV ", (ftnlen)32, (ftnlen)6);
		    sptsv_(&n, nrhs, &d__[n + 1], &e[n + 1], &x[1], &lda, &
			    info);

/*                 Check error code from SPTSV . */

		    if (info != izero) {
			alaerh_(path, "SPTSV ", &info, &izero, " ", &n, &n, &
				c__1, &c__1, nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }
		    nt = 0;
		    if (izero == 0) {

/*                    Check the factorization by computing the ratio */
/*                       norm(L*D*L' - A) / (n * norm(A) * EPS ) */

			sptt01_(&n, &d__[1], &e[1], &d__[n + 1], &e[n + 1], &
				work[1], result);

/*                    Compute the residual in the solution. */

			slacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			sptt02_(&n, nrhs, &d__[1], &e[1], &x[1], &lda, &work[
				1], &lda, &result[1]);

/*                    Check solution from generated exact solution. */

			sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);
			nt = 3;
		    }

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    i__3 = nt;
		    for (k = 1; k <= i__3; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				aladhd_(nout, path);
			    }
			    io___35.ciunit = *nout;
			    s_wsfe(&io___35);
			    do_fio(&c__1, "SPTSV ", (ftnlen)6);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(real));
			    e_wsfe();
			    ++nfail;
			}
/* L70: */
		    }
		    nrun += nt;
		}

/*              --- Test SPTSVX --- */

		if (ifact > 1) {

/*                 Initialize D( N+1:2*N ) and E( N+1:2*N ) to zero. */

		    i__3 = n - 1;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			d__[n + i__] = 0.f;
			e[n + i__] = 0.f;
/* L80: */
		    }
		    if (n > 0) {
			d__[n + n] = 0.f;
		    }
		}

		slaset_("Full", &n, nrhs, &c_b24, &c_b24, &x[1], &lda);

/*              Solve the system and compute the condition number and */
/*              error bounds using SPTSVX. */

		s_copy(srnamc_1.srnamt, "SPTSVX", (ftnlen)32, (ftnlen)6);
		sptsvx_(fact, &n, nrhs, &d__[1], &e[1], &d__[n + 1], &e[n + 1]
, &b[1], &lda, &x[1], &lda, &rcond, &rwork[1], &rwork[
			*nrhs + 1], &work[1], &info);

/*              Check the error code from SPTSVX. */

		if (info != izero) {
		    alaerh_(path, "SPTSVX", &info, &izero, fact, &n, &n, &
			    c__1, &c__1, nrhs, &imat, &nfail, &nerrs, nout);
		}
		if (izero == 0) {
		    if (ifact == 2) {

/*                    Check the factorization by computing the ratio */
/*                       norm(L*D*L' - A) / (n * norm(A) * EPS ) */

			k1 = 1;
			sptt01_(&n, &d__[1], &e[1], &d__[n + 1], &e[n + 1], &
				work[1], result);
		    } else {
			k1 = 2;
		    }

/*                 Compute the residual in the solution. */

		    slacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
		    sptt02_(&n, nrhs, &d__[1], &e[1], &x[1], &lda, &work[1], &
			    lda, &result[1]);

/*                 Check solution from generated exact solution. */

		    sget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &
			    result[2]);

/*                 Check error bounds from iterative refinement. */

		    sptt05_(&n, nrhs, &d__[1], &e[1], &b[1], &lda, &x[1], &
			    lda, &xact[1], &lda, &rwork[1], &rwork[*nrhs + 1], 
			     &result[3]);
		} else {
		    k1 = 6;
		}

/*              Check the reciprocal of the condition number. */

		result[5] = sget06_(&rcond, &rcondc);

/*              Print information about the tests that did not pass */
/*              the threshold. */

		for (k = k1; k <= 6; ++k) {
		    if (result[k - 1] >= *thresh) {
			if (nfail == 0 && nerrs == 0) {
			    aladhd_(nout, path);
			}
			io___38.ciunit = *nout;
			s_wsfe(&io___38);
			do_fio(&c__1, "SPTSVX", (ftnlen)6);
			do_fio(&c__1, fact, (ftnlen)1);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(
				real));
			e_wsfe();
			++nfail;
		    }
/* L90: */
		}
		nrun = nrun + 7 - k1;
L100:
		;
	    }
L110:
	    ;
	}
/* L120: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of SDRVPT */

} /* sdrvpt_ */
예제 #22
0
파일: slattp.c 프로젝트: 3deggi/levmar-ndk
/* Subroutine */ int slattp_(integer *imat, char *uplo, char *trans, char *
	diag, integer *iseed, integer *n, real *a, real *b, real *work, 
	integer *info)
{
    /* System generated locals */
    integer i__1, i__2;
    real r__1, r__2;
    doublereal d__1, d__2;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    double pow_dd(doublereal *, doublereal *), sqrt(doublereal), r_sign(real *
	    , real *);

    /* Local variables */
    real c__;
    integer i__, j;
    real s, t, x, y, z__;
    integer jc;
    real ra;
    integer jj;
    real rb;
    integer jl, kl, jr, ku, iy, jx;
    real ulp, sfac;
    integer mode;
    char path[3], dist[1];
    real unfl, rexp;
    char type__[1];
    real texp;
    extern /* Subroutine */ int srot_(integer *, real *, integer *, real *, 
	    integer *, real *, real *);
    real star1, plus1, plus2, bscal;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    real tscal, anorm, bnorm, tleft, stemp;
    logical upper;
    extern /* Subroutine */ int srotg_(real *, real *, real *, real *), 
	    slatb4_(char *, integer *, integer *, integer *, char *, integer *
, integer *, real *, integer *, real *, char *), slabad_(real *, real *);
    extern doublereal slamch_(char *);
    char packit[1];
    real bignum;
    extern integer isamax_(integer *, real *, integer *);
    extern doublereal slarnd_(integer *, integer *);
    real cndnum;
    integer jcnext, jcount;
    extern /* Subroutine */ int slatms_(integer *, integer *, char *, integer 
	    *, char *, real *, integer *, real *, real *, integer *, integer *
, char *, real *, integer *, real *, integer *), slarnv_(integer *, integer *, integer *, real *);
    real smlnum;


/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SLATTP generates a triangular test matrix in packed storage. */
/*  IMAT and UPLO uniquely specify the properties of the test */
/*  matrix, which is returned in the array AP. */

/*  Arguments */
/*  ========= */

/*  IMAT    (input) INTEGER */
/*          An integer key describing which matrix to generate for this */
/*          path. */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies whether the matrix A will be upper or lower */
/*          triangular. */
/*          = 'U':  Upper triangular */
/*          = 'L':  Lower triangular */

/*  TRANS   (input) CHARACTER*1 */
/*          Specifies whether the matrix or its transpose will be used. */
/*          = 'N':  No transpose */
/*          = 'T':  Transpose */
/*          = 'C':  Conjugate transpose (= Transpose) */

/*  DIAG    (output) CHARACTER*1 */
/*          Specifies whether or not the matrix A is unit triangular. */
/*          = 'N':  Non-unit triangular */
/*          = 'U':  Unit triangular */

/*  ISEED   (input/output) INTEGER array, dimension (4) */
/*          The seed vector for the random number generator (used in */
/*          SLATMS).  Modified on exit. */

/*  N       (input) INTEGER */
/*          The order of the matrix to be generated. */

/*  A       (output) REAL array, dimension (N*(N+1)/2) */
/*          The upper or lower triangular matrix A, packed columnwise in */
/*          a linear array.  The j-th column of A is stored in the array */
/*          AP as follows: */
/*          if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', */
/*             AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n. */

/*  B       (output) REAL array, dimension (N) */
/*          The right hand side vector, if IMAT > 10. */

/*  WORK    (workspace) REAL array, dimension (3*N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0: if INFO = -k, the k-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    --work;
    --b;
    --a;
    --iseed;

    /* Function Body */
    s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "TP", (ftnlen)2, (ftnlen)2);
    unfl = slamch_("Safe minimum");
    ulp = slamch_("Epsilon") * slamch_("Base");
    smlnum = unfl;
    bignum = (1.f - ulp) / smlnum;
    slabad_(&smlnum, &bignum);
    if (*imat >= 7 && *imat <= 10 || *imat == 18) {
	*(unsigned char *)diag = 'U';
    } else {
	*(unsigned char *)diag = 'N';
    }
    *info = 0;

/*     Quick return if N.LE.0. */

    if (*n <= 0) {
	return 0;
    }

/*     Call SLATB4 to set parameters for SLATMS. */

    upper = lsame_(uplo, "U");
    if (upper) {
	slatb4_(path, imat, n, n, type__, &kl, &ku, &anorm, &mode, &cndnum, 
		dist);
	*(unsigned char *)packit = 'C';
    } else {
	i__1 = -(*imat);
	slatb4_(path, &i__1, n, n, type__, &kl, &ku, &anorm, &mode, &cndnum, 
		dist);
	*(unsigned char *)packit = 'R';
    }

/*     IMAT <= 6:  Non-unit triangular matrix */

    if (*imat <= 6) {
	slatms_(n, n, dist, &iseed[1], type__, &b[1], &mode, &cndnum, &anorm, 
		&kl, &ku, packit, &a[1], n, &work[1], info);

/*     IMAT > 6:  Unit triangular matrix */
/*     The diagonal is deliberately set to something other than 1. */

/*     IMAT = 7:  Matrix is the identity */

    } else if (*imat == 7) {
	if (upper) {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j - 1;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    a[jc + i__ - 1] = 0.f;
/* L10: */
		}
		a[jc + j - 1] = (real) j;
		jc += j;
/* L20: */
	    }
	} else {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		a[jc] = (real) j;
		i__2 = *n;
		for (i__ = j + 1; i__ <= i__2; ++i__) {
		    a[jc + i__ - j] = 0.f;
/* L30: */
		}
		jc = jc + *n - j + 1;
/* L40: */
	    }
	}

/*     IMAT > 7:  Non-trivial unit triangular matrix */

/*     Generate a unit triangular matrix T with condition CNDNUM by */
/*     forming a triangular matrix with known singular values and */
/*     filling in the zero entries with Givens rotations. */

    } else if (*imat <= 10) {
	if (upper) {
	    jc = 0;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j - 1;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    a[jc + i__] = 0.f;
/* L50: */
		}
		a[jc + j] = (real) j;
		jc += j;
/* L60: */
	    }
	} else {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		a[jc] = (real) j;
		i__2 = *n;
		for (i__ = j + 1; i__ <= i__2; ++i__) {
		    a[jc + i__ - j] = 0.f;
/* L70: */
		}
		jc = jc + *n - j + 1;
/* L80: */
	    }
	}

/*        Since the trace of a unit triangular matrix is 1, the product */
/*        of its singular values must be 1.  Let s = sqrt(CNDNUM), */
/*        x = sqrt(s) - 1/sqrt(s), y = sqrt(2/(n-2))*x, and z = x**2. */
/*        The following triangular matrix has singular values s, 1, 1, */
/*        ..., 1, 1/s: */

/*        1  y  y  y  ...  y  y  z */
/*           1  0  0  ...  0  0  y */
/*              1  0  ...  0  0  y */
/*                 .  ...  .  .  . */
/*                     .   .  .  . */
/*                         1  0  y */
/*                            1  y */
/*                               1 */

/*        To fill in the zeros, we first multiply by a matrix with small */
/*        condition number of the form */

/*        1  0  0  0  0  ... */
/*           1  +  *  0  0  ... */
/*              1  +  0  0  0 */
/*                 1  +  *  0  0 */
/*                    1  +  0  0 */
/*                       ... */
/*                          1  +  0 */
/*                             1  0 */
/*                                1 */

/*        Each element marked with a '*' is formed by taking the product */
/*        of the adjacent elements marked with '+'.  The '*'s can be */
/*        chosen freely, and the '+'s are chosen so that the inverse of */
/*        T will have elements of the same magnitude as T.  If the *'s in */
/*        both T and inv(T) have small magnitude, T is well conditioned. */
/*        The two offdiagonals of T are stored in WORK. */

/*        The product of these two matrices has the form */

/*        1  y  y  y  y  y  .  y  y  z */
/*           1  +  *  0  0  .  0  0  y */
/*              1  +  0  0  .  0  0  y */
/*                 1  +  *  .  .  .  . */
/*                    1  +  .  .  .  . */
/*                       .  .  .  .  . */
/*                          .  .  .  . */
/*                             1  +  y */
/*                                1  y */
/*                                   1 */

/*        Now we multiply by Givens rotations, using the fact that */

/*              [  c   s ] [  1   w ] [ -c  -s ] =  [  1  -w ] */
/*              [ -s   c ] [  0   1 ] [  s  -c ]    [  0   1 ] */
/*        and */
/*              [ -c  -s ] [  1   0 ] [  c   s ] =  [  1   0 ] */
/*              [  s  -c ] [  w   1 ] [ -s   c ]    [ -w   1 ] */

/*        where c = w / sqrt(w**2+4) and s = 2 / sqrt(w**2+4). */

	star1 = .25f;
	sfac = .5f;
	plus1 = sfac;
	i__1 = *n;
	for (j = 1; j <= i__1; j += 2) {
	    plus2 = star1 / plus1;
	    work[j] = plus1;
	    work[*n + j] = star1;
	    if (j + 1 <= *n) {
		work[j + 1] = plus2;
		work[*n + j + 1] = 0.f;
		plus1 = star1 / plus2;
		rexp = slarnd_(&c__2, &iseed[1]);
		d__1 = (doublereal) sfac;
		d__2 = (doublereal) rexp;
		star1 *= pow_dd(&d__1, &d__2);
		if (rexp < 0.f) {
		    d__1 = (doublereal) sfac;
		    d__2 = (doublereal) (1.f - rexp);
		    star1 = -pow_dd(&d__1, &d__2);
		} else {
		    d__1 = (doublereal) sfac;
		    d__2 = (doublereal) (rexp + 1.f);
		    star1 = pow_dd(&d__1, &d__2);
		}
	    }
/* L90: */
	}

	x = sqrt(cndnum) - 1.f / sqrt(cndnum);
	if (*n > 2) {
	    y = sqrt(2.f / (real) (*n - 2)) * x;
	} else {
	    y = 0.f;
	}
	z__ = x * x;

	if (upper) {

/*           Set the upper triangle of A with a unit triangular matrix */
/*           of known condition number. */

	    jc = 1;
	    i__1 = *n;
	    for (j = 2; j <= i__1; ++j) {
		a[jc + 1] = y;
		if (j > 2) {
		    a[jc + j - 1] = work[j - 2];
		}
		if (j > 3) {
		    a[jc + j - 2] = work[*n + j - 3];
		}
		jc += j;
/* L100: */
	    }
	    jc -= *n;
	    a[jc + 1] = z__;
	    i__1 = *n - 1;
	    for (j = 2; j <= i__1; ++j) {
		a[jc + j] = y;
/* L110: */
	    }
	} else {

/*           Set the lower triangle of A with a unit triangular matrix */
/*           of known condition number. */

	    i__1 = *n - 1;
	    for (i__ = 2; i__ <= i__1; ++i__) {
		a[i__] = y;
/* L120: */
	    }
	    a[*n] = z__;
	    jc = *n + 1;
	    i__1 = *n - 1;
	    for (j = 2; j <= i__1; ++j) {
		a[jc + 1] = work[j - 1];
		if (j < *n - 1) {
		    a[jc + 2] = work[*n + j - 1];
		}
		a[jc + *n - j] = y;
		jc = jc + *n - j + 1;
/* L130: */
	    }
	}

/*        Fill in the zeros using Givens rotations */

	if (upper) {
	    jc = 1;
	    i__1 = *n - 1;
	    for (j = 1; j <= i__1; ++j) {
		jcnext = jc + j;
		ra = a[jcnext + j - 1];
		rb = 2.f;
		srotg_(&ra, &rb, &c__, &s);

/*              Multiply by [ c  s; -s  c] on the left. */

		if (*n > j + 1) {
		    jx = jcnext + j;
		    i__2 = *n;
		    for (i__ = j + 2; i__ <= i__2; ++i__) {
			stemp = c__ * a[jx + j] + s * a[jx + j + 1];
			a[jx + j + 1] = -s * a[jx + j] + c__ * a[jx + j + 1];
			a[jx + j] = stemp;
			jx += i__;
/* L140: */
		    }
		}

/*              Multiply by [-c -s;  s -c] on the right. */

		if (j > 1) {
		    i__2 = j - 1;
		    r__1 = -c__;
		    r__2 = -s;
		    srot_(&i__2, &a[jcnext], &c__1, &a[jc], &c__1, &r__1, &
			    r__2);
		}

/*              Negate A(J,J+1). */

		a[jcnext + j - 1] = -a[jcnext + j - 1];
		jc = jcnext;
/* L150: */
	    }
	} else {
	    jc = 1;
	    i__1 = *n - 1;
	    for (j = 1; j <= i__1; ++j) {
		jcnext = jc + *n - j + 1;
		ra = a[jc + 1];
		rb = 2.f;
		srotg_(&ra, &rb, &c__, &s);

/*              Multiply by [ c -s;  s  c] on the right. */

		if (*n > j + 1) {
		    i__2 = *n - j - 1;
		    r__1 = -s;
		    srot_(&i__2, &a[jcnext + 1], &c__1, &a[jc + 2], &c__1, &
			    c__, &r__1);
		}

/*              Multiply by [-c  s; -s -c] on the left. */

		if (j > 1) {
		    jx = 1;
		    i__2 = j - 1;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			stemp = -c__ * a[jx + j - i__] + s * a[jx + j - i__ + 
				1];
			a[jx + j - i__ + 1] = -s * a[jx + j - i__] - c__ * a[
				jx + j - i__ + 1];
			a[jx + j - i__] = stemp;
			jx = jx + *n - i__ + 1;
/* L160: */
		    }
		}

/*              Negate A(J+1,J). */

		a[jc + 1] = -a[jc + 1];
		jc = jcnext;
/* L170: */
	    }
	}

/*     IMAT > 10:  Pathological test cases.  These triangular matrices */
/*     are badly scaled or badly conditioned, so when used in solving a */
/*     triangular system they may cause overflow in the solution vector. */

    } else if (*imat == 11) {

/*        Type 11:  Generate a triangular matrix with elements between */
/*        -1 and 1. Give the diagonal norm 2 to make it well-conditioned. */
/*        Make the right hand side large so that it requires scaling. */

	if (upper) {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		slarnv_(&c__2, &iseed[1], &j, &a[jc]);
		a[jc + j - 1] = r_sign(&c_b36, &a[jc + j - 1]);
		jc += j;
/* L180: */
	    }
	} else {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n - j + 1;
		slarnv_(&c__2, &iseed[1], &i__2, &a[jc]);
		a[jc] = r_sign(&c_b36, &a[jc]);
		jc = jc + *n - j + 1;
/* L190: */
	    }
	}

/*        Set the right hand side so that the largest value is BIGNUM. */

	slarnv_(&c__2, &iseed[1], n, &b[1]);
	iy = isamax_(n, &b[1], &c__1);
	bnorm = (r__1 = b[iy], dabs(r__1));
	bscal = bignum / dmax(1.f,bnorm);
	sscal_(n, &bscal, &b[1], &c__1);

    } else if (*imat == 12) {

/*        Type 12:  Make the first diagonal element in the solve small to */
/*        cause immediate overflow when dividing by T(j,j). */
/*        In type 12, the offdiagonal elements are small (CNORM(j) < 1). */

	slarnv_(&c__2, &iseed[1], n, &b[1]);
/* Computing MAX */
	r__1 = 1.f, r__2 = (real) (*n - 1);
	tscal = 1.f / dmax(r__1,r__2);
	if (upper) {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j - 1;
		slarnv_(&c__2, &iseed[1], &i__2, &a[jc]);
		i__2 = j - 1;
		sscal_(&i__2, &tscal, &a[jc], &c__1);
		r__1 = slarnd_(&c__2, &iseed[1]);
		a[jc + j - 1] = r_sign(&c_b48, &r__1);
		jc += j;
/* L200: */
	    }
	    a[*n * (*n + 1) / 2] = smlnum;
	} else {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n - j;
		slarnv_(&c__2, &iseed[1], &i__2, &a[jc + 1]);
		i__2 = *n - j;
		sscal_(&i__2, &tscal, &a[jc + 1], &c__1);
		r__1 = slarnd_(&c__2, &iseed[1]);
		a[jc] = r_sign(&c_b48, &r__1);
		jc = jc + *n - j + 1;
/* L210: */
	    }
	    a[1] = smlnum;
	}

    } else if (*imat == 13) {

/*        Type 13:  Make the first diagonal element in the solve small to */
/*        cause immediate overflow when dividing by T(j,j). */
/*        In type 13, the offdiagonal elements are O(1) (CNORM(j) > 1). */

	slarnv_(&c__2, &iseed[1], n, &b[1]);
	if (upper) {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j - 1;
		slarnv_(&c__2, &iseed[1], &i__2, &a[jc]);
		r__1 = slarnd_(&c__2, &iseed[1]);
		a[jc + j - 1] = r_sign(&c_b48, &r__1);
		jc += j;
/* L220: */
	    }
	    a[*n * (*n + 1) / 2] = smlnum;
	} else {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n - j;
		slarnv_(&c__2, &iseed[1], &i__2, &a[jc + 1]);
		r__1 = slarnd_(&c__2, &iseed[1]);
		a[jc] = r_sign(&c_b48, &r__1);
		jc = jc + *n - j + 1;
/* L230: */
	    }
	    a[1] = smlnum;
	}

    } else if (*imat == 14) {

/*        Type 14:  T is diagonal with small numbers on the diagonal to */
/*        make the growth factor underflow, but a small right hand side */
/*        chosen so that the solution does not overflow. */

	if (upper) {
	    jcount = 1;
	    jc = (*n - 1) * *n / 2 + 1;
	    for (j = *n; j >= 1; --j) {
		i__1 = j - 1;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    a[jc + i__ - 1] = 0.f;
/* L240: */
		}
		if (jcount <= 2) {
		    a[jc + j - 1] = smlnum;
		} else {
		    a[jc + j - 1] = 1.f;
		}
		++jcount;
		if (jcount > 4) {
		    jcount = 1;
		}
		jc = jc - j + 1;
/* L250: */
	    }
	} else {
	    jcount = 1;
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n;
		for (i__ = j + 1; i__ <= i__2; ++i__) {
		    a[jc + i__ - j] = 0.f;
/* L260: */
		}
		if (jcount <= 2) {
		    a[jc] = smlnum;
		} else {
		    a[jc] = 1.f;
		}
		++jcount;
		if (jcount > 4) {
		    jcount = 1;
		}
		jc = jc + *n - j + 1;
/* L270: */
	    }
	}

/*        Set the right hand side alternately zero and small. */

	if (upper) {
	    b[1] = 0.f;
	    for (i__ = *n; i__ >= 2; i__ += -2) {
		b[i__] = 0.f;
		b[i__ - 1] = smlnum;
/* L280: */
	    }
	} else {
	    b[*n] = 0.f;
	    i__1 = *n - 1;
	    for (i__ = 1; i__ <= i__1; i__ += 2) {
		b[i__] = 0.f;
		b[i__ + 1] = smlnum;
/* L290: */
	    }
	}

    } else if (*imat == 15) {

/*        Type 15:  Make the diagonal elements small to cause gradual */
/*        overflow when dividing by T(j,j).  To control the amount of */
/*        scaling needed, the matrix is bidiagonal. */

/* Computing MAX */
	r__1 = 1.f, r__2 = (real) (*n - 1);
	texp = 1.f / dmax(r__1,r__2);
	d__1 = (doublereal) smlnum;
	d__2 = (doublereal) texp;
	tscal = pow_dd(&d__1, &d__2);
	slarnv_(&c__2, &iseed[1], n, &b[1]);
	if (upper) {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j - 2;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    a[jc + i__ - 1] = 0.f;
/* L300: */
		}
		if (j > 1) {
		    a[jc + j - 2] = -1.f;
		}
		a[jc + j - 1] = tscal;
		jc += j;
/* L310: */
	    }
	    b[*n] = 1.f;
	} else {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n;
		for (i__ = j + 2; i__ <= i__2; ++i__) {
		    a[jc + i__ - j] = 0.f;
/* L320: */
		}
		if (j < *n) {
		    a[jc + 1] = -1.f;
		}
		a[jc] = tscal;
		jc = jc + *n - j + 1;
/* L330: */
	    }
	    b[1] = 1.f;
	}

    } else if (*imat == 16) {

/*        Type 16:  One zero diagonal element. */

	iy = *n / 2 + 1;
	if (upper) {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		slarnv_(&c__2, &iseed[1], &j, &a[jc]);
		if (j != iy) {
		    a[jc + j - 1] = r_sign(&c_b36, &a[jc + j - 1]);
		} else {
		    a[jc + j - 1] = 0.f;
		}
		jc += j;
/* L340: */
	    }
	} else {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n - j + 1;
		slarnv_(&c__2, &iseed[1], &i__2, &a[jc]);
		if (j != iy) {
		    a[jc] = r_sign(&c_b36, &a[jc]);
		} else {
		    a[jc] = 0.f;
		}
		jc = jc + *n - j + 1;
/* L350: */
	    }
	}
	slarnv_(&c__2, &iseed[1], n, &b[1]);
	sscal_(n, &c_b36, &b[1], &c__1);

    } else if (*imat == 17) {

/*        Type 17:  Make the offdiagonal elements large to cause overflow */
/*        when adding a column of T.  In the non-transposed case, the */
/*        matrix is constructed to cause overflow when adding a column in */
/*        every other step. */

	tscal = unfl / ulp;
	tscal = (1.f - ulp) / tscal;
	i__1 = *n * (*n + 1) / 2;
	for (j = 1; j <= i__1; ++j) {
	    a[j] = 0.f;
/* L360: */
	}
	texp = 1.f;
	if (upper) {
	    jc = (*n - 1) * *n / 2 + 1;
	    for (j = *n; j >= 2; j += -2) {
		a[jc] = -tscal / (real) (*n + 1);
		a[jc + j - 1] = 1.f;
		b[j] = texp * (1.f - ulp);
		jc = jc - j + 1;
		a[jc] = -(tscal / (real) (*n + 1)) / (real) (*n + 2);
		a[jc + j - 2] = 1.f;
		b[j - 1] = texp * (real) (*n * *n + *n - 1);
		texp *= 2.f;
		jc = jc - j + 2;
/* L370: */
	    }
	    b[1] = (real) (*n + 1) / (real) (*n + 2) * tscal;
	} else {
	    jc = 1;
	    i__1 = *n - 1;
	    for (j = 1; j <= i__1; j += 2) {
		a[jc + *n - j] = -tscal / (real) (*n + 1);
		a[jc] = 1.f;
		b[j] = texp * (1.f - ulp);
		jc = jc + *n - j + 1;
		a[jc + *n - j - 1] = -(tscal / (real) (*n + 1)) / (real) (*n 
			+ 2);
		a[jc] = 1.f;
		b[j + 1] = texp * (real) (*n * *n + *n - 1);
		texp *= 2.f;
		jc = jc + *n - j;
/* L380: */
	    }
	    b[*n] = (real) (*n + 1) / (real) (*n + 2) * tscal;
	}

    } else if (*imat == 18) {

/*        Type 18:  Generate a unit triangular matrix with elements */
/*        between -1 and 1, and make the right hand side large so that it */
/*        requires scaling. */

	if (upper) {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j - 1;
		slarnv_(&c__2, &iseed[1], &i__2, &a[jc]);
		a[jc + j - 1] = 0.f;
		jc += j;
/* L390: */
	    }
	} else {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (j < *n) {
		    i__2 = *n - j;
		    slarnv_(&c__2, &iseed[1], &i__2, &a[jc + 1]);
		}
		a[jc] = 0.f;
		jc = jc + *n - j + 1;
/* L400: */
	    }
	}

/*        Set the right hand side so that the largest value is BIGNUM. */

	slarnv_(&c__2, &iseed[1], n, &b[1]);
	iy = isamax_(n, &b[1], &c__1);
	bnorm = (r__1 = b[iy], dabs(r__1));
	bscal = bignum / dmax(1.f,bnorm);
	sscal_(n, &bscal, &b[1], &c__1);

    } else if (*imat == 19) {

/*        Type 19:  Generate a triangular matrix with elements between */
/*        BIGNUM/(n-1) and BIGNUM so that at least one of the column */
/*        norms will exceed BIGNUM. */

/* Computing MAX */
	r__1 = 1.f, r__2 = (real) (*n - 1);
	tleft = bignum / dmax(r__1,r__2);
/* Computing MAX */
	r__1 = 1.f, r__2 = (real) (*n);
	tscal = bignum * ((real) (*n - 1) / dmax(r__1,r__2));
	if (upper) {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		slarnv_(&c__2, &iseed[1], &j, &a[jc]);
		i__2 = j;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    a[jc + i__ - 1] = r_sign(&tleft, &a[jc + i__ - 1]) + 
			    tscal * a[jc + i__ - 1];
/* L410: */
		}
		jc += j;
/* L420: */
	    }
	} else {
	    jc = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n - j + 1;
		slarnv_(&c__2, &iseed[1], &i__2, &a[jc]);
		i__2 = *n;
		for (i__ = j; i__ <= i__2; ++i__) {
		    a[jc + i__ - j] = r_sign(&tleft, &a[jc + i__ - j]) + 
			    tscal * a[jc + i__ - j];
/* L430: */
		}
		jc = jc + *n - j + 1;
/* L440: */
	    }
	}
	slarnv_(&c__2, &iseed[1], n, &b[1]);
	sscal_(n, &c_b36, &b[1], &c__1);
    }

/*     Flip the matrix across its counter-diagonal if the transpose will */
/*     be used. */

    if (! lsame_(trans, "N")) {
	if (upper) {
	    jj = 1;
	    jr = *n * (*n + 1) / 2;
	    i__1 = *n / 2;
	    for (j = 1; j <= i__1; ++j) {
		jl = jj;
		i__2 = *n - j;
		for (i__ = j; i__ <= i__2; ++i__) {
		    t = a[jr - i__ + j];
		    a[jr - i__ + j] = a[jl];
		    a[jl] = t;
		    jl += i__;
/* L450: */
		}
		jj = jj + j + 1;
		jr -= *n - j + 1;
/* L460: */
	    }
	} else {
	    jl = 1;
	    jj = *n * (*n + 1) / 2;
	    i__1 = *n / 2;
	    for (j = 1; j <= i__1; ++j) {
		jr = jj;
		i__2 = *n - j;
		for (i__ = j; i__ <= i__2; ++i__) {
		    t = a[jl + i__ - j];
		    a[jl + i__ - j] = a[jr];
		    a[jr] = t;
		    jr -= i__;
/* L470: */
		}
		jl = jl + *n - j + 1;
		jj = jj - j - 1;
/* L480: */
	    }
	}
    }

    return 0;

/*     End of SLATTP */

} /* slattp_ */